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Quantum Information Theory

Born out of Classical Information Theory

Mathematical theory of storage, transmission & processing of information

Quantum Information Theory: how these tasks can be accomplished using
quantum-mechanical systems

as information carriers (e.g. photons, electrons,…)
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The underlying
quantum mechanics

distinctively new features

• improve the performance of certain 

information-processing tasks

• accomplish tasks which are
impossible in the classical realm !

as well as

These can be exploited to:



Classical Information Theory: 1948, Claude Shannon

 He posed 2 questions:

 (Q1) What is the limit to which information

can be reliably compressed ?
 relevance: there is often a physical limit 
to the amount of space available for storage 
information/data – e.g. in mobile phones

 information = data =signals= messages = outputs  of a source

 (Q2) What is the maximum amount of information that can 
be transmitted reliably per use of a communications 
channel ?

 relevance: biggest hurdle in transmitting info is presence 
of noise in communications channels, e.g. crackling 
telephone line,



Classical Information Theory:1948, Claude Shannon

 He posed 2 questions:

 (Q1) What is the limit to which information

can be reliably compressed ?

 (A1) Shannon’s Source Coding Theorem: 
data compression limit = Shannon entropy of                

the source

 (Q2) What is the maximum amount of information that can 
be transmitted reliably per use of a communications 
channel ?

 (A2) Shannon’s Noisy Channel Coding Theorem: 
maximum rate of info transmission: given in terms of the

mutual information



 rarer an event, more info we gain when we know it has occurred

What is information?

 Shannon: information 

 Information gain  = decrease in uncertainty of an event

Surprisal or Self-information:

uncertainty

 measure of information measure of uncertainty

 Consider an event described by a random variable (r.v.)

( )X p x x J (finite alphabet)(p.m.f);

 A measure of uncertainty in getting outcome       :

( ) : log ( )x p x  

 only depends on                -- not on values         taken by
 continuous; additive for independent events

( )p x X

 a highly improbable outcome is surprising!
2log log

x

x



Shannon entropy = average surprisal

 Defn: Shannon entropy            of a discrete r.v. ( ),X p x( )H X

( ) ( ( )) ( ) log ( )
x J

H X X p x p x


   

 Convention: 0log 0 1
0

lim log 0
w

w w




2log log

(If an event has zero probability, it does not contribute to the entropy)

: a measure of uncertainty of the r.v. 

 also quantifies the amount of info we gain on average
when we learn the value of 

( )H X X

  ( ) ( ) ( )XH X H p H p x 

x J

X

 ( )X x J
p p x






 Example:  Binary Entropy

{0,1}J ( )X p x

( ) log (1 ) log(1 )H X p p p p    

(0) ;  (1) 1 ;p p p p  

( )h p

0 1p x   ( )h p

p

( ) 0h p 
1 0p x   no uncertainty

0.5 :p  maximum 
uncertainty

( ) 1h p 

Concave function of

Properties

pContinuous function of



Operational Significance of the Shannon Entropy

= optimal rate of data compression for a 
classical memoryless (i.i.d.) information source 

Classical Information Source

 Outputs/signals : sequences of letters from a finite set

: source alphabet

(i) binary alphabet                 

(ii) telegraph English : 26 letters + a space

(iii) written English : 26 letters in upper & lower case + punctuation

{0,1}J 

J

J



Simplest example: a memoryless source
 successive signals: independent of each other

characterized by a probability distribution

On each use of the source, a letter emitted with prob

 ( )
u J

p u


( )p uu J

Modelled by a sequence of i.i.d. random variables

( )iU p u1 2, ,..., nU U U u J

 Signal emitted by        uses of the source:

( ) ( ),     1 .kp u P U u u J k n     

n

( ) : ( ) log ( )
u J

H U p u p u


  Shannon entropy of the 
source:

( )
1 2( , ,..., ) n

nu u u u u 

1 1 2 2( ) ( , ,..., )n np u P U u U u U u    1 2( ) ( )... ( )np u p u p u



(Q) Why is data compression possible?

(A) There is redundancy in the info emitted by the source

-- an info source typically produces some outputs more 
frequently than others:

--during data compression one exploits this redundancy in the 

data to form the most compressed version possible

In English text ‘e’ occurs more frequently than ‘z’.

 Fixed length coding:

 Variable length coding:

-- identify a set of signals which have high prob of occurrence: typical signals

-- assign unique fixed length (l) binary strings to each of them

-- all other signal (atypical) assigned a single binary string of same length (l)

-- more frequently occurring signals (e.g ‘e’) assigned shorter descriptions 
(fewer bits) than the less frequent ones (e.g. ‘z’)



Typical Sequences

 Defn: Consider an i.i.d. info source : 

sequences 0, 
1 2, ,... ;   ( ) ;  nU U U p u u J

For any 1 2: ( , ,... ) n
nu u u u J  for which

( ( ) ) ( ( ) )
1 22 ( , ,... ) 2 ,n H U n H U

np u u u     

where

are called          typical sequences

( )H U 
 

Shannon entropy of the source

( ) :nT  typical set = set of           typical sequences   

 Note: Typical sequences are almost equiprobable

( ) ,nu T  ( )( ) 2 nH Up u 



(Q) Does this agree with our intuitive notion of typical sequences?

(A) Yes! For an i.i.d. source : 

1 2, ,... ;  
 ( ) ;  

nU U U
p u u J

A typical sequence of length

is one which contains approx.            copies of              

 Probability of such a sequence is approximately  given by
( ) log ( )

( ) ( ) log ( ) ( ) =  2 2u J

p u p u
np u np u p u

u J u J
p u 

 


   

( )2 nH U

( ) np u  u J ,u
,n1 2: ( , ,... )nu u u u

( ) ,nu T  ( )( ) 2 nH Up u 

1 2, ,... ;   ( ) ;  n iU U U U p u u J



Properties of the Typical Set
( )nT

 Let               : number of typical sequences

: probability of the typical set ( )nP T

( )nT

 Typical Sequence Theorem: Fix then

and        large enough,

 ( ) 1nP T  

( ( ) ) ( ) ( ( ) )(1 )2 2n H U n n H UT 
    

0,  0, 

n

 sequences in the atypical set rarely occur

 typical sequences are almost equiprobable

( ) ( )n n nJ T A   

atypical set
 ( )nP A 

(disjoint union)



Operational Significance of the Shannon Entropy

[ min. # of bits needed to store the signals emitted
per use of the source] (for reliable data compression)

 Optimal rate is evaluated in the asymptotic limit n 
n  number of uses of the source 

( ) 0 ;  n
errorp n 

( )H U

 (Q) What is the optimal rate of data compression for 
such a source?

 One requires

 (A) optimal rate of data compression =

Shannon entropy of the source



When is this a compression scheme?

Compression-Decompression Scheme

Suppose                                                 is an i.i.d. information

Shannon entropy                ( )H U
1 2, ,... ;   ( ) ;  n iU U U U p u u J

source

:R A compression scheme of rate

 Decompression:

 Average probability of error: 

 Compr.-decompr. scheme reliable if

1 2: : ( , ,... )nn u u u uE 1 2: ( , ,... )
nmx x x x

nJ
 0,1 nm

 : 0,1 nm
nD nJ

( )n
avp

( ) 0n
avp  as n 

lim n

n

m R
n



 ( ) ( ( ))
u

n np u P u u  D E



 Shannon’s Source Coding Theorem:

Suppose                                                 is an i.i.d. information

Shannon entropy                

 Suppose                  : then there exists a reliable compression 

scheme of rate for the source.

 If                      then any compression scheme of rate 

will not be reliable.

( )H U
1 2, ,... ;   ( ) ;  n iU U U U p u u J

source

( )R H U
R

( )R H U R



 Shannon’s Source Coding Theorem:

Suppose                                                 is an i.i.d. information

Shannon entropy                

 Suppose                  : then there exists a reliable compression 

scheme of rate for the source.

( )H U
1 2, ,... ;   ( ) ;  n iU U U U p u u J

source

( )R H U
R

Sketch of proof

(achievability)



Shannon’s Source Coding Theorem (proof contd.)

 If                      then any compression scheme of rate 

will not be reliable.

( )R H U R

Proof follows from:

(converse)

 Lemma: Let            be a set of sequences                      

of length        of size                    ,   where           is fixed.

Each sequence           is produced with prob.

Then for any             and sufficiently large       ,

if          is a set of at most       sequences with            , then with a 
high probability the source will produce sequences which will not lie in 
this set. 

Hence encoding         sequences                     reliable data compression 

( )nS ( )
1 2: ( , ,... )n

nu u u u
( ) 2n nRS ( )R H U

( )( )np u( )nu
n

n0, 

( )

( )

( )

( )
n

n

u n

p u 



S

 2nR ( )R H U

2nR

( )nS



Entropies for a pair of random variables

 Consider a pair of discrete random variables

( ) ;  XX p x x J ( ) ;  YY p y y J

Given their joint probabilities

& their conditional probabilities

( , ) ( , ) ;  P X x Y y p x y  

( | ) ( | ) ;  P Y y X x p y x  

and

 Joint entropy:

 Conditional entropy:

( , ) : ( , ) log ( , )
X Yx J y J

H X Y p x y p x y
 

  

( | ) : ( ) ( | )
Xx J

H Y X p x H Y X x


  ( , ) log ( | )
X Yx J y J

p x y p y x
 

  

( , ) ( | ) ( )H X Y H Y X H X  Chain Rule:



Entropies for a pair of random variables

 Relative Entropy: Measure of the “distance” between two 

probability distributions 

 not symmetric;

 does not satisfy the triangle 
inequality

convention:

 BUT not a true distance

( )( || ) : ( ) log
( )x J

p xD p q p x
q x

 
  

 


00log 0  ;  log   0
0
uu u

u
          
   

   ( )  ;  ( )
x J x J

p p x q q x
 

 

( || ) 0D p q 

( || ) 0D p q  if & only if p q



Entropies for a pair of random variables

 Mutual Information: Measure of the amount of info one 

r.v. contains about another r.v. 

,

( , )( , ) :  ( , ) log
( ) ( )x y

p x yI X Y p x y
p x p y

 
  

 


( ),  ( )X p x Y p y 

( : ) ( || )XY X YI X Y D p p p

     ,
( , ) ;  ( ) ;  ( )XY X Yx y x y

p p x y p p x p p y  

( : ) ( ) ( ) ( , )I X Y H X H Y H X Y  
( ) ( | )H X H X Y 
( ) ( | )H Y H Y X 

 Chain rules:



Properties of Entropies

Let                                 be discrete random variables: Then,( ),  ( )X p x Y p y 

 with equality if & only if       is deterministic

 if 

( ) 0,H X  X
( ) log ,H X J x J

( | ) 0,H Y X  ( , ) ( ),H X Y H Y

( , ) ( ) ( ),H X Y H X H Y 

( : ) 0I X Y 

( (1 ) ) ( ) (1 ) ( ),X Y X YH p p H p H p       

 Subadditivity:

 Concavity: if          &          are 2 prob. distributions,Yp

 or equivalently

 with equality if & only if           &     

are independent

X Y

Xp



 So far…….

 Classical Data Compression: answer to Shannon’s      question

 Classical entropies and their properties

(Q1) What is the limit to which information can be reliably

compressed ?

(A1) Shannon’s Source Coding Theorem: 
data compression limit = Shannon entropy of the source            

1st



 (Q2) What is the maximum amount of information that can 
be transmitted reliably per use of a communications 
channel?

 Noise distorts the information sent through the channel.



input output

 To combat the effects of noise: use error-correcting codes

output input

noisy channel

 Shannon’s        question2nd

The biggest hurdle in the path of efficient transmission of info
is the presence of noise in the communications channel



To overcome the effects of noise: 

instead of transmitting the original messages,

-- the sender encodes her messages into suitable codewords

-- these codewords are then sent through (multiple uses of)

the  channel

Alice Bob

N
Alice’s
message

encoding decoding

uses of n
input output

nE nD Bob’s
inference

codeword 

: ( , ) :n n nC E D Error-correcting code:

( )nN



 The idea behind the encoding:

 To introduce redundancy in the message so that upon
decoding, Bob can retrieve the original message with a 
low probability of error:

 The amount of redundancy which needs to be added –
depends on the noise in the channel



 Memoryless binary symmetric channel (m.b.s.c.)

0

1

0              

1
p

p
1-p

1-p

 it transmits single bits

 effect of the noise: to flip 
the bit with probability  p

 Encoding: 0 000
1 111 codewords

 the 3 bits are sent through 3 successive uses of the m.b.s.c.

 Suppose 000 010

 Decoding : (majority voting)     010 0

(Bob receives)
m.b.s.c. 

Example

codeword

(Bob infers)

Repetition Code



 Probability of error for the m.b.s.c. :

 without encoding = p

 with encoding = Prob (2 or more bits flipped) := q

010
0 0 00

1 1 1 1  

 Prove: q < p if p < 1/2 -- in this case encoding helps!

 (Encoding – Decoding) : Repetition Code.

output of 3 uses 
of a m.b.s.c.

possible inputsinference



 Information transmission is said to be reliable if:
-- the probability of error in decoding the output 

vanishes asymptotically in the number of uses of the channel 

 the amount of information that can be sent 

per use of the channel

 Aim: to achieve reliable information transmission 

whilst optimizing the  rate

 The optimal rate of reliable info transmission:   capacity



Discrete classical channel

XJ 

 conditional probabilities ; 

 known to sender & receiver

( )nN
input output

( ) ( )( | )n np y x ( )n n
Yy J

( )nx
( )ny

( )n n
Xx J

N

( ) ( )( | )n np y x

input alphabet; output alphabetYJ 

Nuses of n



Correspondence between input & output sequences is not 1-1

 Shannon proved: it is possible to choose a subset of input 
sequences--

such that there exists only :
1 highly likely input corresponding to a given input

n
XJ n

YJ
( )nx

( )' nx

( )ny

 Use these input sequences as codewords



N
Alice’s

Alice Bob

Transmission of info through a classical channel

:M finite set of messages

noisy channel

( )nNmM

N

( )ny

Alice’s
message

encoding decoding

uses of n
input

( )nx
output

mM

nE nD
Bob’s
inference

output:
1 2

( ) ( , ,..., );  n
nx x x x codeword:

1 2
( ) ( , ,..., );  n
ny y y y

: ( , ) :n n nC E D Error-correcting code:

( ) ( )( | )n np y x( ) :nN



( )nNmM ( )ny

Alice’s
message

encoding decoding
input

( )nx
output

mM

 If

nE nD

 Info transmission is reliable if: Prob. of error 0

 Rate of info

transmission

n 

Bob’s
inference

 Aim: achieve reliable transmission whilst maximizing the rate

m m  then an error occurs!

as

 Capacity: maximum rate of reliable information 
transmission

number of bits of message transmitted 
per use of the channel

=

 Shannon: there is a fundamental limit on the rate of reliable 

info transmission ;  property of the channel



Memoryless (classical or quantum) channels

 action of each use of the channel is identical and it is 

independent for different uses

-- i.e., the noise affecting states transmitted through the 

channel on successive uses is assumed to be uncorrelated.

 Shannon in his Noisy Channel Coding Theorem:

-- obtained an explicit expression for the capacity of a

memoryless classical channel
( ) ( )

1

( | ) ( | )
n

n n
i i

i

p y x p y x






 Classical memoryless channel: a schematic representation

 ( | )p y x channel: a set of conditional probs.

N Y
input output

( | )p y x

( )X p x

,Xx J ,Yy J
x y

 ( )
( ) max ( : )

p x
C I X YN Capacity 

mutual informationinput distributions

( : ) ( ) ( ) ( , )I X Y H X H Y H X Y  

( ) ( ) log ( )
x

H X p x p x Shannon Entropy



 Shannon’s Noisy Channel Coding Theorem:

N Y
input output

( | )p y x

( )X p x

 For a memoryless channel:

Optimal rate of reliable info transmission      capacity

 ( )
( ) max ( : )

p x
C I X YN

Sketch of proof




