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Abstract

We study a multi-matrix model whose low temperature phase is a

fuzzy sphere that undergoes an evaporation transition as the temperature

is increased. We investigate finite size scaling of the system as the limiting

temperature of stability of the fuzzy sphere phase is approached. We find

on theoretical grounds that the system should obey scaling with specific

heat exponent α = 1

2
, shift exponent λ = 4

3
and that the peak in the

specific heat grows with exponent ω = 2

3
. Using hybrid Monte Carlo

simulations we find good collapse of specific heat data consistent with a

scaling ansatz which give our best estimates for the scaling exponents as

α = 0.50 ± 0.01, λ = 1.41 ± 0.08 and ω = 0.66 ± 0.08.

1 Introduction

Different approaches to the basic structure of spacetime exist and in recent
years there has been a growing interest in the notion of space or spacetime as
an emergent concept. A natural setting where space or spacetime are necessarily
emergent is in the proposed nonpterturbative definitions of string theory pro-
vided by matrix models [1, 2, 3]. In this context plausible models of emergent
geometry have been discussed [4]. The notion of classical geometry changes dras-
tically within the context of matrix models; neither background geometry nor
topology is predefined but instead they emerge dynamically as a consequence
of the condensation of the matrix degrees of freedom to form the background
geometry.

The purpose of this paper is to study the scaling of finite matrix effects for
large matrix size (largeN) as the limit of stability of the geometry is approached.

We consider an action in which the basic objects are simple Hermitian ma-
trices at finite temperature with a prescribed energy functional. The geometry
exists at low temperatures as a condensate around which the system fluctuates.

The energy functional of interest here is that of a 3-matrix model consisting
of the trace of the square of the commutator of the matrices (a Yang-Mills term)
plus the epsilon-tensor contracted with the trace of the three matrices (a Myers
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term [5]). The system has been studied before in [6, 7, 8, 9, 10, 11] and with a
mass deformation in [12]. It is a static bosonic subsector of the BMN model [3].

The model exhibits a geometrical phase for sufficiently low temperatures
where the effect of the cubic Myers term is important, with the geometry be-
ing that of a fuzzy sphere [13, 14] which is a non-commutative version of the
commutative sphere.

At a critical temperature, which can be traded for a critical Myers coupling,
a phase transition occurs and the condensed geometry evaporates. In the ge-
ometrical, low temperature phase, small fluctuations around this condensate
correspond to a U(1) gauge and scalar field multiplet [7].

In previous studies [10, 11] it was argued that, as the transition is approached
from the low temperature side, there are divergent fluctuations in the system
and in particular that the specific heat diverges with exponent α = 1

2 . This
suggests that the system may exhibit finite size scaling [15, 16] in terms of
the matrix size as the system size grows. We therefore study the growth of
fluctuations, in terms of both temperature and matrix size, as the transition is
approached from below, but insisting on remaining in the fuzzy sphere phase.
The fluctuations we consider are those of a restricted ensemble and do not take
into account the rare finite matrix transitions when the system jumps from the
fuzzy sphere to the matrix phase. Such fluctuations are completely absent in
the large N limit as is typical of matrix models where tunneling goes to zero as
N goes to infinity. Our study shows that the fluctuations do indeed scale with
matrix size.

The principal results of this paper are:

• In the absence of fluctuations, the Myer’s term gives rise to an instability
of the model. This is responsible for the destabilisation of the matrix phase
for small matrices but insufficient to cause an instability for matrices of
size N ≥ 12 approximately.

• The transition is rounded by finite matrix effects and there is a pseudo
critical temperature shifted from the infinite N transition temperature
with shift exponent which we predict on scaling grounds is λ = 4

3 .

• The scaling form of the free energy with N is a universal function of

x = tNλ where t = Tc−T
Tc

. We predict the scaling relation λ = 2
2−α .

• If we assume that d = 2, based on a fuzzy sphere background, and α = 1
2

as found in earlier studies, then our theoretical prediction is that λ = 4
3

and if further we accept that the approach to criticality is governed by
a divergent correlation length then we infer that the correlation length
exponent ν = 2

3 .

• Hybrid Monte Carlo simulations give good agreement with finite size scal-
ing in terms of the matrix size N and assuming the asymptotic scaling
form of the specific heat as the critical temperature is approached from
below Cv ≃ A−(Tc−T )−α our best estimates from these measurements are
A− = 0.051± 0.017, α = 0.50± 0.01, λ = 1.41± 0.08 and ω = 0.66± 0.08
where the peak in the specific heat grows as AωN

ω. These are in good
agreement with the theoretical estimates based on scaling and α = 1

2 .
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• When we assume the exponent α = 1
2 and scaling so that λ = 4

3 and
ω = 2

3 we find tight estimates for the shift amplitude Aλ = 3.9± 0.1 and
the specific heat maximum amplitude Aω = 0.199± 0.005.

The organization of the paper is as follows: In section §2 we discuss the main
properties of the model which are relevant to us. In section §3 we present the
theory of finite size scaling. In section §4 we give an overview of the difficulties
that arise in near-critical system simulations and the impact they have on our
studies. In section §5 we present our numerical results. In section §6 we present
our conclusions from the study.

2 The three matrix model

The model we shall consider in this paper is the three matrix model, which was
studied in [6, 9, 10, 11]. Let Xa, a = 1, 2, 3, be three traceless N -dimensional
Hermitian matrices. We consider the action (really an energy divided by tem-
perature, as all our considerations will be in Euclidean signature)

S[X ] = NTr
(
− 1

4
[Xa, Xb]

2 +
2ig

3
ǫabcXaXbXc

)
(1)

where ǫabc is the totally antisymmetric Levi-Civita symbol, g ∈ R is a parameter
of the model. The change g → −g is equivalent to Xa → −Xa, therefore it will
be sufficient to restrict our study to the case g ≥ 0, which we shall assume. This
model has a phase transition [6, 9] and it is the vicinity of this transition that
is of interest to us here.

The stationary points of the system follow from varying S: demanding that
δS = 0 results in

[Xb, [Xa, Xb]− igǫabcXc] = 0, (2)

and every configuration of matrices Xa that solves (2) is a (local) extremum or
saddle point of (1).

For most purposes of this paper it will be convenient to scale out a factor of√
N and work with the parametrization g̃ = g

√
N , as this gives a phase diagram

that does not dependent onN . So we make the substitutionXa → g̃ Da√
N

in terms

of which the action reads

S[D] =
g̃4

N
Tr
(
− 1

4
[Da, Db]

2 +
2i

3
ǫabcDaDbDc

)
. (3)

From this it is clear that observables are symmetric under g̃ → −g̃, or equiva-
lently under g → −g. For g̃ 6= 0 we can interpret T = g̃−4 as a temperature for
the system.1

Many of the physical properties are characterised by the expectation value
of the action < S >, the specific heat of the system and the distribution of the
eigenvalues of the matrices Xa. Our study here will focus on the first two. The
specific heat is defined as

Cv =
< (S− < S >)2 >

N2
=

< S >

N2
− g̃4

d

dg̃4

(< S >

N2

)
. (4)

1Generally we prefer to discuss the physical properties of the system in terms of the tem-
perature T , though it may be more convenient in some situations to use either g̃ or g. Note
that, as there are no dimensionful quantities in the action, T here is dimensionless.
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For convenience we shall define S :=< S >, this is the internal energy divided
by the temperature.

The model has at least two phases, which we call the commuting matrix
phase and the fuzzy sphere phase, and the above three quantities behave quite
differently in these two phases. In a semi-classical approximation [10] the phase
transition occurs at

g̃c =
(8
3

) 3

4 ⇔ Tc =
(3
8

)3
≈ 0.05273. (5)

This is remarkably close to our numerical result of 0.0531± 0.0003 obtained in
§5.1.

2.1 The commuting matrix phase

The high temperature phase of the model with T > Tc is characterised by
fluctuations around a ground state in which the three matrices are mutually
commuting. This ground state can be represented by Xa’s which are linear
combinations of hHmh−1, m = 1, . . . , N − 1, where Hm are in the Cartan sub-
algebra of su(N) and h ∈ SU(N). Any such linear combination is a trivial
solution to (2), so the classical action vanishes for these stationary configura-
tions.

However, these solutions can be unstable if any of the eigenvalues get too
close to one another, as we now demonstrate. Fluctuations around a classical
solution can be expressed as

Xa = X0,a + δXa, (6)

with X0,a three mutually commuting, Hermitian matrices. We are free to per-
form an N × N unitary transformation on X0,a to simultaneously diagonalise
them, (

X0,a

)
ij
= λa

i δij , (no sum over i). (7)

A little algebra reveals that, to quadratic order in δXa we have

−1

4
Tr
[
Xa, Xb]

2 =
1

2

((
∆ij .∆ij

)
δab −∆a

ij∆
b
ij

)
δXa,ij δXb,ij (8)

and
2i

3
ǫabcXaXbXc = iǫabc∆

c
ijδXa,ij δXb,ij , (9)

where ∆a
ij = λa

i − λa
i . Stability of fluctuations around a classical solution are

therefore determined by the eigenvalues of the operator

1

2

(
∆2

ijδ
ab −∆a

ij∆
b
ij

)
+ ig ǫabc ∆

c
ij , (10)

where ∆2
ij = ∆a

ij∆
a
ij with eigenvalues 0, 1

2∆
2
ij ± g

√
∆2

ij . The zero-eigenvalue

is associated with the U(N) invariance of the action and can be removed by
gauge fixing such that one of the matrices is diagonal. However, if some of
the background eigenvalues, λa

i , are too close together, (10) has a negative
eigenvalue, and hence an instability. In particular, if

∆2
ij < 4g2, (11)
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for any pair i, j, then there is a direction which is unstable. The solution is
stable if all the eigenvalues of X0,a are far enough apart. Note that there are
no unstable directions for g = 0, the instability is induced by the Myers’ term.

Fluctuations can of course modify this analysis. It is possible that they
stabilise the unstable solutions. We will not attempt an analytic approach to
this question here but will return to it later in the paper. The first immediate
effect of fluctuations is that they modify the expectation value of the action and
shift it away from S = 0. To study this effect consider a Schwinger-Dyson type
analysis,

0 =

∫
[DX ]Tr

∂

∂Xa

(
Xae

−S)

⇒ 0 = 3(N2 − 1)− Tr < Xa
∂S
∂Xa

> (12)

⇒ 3(N2 − 1) = −NTr < [Xa, Xb]
2 > +2igNǫabcTr < XaXbXc >

= 4 < S > −2igNǫabcTr < XaXbXc >,

where 3(N2 − 1) is the number of degrees of freedom in the three Hermitian
matrices Xa. Thus we expect

< S >

N2
=

3
(
N2 − 1

)

4N2
+

ig

2N
ǫabcTr < XaXbXc > . (13)

It is shown numerically in [12] that Tr < XaXbXc > ≈ 1
N1/2

(
1

T 1/4 + o
(

1
T 1/2

))

at large T and large N so, in this limit,

Sm(T )

N2
=

3

4
, (14)

which is positive. This suggests that, in the matrix phase of the model, the
specific heat does not depend on T ,

Cv =
3

4
, (15)

and each degree of freedom contributes a value of 1
4 to the specific heat. The

model behaves like a pure Yang-Mills matrix model in the large N limit, i.e.
one with only the commutator squared term.

For large N , the eigenvalue distribution in this phase is compatible with a
parabolic distribution [17, 12, 18]. In a gauge in which X3 is diagonal (which
can always be achieved by an SU(N) transformation) the diagonal entries of
< X3 > can be arranged in descending order and give a parabolic distribution
with normalised density

ρ(λ) =
3(R2 − λ2)

2πR3
, (16)

with R determined numerically to be 2.0. This parabolic form of the distribution
further implies, as argued in [18, 19], that the background of commuting matrices
have their eigenvalues distributed uniformly within a ball of radius R = 2.0.
Fluctuations around this background are still present and those of the different
matrices do not commute.
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2.2 The fuzzy sphere phase

The fuzzy sphere phase is a cold (ordered) phase and is radically different to
the commuting matrix phase. The background matrices in this phase are rep-
resented by a solution to (2) in which Xa are proportional the generators of
su(2), Xa = gLa with [La, Lb] = iǫabcLc, up to U(N) transformation hLah

−1

with h ∈ SU(N). For the classical solution we have
∑

a X
2
a = g2c21, with c2

the second order Casimir for the N -dimensional representation of SU(2), and

hence
<TrD2

a>
Nc2

= 1. More generally we shall define a radius of the fuzzy sphere,
R, by

R2 =
< TrD2

a >

Nc2
, (17)

which, in the large N limit, has a nonzero value only in the fuzzy sphere phase.
The parameterR provides an order parameter for the transition, being non-zero
in the low temperature phase and zero in the high temperature phase.

For low temperatures below the transition the expectation value of the action
in this phase is approximated by the value of the action for the solution Xa =
gLa, so that R ≃ 1 and

Sf (T ) = −c2c
adj
2

12T
+ < fluctuations > (18)

where c2 = N2−1
4 and cadj2 = 2 are the Casimir and adjoint Casimir operators

of su(2). Since the matrices Xa are proportional to the generators they have
a discrete eigenvalue spectrum with N distinct eigenvalues of the form λ ={
−gN−1

2 ,−gN−3
2 . . . gN−1

2

}
.

2.3 Excited fuzzy sphere states

A closer examination of equation (2) shows that there are reducible fuzzy sphere
solutions, with Xa proportional to su(2) generators in a reducible representation
of the form

R1(M1)⊕R2(M2) . . .⊕RK(Mk) (19)

where Ri(Mi) is an su(2) irreducible representation of dimension Mi and∑
i=1,K Mi = N . The matrices Xa for this solution can always be chosen to

have block-diagonal form and this will be implicit for the rest of this discussion.
All of the metastable states with the n-tuple (M1,M2, . . . ,MK) can be listed
and indeed all the solutions described so far — even the commuting matrix
phase and the irreducible fuzzy sphere phase — can be classified this way. For a
fixed N , the number of distinct solutions to (2) of the form (19) grows as p(N),
the number of integer partitions of N , which for large N behaves as

p(N) ≃ eπ
√

2N/3

4N
√
3

. (20)

and for low enough temperatures the fuzzy sphere configuration represents the
ground state of the system with each of the other p(N)− 1 configurations rep-
resenting a potential metastable state.

The special case M1 = M2 = . . . = MN = 1 corresponds to the commuting
matrix phase and the ground state in this case can be viewed as arising from N
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one-dimensional (or trivial) representations of su(2). In the other extreme, when
K = 1, the representation is irreducible and gives the fuzzy sphere discussed
above. Nevertheless, the commuting matrix solution is genuinely different to all
the others, the configuration represented by diagonal matrices is a state built
from the one-dimensional representations so the ǫ term in (2) plays no rôle and
the system has no memory of su(2). These are one dimensional representations
of an arbitrary algebra.

There are two observables that could be used to distinguish between the
fuzzy sphere from section §2.2 and these excited configurations with K > 1.
First we can use the eigenvalues of the matrices: since any irreducible represen-
tation R(M) of su(2) has M distinct eigenvalues, configurations of the form (19)
have max{Mi} < N distinct eigenvalues in their spectra. Another observable
that is sensitive to the excited states is the expectation value of the action. We
have

Sef (T, (M1,M2, . . . ,MK)) = −
K∑

i=1

Mic2(Mi)c
adj
2

12NT
+ < fluctuations > (21)

and Sf (T ) < Sef (T,K) < Sm(T ) for ∀K : 1 < K < N . These excited states are
unstable, see section §4.2 and far from the phase transition fluctuations around
the lowest excited states are very much like fluctuations around the ground state
(see Fig. 5) and these fluctuations are small relative to the spacing between
such states. So at very low temperatures these excited states do not play an
important rôle in the thermodynamics of the system.

The considerations so far have been in the absence of fluctuations and apply,
at low temperatures, sufficiently far from the critical point that fluctuations can
be neglected. Fluctuations are important in the high temperature phase due
to eigenvalue repulsion which lifts the degeneracy of eigenvalues and stabilises
the high temperature phase against the Myers instability discussed in section
§2.1. Otherwise at high temperatures fluctuations are not large. In the low
temperature phase eigenvalue repulsion also lifts the degeneracy associated with
identical su(2) blocks in the low temperature phase otherwise for all practical
purposes the excited fuzzy states play no rôle for sufficiently low temperatures.

However, near the critical point as the transition is approached from the low
temperature side fluctuations grow and the specific heat rises, see Fig. 3. In this
regime the excited fuzzy sphere states will of necessity play a more important
rôle. One can estimate when the first excited state will be important by noting
that it corresponds to R(N−1)⊕R(1) and that the difference in action between
this and the ground state grows linearly with N , being N

8 for large N . If the
square of this difference divided by N is larger than the specific heat then these
excited states are unimportant, however, as the critical point is reached the
specific heat grows and eventually all excited states are important. Far from
the transition Cv = 1, so we can estimate that the first excited state will begin
to become important for T ∼ 1

64 ≃ 0.0156. Once the first excited state becomes
important, there are more possibilities for fluctuations in the system and the
specific heat in turn grows. More excited states enter the picture and eventually
the system undergoes a phase transition. Earlier estimates [6, 7, 8, 9, 10] give

this transition at Tc = (38 )
3 ≃ 0.0527. So we expect the critical regime between

for 0.0156 ≤ T ≤ 0.0527 which is quite consistent with Fig. 3.
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2.4 A 1.5 order phase transition

It is clear from the previous sections that the commuting matrix and the fuzzy
sphere phases are quite different. The classical results in equations (14) and
(18) give Sm(Tc)− Sf (Tc) 6= 0 at the transition temperature, Tc, so this might
näıvely be classified as a first order phase transition — with latent heat and a
finite specific heat on either side of the transition — but the full story is more
subtle.

An approximate analytic expression for the specific heat, in the N → ∞
limit, was given in [11]. If we make the ansatz Xa = φ g La in the fuzzy sphere
phase and write an effective potential for the theory in terms of φ then, in a
large N semi-classical approximation, equations (3.25) and (3.26) of reference
[11] with m = 0, give, R = φ and in the large g̃ limit,

Cv =
3

4
+

g̃5φ2

32

dφ

d g̃
with φ = 1− 2

g̃4
− 12

g̃8
+ o

(
1

g̃12

)
. (22)

Thus

Cv = 1 +
2

g̃4
+ o

(
1

g̃8

)
(23)

and
Cv −→

T→0
1 . (24)

On the other hand, near g̃c

Cv(g̃) =

{
29
36 + 1

4
√
6

√
g̃c

g̃−g̃c
+ . . .

3
4

φ =

{
1
4 +

√
3
8

√
g̃−g̃c
g̃c

+ . . . , g̃ > g̃c

0 g̃ < g̃c .
(25)

Thus the specific heat diverges2 on the low temperature side of the transition.
This is the characteristic behaviour of a continuous (also called 2nd order) tran-
sition near a critical point.

The general theory of continuous phase transitions and critical phenomena
[20, 21, 22, 23] suggests that, near the phase transition, the specific heat Cv on
either side of the transition should behave as

Cv(T ) ∼ C0± +A±|T − Tc|−α . (26)

The three matrix model under consideration here seems to have a rather unusual
phase transition in that the specific heat diverges only as the phase transition
is approached from one side but does not diverge as it is approached from the
other.

The internal energy per degree of freedom, U = T <S>
N2 , arising from the

semi-classical approximation of [11], is plotted in Fig. 1 and the slope of this
curve near Tc, when expressed in terms of g̃, results in the form (25) for the
specific heat. The semi-classical approximation on the low-temperature side is
given by

S

N2
=

3

4
− φ3(T )

24T
(27)

2In terms of temperature (25) gives Cv(T ) = 29

36
+ 3

64
(Tc − T )−

1

2 +. . . .
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where

φ(T ) =
1

4

(
1 +

√
1 + δ(T ) +

√
2− δ(T ) +

2√
1 + δ(T )

)
(28)

δ(T ) = 4T 1/3

((
1 +

√
1− T

Tc

) 1

3 +
(
1−

√
1− T

Tc

) 1

3

)
. (29)

This is the typical behaviour of a critical point and a second order phase transi-
tion. This implies that a small correction to Tc can give a very large correction
to the internal energy, ∆UTc .

On the high temperature side the internal energy is U = 3
4T , from (14), and

so approaches the phase transition with a finite slope, giving constant specific
heat (15).

This transition has the characteristic features of a 2nd order transition when
approached from low temperatures while those of a 1st order transition when
approached from the high temperature side. We might call such a transition a
1.5 order phase transition. The two dimensional dimer model has similar asym-
metric thermodynamics in the neigbhourhood of its transition. Curiously in the
dimer example the background geometry can also be interpreted as undergoing
a transition [24].

The free energy per degree of freedom was also derived, in the same approx-
imation as the internal energy above, in [11]. On the low temperature side it
is3

F

N2
= T

[
ln

(
φ

T

)
− 1

3

]
− φ4

24
. (30)

Conversely, on the high temperature side, integrating

U(T ) = −T 2 d

dT

(
F

T

)
=

3

4
T, (31)

leads to
F

N2
= C1T − 3

4
T lnT, (32)

with C1 an integration constant. Adjusting C1 so that F (Tc) matches on the
high and low side gives C1 = ln 6

4 − 7
12 ≈ −0.1354 and results in the free energy

per degree of freedom shown in Fig. 2. There is a jump in the specific entropy4,
s = − 1

3N2

dF
dT as we go through the phase transition, ∆s = 1

9 .
Of course this classical and semi-classical analysis is not the whole story and

indeed the purpose of the present work is to study the characteristics of this
phase transition numerically.

3 Finite size critical systems

Phase transitions where some observables are non-analytic functions of the tem-
perature, T (e.g. they may diverge) are possible only in the thermodynamic

3 One must be careful in specifying the measure when determining the free energy, and the
measure for the matrices Xa differs from that for the Da by a temperature dependent factor
[11]. The from of the free energy quoted here is that associated with the Da.

4Note: There are 3(N2
− 1) degrees of freedom.
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limit, which in our case would correspond to taking N → ∞ at fixed T . We can
of course only perform numerical studies of systems consisting of a finite num-
ber of degrees of freedom, so the systems we simulate will only undergo pseudo

phase transitions where the non-analyticities are rounded (e.g. with peaks at
pseudo-critical points instead of divergences).5 Increasing N gets closer to the
thermodynamic limit but also increases the computer resources required for the
numerical study, truly N → ∞ systems can only be approximated by finite N
systems and the thermodynamic limit must be extrapolated from finite N re-
sults. The behaviour of the specific heat as a function of temperature is plotted
in Fig. 3, for N = 40 and N = 100. The deviation, in the numerical data, of the
largest values of Cv for different values of N is the due to finite size effects. In
Fig. 3 we see that the peak of the specific heat moves with N , this is the shift of
the pseudo-critical temperature. The temperature at which the different curves
begin to deviate from one another corresponds to the rounding temperature and
is more difficult to observe in the figure. In Fig. 4 we show a blow-up of the
area around the critical point for different values of N where one sees the onset
of rounding more clearly. It is probable that the data shown in Figs. 3 and 4
do not achieve the true maximum specific heat since the data do not track the
return to low values of the specific heat at high temperatures. However, this is
not important for our analysis as we will show that the entire critical regime
satisfies scaling with the matrix size.

Before going on to discuss our numerical results in detail we give a brief
review of finite size effects on critical systems. See C. Domb and J.L. Lebowitz
[15], for further discussion of these issues and for the original literature see also
[16].

3.1 Thermodynamic limit away from the critical point

Let F (T,Nd) be the free energy for a system with Nd degrees of freedom at
a temperature T . In the thermodynamic limit the free energy per degree of
freedom is

f∞(T ) = lim
Nd→∞

1

Nd
F (T,Nd). (33)

In our case Nd = 3(N2 − 1) ∼ N2. Far away from any critical point we expect
this limit to exist and to be independent of the macroscopic geometry.

When the number of degrees of freedom is finite and all degrees of freedom
are equivalent, e.g. there are no surfaces and the couplings are isotropic, then

there is a characteristic linear system size L ∼ aN
1

d

d , where d is the dimension
and a is a microscopic scale such as a lattice spacing and the volume of the
system is V = Ld. Since a is fixed, and typically absorbed in the parameters of
the system, one can take a = 1.

3.2 Finite size effects and the correlation length

When a finite system approaches a critical regime there is a number of important
effects that must be taken into account. First there is a temperature, called the
rounding temperature and denoted T ∗(L), at which observables of the finite

5For more a comprehensive treatment of critical phenomena the reader is directed to see
the reviews in [20, 21, 22, 23].
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system start to deviate from those of the infinite system and T ∗(L) → Tc as the
system size is increased. Finite size scaling assumes that this approach of the
rounding temperature to the bulk critical temperature is governed by scaling
with

|T ∗(L)− Tc|/Tc ∼ AθL
−θ (34)

where θ is the rounding exponent.
Another finite size effect, which is directly visible in Fig. 4, is that ther-

modynamic quantities which diverge at the critical point merely have maximal
values in finite systems with the maximum at some temperature Tm(L) 6= Tc.
Such temperatures are called pseudo-critical. Again Tm(L) → Tc, as the system
size is increased and finite size scaling conjectures that

|Tm(L)− Tc|/Tc ∼ AλL
−λ (35)

where λ is the shift exponent.
The specific heat of many critical systems is one such observable and finite

size effects round a divergent specific heat so that it has a maximum,

Cvm(L) = Cv

(
Tm(L)

)
, (36)

with Cvm(L) → ∞ as L → ∞. Finite size scaling implies that the divergence
emerges in the limit of infinite L via scaling. Thus

Cvm(L) ≡ Cv(Tm(L)) ∼ AωL
ω. (37)

The exponents θ, λ and ω, describe the critical behaviour of our finite system
as the system size goes to infinity.
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As the critical point of a bulk system is approached the length scale, over
which fluctuations in the system are correlated, grows. The correlation length
is defined as the rate of the asymptotically exponential decay of the two-point
function, with distance, r, between the points. For the near-critical system

Γ(r, T ) ∼ exp(−r/ξ(T )) as r → ∞ , (38)

from which the ξ(T ) can be computed as

ξ−1(T ) = − lim
r→∞

ln Γ(r, T )

r
. (39)

At a critical point the correlation length diverges and, in most systems, in the
immediate vicinity of the critical point ξ(T ) can be expressed as6

ξ(T ) ∼ f±|t|−ν where t =
T − Tc

Tc
(40)

is the reduced temperature and the f+ and f− are system dependent amplitudes
above and below the critical temperature. They are typically different from
one another but their ratio is universal within a given universality class. The
exponent ν therefore dictates how fast the correlation length diverges when
t → 0 in an infinite system.

The correlation length, of a system plays a crucial rôle in the explanation
of finite size scaling for systems exhibiting critical phenomena such as the Ising
model or gas systems.7 The finite size system correlation length ξL is constrained
by the size of the system and one expects that

ξL(Tm(L)) ∼ L . (41)

We can classify the different regimes for the system in terms of the scaled vari-

able y = ξL
L or z = ξ(t)

L . As we approach criticality for finite size system the
correlation length takes the form

ξ(T, L) = Ly(z) = Lf(tL1/ν). (42)

where both y and f are universal scaling functions8.
In this critical regime and when the system is large relative to the correlation

length y ≪ 1, y(z) ≃ z and f(x) ∼ x−ν so that bulk scaling is recovered. As
the critical temperature is approached finite size effects become important and
y(z) begins to deviate from z. This occurs at the rounding temperature T ∗(L).
For a system of finite extent the correlation length cannot grow arbitrarily large
relative to the system size and at the pseudo-critical temperature the specific

6In fact there are systems where the correlation length diverges faster then any polyno-
mial. A famous example is the Kosterlitz-Thouless Phase Transition where ξ(T ) diverges
exponentially [25]

7In the case of matrix models, due to the non-local type of interaction between the entries
and the absence of a notion of distance between the elements, we can only speculate on the
existence of a unique correlation length.

8The non universal scale for the argument of f must be adjusted by convention to get all
systems in a universality class to match. Such nonuniversal constants in scaling functions are
referred to as “metric factors” and they depend on the microscopic details of the system and
are fixed by some system independent convention. Metric factors will not be important for
our purposes here, since we have only one system.
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heat reaches its maximum value. We take the maximum of the specific heat to
define the pseudo-critical temperature and at this temperature we must have
that both y and f are L independent constants. Therefore tmL1/ν = const,
which implies

|Tm(L)− Tc| ∼ L−1/ν . (43)

so that the prediction of finite size scaling is therefore that the shift exponent
λ = ν−1.

If we assume that the only relevant quantity in an expansion around Tc is
the correlation length, then finite size scaling implies that the free energy, in
the vicinity of the critical point, takes the form

lim
N→∞,T→Tc

F (T,Nd)−Ndf∞(Tc) = F(tL1/ν), (44)

where F(x) is a universal scaling function that depends only on the universality
class of the system. Given this form of the free energy we expect that the
exponents λ and θ should be the same, though the amplitudes Aθ and Aλ may
differ.

If we take the large L limit for fixed t, from the extensivity of the system we
must get

F(tL1/ν) ∼ Ldt2−α (45)

which requires F(x) ∼ |x|2−α, and we infer that 2 − α = νd which is a well
known scaling exponent relation.

We can further take two derivatives of (45) with respect to t, and divide by
Nd, to obtain the specific heat in the scaling regime and using 2 − νd = α we
obtain

C(T, L) = A−L
α/νC(x) (46)

where the amplitude A− is extracted to guarantee that C is a universal scaling
function. With x the L independent constant xm at the pseudo-critical temper-
ature we have that A−C(xm) = Aω and the prediction of finite size scaling that
ω = α

ν . Taking L → ∞ at fixed t takes the scaling function past the rounding
temperature and scaling gives that for small x that C(x) ∼ x−α so that we
recover C(T, L) ∼ A−t

−α.
In a fully finite system it is not possible to use the expression (39) for all L

and T and it is also difficult to apply to numerical data. Alternative definitions
of correlation lengths, such as the second moment correlation length, are useful
in this contest, see [15], but the scaling analysis is essentially the same.

3.3 Scaling in terms of N

Our system has no surface, and all Nd = 3(N2 − 1) degrees of freedom are
essentially equivalent. However, in our model the dimensionality, d, of the
system is only conjectural (we expect d = 2 on the fuzzy sphere side of the
transition). We also do not have access to either a correlation length or a
physical notion of size, L. However, there is no difficulty in formulating a
scaling ansatz in terms of the matrix size, N . The essential feature of finite size
scaling is then that the system in the critical regime scales with N .

Instead of (34), (35), (37) we use:

|T ∗(N)− Tc|/Tc ∼ AθN
−θ , (47)
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for scaling of the rounding temperature with N ;

|Tm(N)− Tc|/Tc ∼ AλN
−λ , (48)

for scaling of the shift with N and

Cvm(N) := Cv(Tm(N)) ∼ AωN
ω. (49)

for scaling of the peak in the specific heat with N .
One can repeat the analysis of the previous section but now using N rather

than L. Scaling suggests that (50) for the free energy of the system should be
replaced by

lim
N→∞,T→Tc

F (T,N)−N2f∞(Tc) = F(tNλ) (50)

and we take the scaling variable9 to be x = tNλ. Taking the infinite N limit
for fixed t gives F(x) ∼ |x|2−α and (2 − α)λ = 2. If we input the theoretical
prediction for α = 1

2 we have the further prediction that

λ =
4

3
. (51)

Furthermore, once the specific heat has risen sufficiently above the back-
ground values that arise far from Tc, we expect that it has the form

C(T,N) = NωAωC(x) (52)

where C(x) is a universal scaling function. The scaling function C(x) must have
the behaviour C(x) ∼ x−α for large x. Also for T = Tm(N) we require that
x = xm be independent of N , since Cvm is given by (49) and hence

ω = λα =
2

3
. (53)

The value C(0) is a universal number for our system, but it is difficult to evaluate
with any precision due to the difficulties of accessing this region of parameter
space for large matrix sizes.

The relation (51) and (53) are derived without reference to a correlation
length or any other notion of distance and cannot be used to measure the di-
mensionality or a characteristic size of the system. The scaling above is impor-
tant to us because it contains only exponents that are directly accessible to our
numeric measurements and can be used to test finite-size scaling in the context
of the current matrix model.

By definition the rounding temperature, T ∗(N), is that temperature where
deviations from the asymptotic scaling form begin. As N is increased T ∗(N)
moves closer to the transition temperature. There is, however, no unambiguous
connection between T ∗(N) andN . The scaling function C(x) should be analytic,
aside from its asymptotic form at large argument, so one can replace T in (52)
either with T ∗(N) from (47) or Tm(N) from (48) and both should give a specific
heat that diverges with N as Nω but with different amplitudes. Therefore we
expect θ = λ and θ = λ.

9We have set the metric factor here to 1 for convenience here.
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If we take the standard relation that L = aN
1/d
d , which for us gives L =

N2/d, assuming the microscopic scale a = 1 then

θ = θ
2

d
, λ = λ

2

d
, ω = ω

2

d
. (54)

If we further assume the existence of a single correlation length, ξ(T ), dom-
inating the critical region then we have

λ = θ =
2

dν
. (55)

We cannot draw a confident conclusion about ν and d separately as our analysis
only gives the product dν via measurements of λ and ω. However, if we assume
that d = 2, which seems reasonable based on the fuzzy sphere as background
geometry, we have the prediction for the correlation exponent

ν =
3

4
. (56)

We now turn to the numerical measurements.

4 Near-critical simulation difficulties

In this section we discuss some of the challenges posed in a numerical analysis
of the properties of the system very close to the phase transition and describe
how they are tackled.

4.1 Critical Slowing Down

Critical slowdown is a phenomenon that is typical in numerical simulations of
critical systems. It is described by the theory of dynamic critical phenomena
(see e.g. [23, 27] for detailed treatments of the subject). When T → Tc the time
needed for a non-equilibrium system to reach equilibrium grows as does the auto
correlation time in a Monte Carlo simulation of the system. More detail on the
impact of critical slowdown on our numerics is discussed in the Appendix and
here we merely observe that, for the systems studied in this work, the critical
slowing down of our simulations has significant impact on systems with N ≥ 100
and has prevented us from simulating matrices with N > 110.10

4.2 Excited states

Another property to be taken into consideration is the presence of the excited
fuzzy sphere configurations given by (19). As mentioned earlier, those configu-
rations possess energies which are intermediate between the commuting matrix
phase and the fuzzy sphere phase. This means that, in the region where the
two phases coexist, we would expect to see jumps between the ground state and
these excited states and between these excited states and the commuting matrix
phase rather than direct transitions between the commuting matrix phase and
the fuzzy sphere ground state. This expectation is supported by our simulations.

10One can see in Fig. 9 that the relative error in the measurement of the near-critical specific
heat grows with the system size.
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Far from the transition we are able to measure the values of Cv for restricted
ensembles trapped in different excited states and for the fuzzy sphere ground
state. We find that sufficiently far from the transition all such specific heats are
of order 1 i.e. Cv ∼ 1 as illustrated on Fig. 5. As the transition is approached
Cv grows and close to the transition distinct states are no longer observable see
Fig. 6.

4.3 Energy separation between different phases

Ideally in the vicinity of the phase transition the system will jump between the
two phases and if we can get enough Monte Carlo steps, we will have enough
statistics to properly extract the relevant quantities. A Monte Carlo history
where this occurs is depicted in Fig. 6. We can see that the system spends
roughly the same amount of MC time in both phases, an indication that the
system is close to the transition point. However for large N the jump between
the two phases becomes rare events, and indeed our numerical studies indicate
that this is already the case for N ≃ 12. This, in combination with the asymme-
try of the phase transition, makes it very hard to simulate the system efficiently
in the regime where the two phases coexist.

One tactic to handle this problem is to perform a cold start on the Monte
Carlo runs, so that the phase transition is always approached from the low tem-
perature side. This biases the system toward the fuzzy sphere phase, but has
the advantage of giving reproducible results. An example is shown in Fig. 7,
with N = 50 at T = 0.0514 < Tc. The system is below the critical temperature
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Figure 6: Monte Carlo history of an N = 10 system at T = 0.0468, a regime
where the two phases coexist. For these values of N and T equation (14) gives
Sm ≈ 75 while (27)-(29) give Sf ≈ 20 and the action is seen to jump randomly
in the vicinity of, and between, these two values.

but, while the value of the action is compatible with a fuzzy sphere configu-
ration for quite some Monte Carlo time, it suddenly jumps to a commuting
matrix configuration. Once in the matrix phase configuration, it remains there
as fluctuations are too small to get it back.

4.4 Comments on the algorithm

When starting the system in a zero field configuration, and using a simple
Monte Carlo simulation, the system tends to get stuck in the zero action local
minimum. The typical configuration that such simulations produce is one where
two of the matrices have zero eigenvalues while those of the third matrix acquires
non-zero eigenvalues which are distinct from one another. The matrix that is
started first in the simulation is the one whose eigenvalue become non-zero and
non-degenerate. A hybrid Monte Carlo simulation is necessary to overcome this
difficulty and for our study we use the hybrid Monte Carlo algorithm of [26].

It is also tempting to perform simulations for the system by first diagonal-
ising one of the matrices. This results in a Vandermonde Jacobian from the
change of variables whose logarithm is included in the effective action. This
algorithm is quite efficient for some simulations but simulations with a hot start
find it much more difficult to relax to a fuzzy sphere phase even for very low
temperatures and relatively large matrices. This is because separation of the
eigenvalues from one another must filter from the outer eigenvalues inwards
which tends to be very slow. To avoid any such difficulties we have chosen to
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Figure 7: Monte Carlo history of an N = 50 system at T = 0.0514 crossing
between the fuzzy sphere phase and the commuting matrix phase as an illustra-
tion of the restricted ensembles approach. For these values of N and T equation
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extract observables in the fuzzy sphere phase. These are what we call restricted
ensemble measurements.
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use the direct approach and our simulations are performed with a hybrid Monte
Carlo algorithm in which all matrices are treated on an equal footing.

5 Numerical measurement of critical exponents

and finite size scaling

A direct analysis of the specific heat data, in the immediate vicinity of the
critical point, would involve a four parameter fit

Cv(T ) = C0− +A−(Tc − T )−α (57)

where the data are fit to obtain C0−, A−, Tc and α. This, however, involves
large errors as there are so many parameters and the specific heat data for T
very close to Tc involves finite size effects which mean that the finite size scaling
function C(x) enters the picture. The first step is therefore a the determination
of the critical temperature.

5.1 Estimating Tc and λ and ω

A precise determination of the critical temperature is necessary for the evalua-
tion of the specific heat exponent α and the shift exponent λ. For a given finite
N our best estimate of the critical temperature is the pseudo-critical temper-
ature Tm(N). We therefore first analyse Tm(N) and endeavour to extract Tc

from the limit of Tm(N) for N going to infinity by fitting it as a function of N
to the shift scaling form (48)

Tm(N) = Tc(1−AλN
−λ) . (58)

In Fig. 8 we present simulation our data for Tm(N).
Visual inspection of the data suggests a linear fit, i.e. λ = 1. Linear re-

gression on the data in Fig. 8 gives Tc = 0.0532± 0.0001 and Aλ = 1.5 ± 0.1

but assumes λ = 1.0. However, the scaling ansatz suggests that we should look
for a three parameter fit. When we perform such a three parameter fit we get
Tc = 0.0531± 0.0003, Aλ = 1.8± 1.5 and λ = 1.1± 0.3 and the resultant critical
temperature from both fits is largely unchanged.

For the three parameter fit the error in the amplitude Aλ is rather large so
it is desirable to fix some of the parameters. Since our principal goal is to check
scaling we need to measure λ rather than assume it. The measurements of Tc

from both the three parameter fit and the linear one broadly agree with the

theoretical prediction Tc = (38 )
3 ≃ 0.0527344, suggesting that we constrain the

fit so that Tc is fixed to be this number. With Tc so constrained we then find a
two parameter gnuplot fit gives Aλ = 5.2± 1.6 and λ = 1.41± 0.08.

Finally since we have a prediction for the exponent λ, see (51), fixing both
Tc and λ = 4

3 = 1.333 gives Aλ = 3.9± 0.1 suggesting perhaps that Aλ = 4. We
conclude that the data are quite consistent with the theoretical estimate though
a linear fit is also consistent with our measurements.

We can similarly analyse the maximum of the specific heat Cvm(N). A
linear fit assumes ω = 1 and is best interpreted as an estimation of C0−, our
data from such a linear fit gives Cvm = 0.8± 0.2+ (0.035± 0.002)N which gives
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a value of C0− consistent with the theoretical prediction of 29
36 ≃ 0.8055. A

three parameter fit gives Cvm = (1.7 ± 0.3) + (0.001 ± .002)N1.7±0.4, but the
amplitude is very small and has large errors. Our scaling ansatz suggests that
we should look for a fit Cvm(N) = AωN

ω which is best extracted from a log-log
plot. Such a log-log plot is shown in Fig. 9 and gives Aω = 0.21 ± 0.06 and
ω = 0.66± 0.08 which is surprisingly close to the theoretical prediction ω = 2

3 .
Summarising our data: When the critical temperature is assumed to be the

theoretical value we find with two parameter fits the amplitudes and exponents
in (48) and (49) are given by

Tc − Tm(N)

Tc
∼ (5.2± 1.6)N−1.41±0.08

Cv(Tm(N)) ∼ (0.21± 0.06)N0.66±0.08.

where we have chosen to prefer the direct fit for Tm(N) and the logarithmic fit
for Cvm(N). The basic data used are shown in Fig. 8 and 9

The data yield the exponents λ = 1.41± 0.08 and ω = 0.66± 0.08 and the
scaling relation α = ω/λ, see eqn. (53), predict α = 0.47 ± 0.06 which within
errors is consistent with α = 0.5.

5.2 Direct measurement of α from collapsed data

As argued in the previous section the numerical estimate for C0− in (26) when
extracted from a linear fit to the specific heat maximum, is in good agreement
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with the theoretical prediction (25) C0− = 29
36 . It is then reasonable to take this

as the input value of C0− and endeavour to extract the amplitude and exponent
α from the data.

However, data for a given fixed N are not very satisfactory for the estimation
of A− and α since any such data have important finite size corrections for
finite N , i.e. the presence of values of the specific heat taken at temperatures
T < T ∗(N) when extracting the exponent from single matrix size data. As we
pointed out earlier, the point T = T ∗(N) is hard to detect. Since the rounding
temperature depends onN , we can do better by combining different values ofN .
Deviations due to the rounding effects are significantly diminished by averaging
over the specific heat for different N .

Scaling suggests that, for a fixed value of the temperature lower than T ∗(N),
the values of the specific heat should be consistent for different N , provided N
is large enough, and our measurements verify this expectation. So we treat
such values as independent measurements of Cv(T ) and then take the weighted
average over such values. If we have a number of independent measurements of
Cv, labeled by a discrete index i for different values of matrix size Ni, then the
weighted average, Cv(T ), is defined to be

Cv(T ) =

∑
i

1
σ2

Ni

Cv(T,Ni)
∑

i
1

σ2

Ni

(59)

where σi is the uncertainty in measurement i. Fig. 10 plots a weighted average
Cv using data corresponding to values of N ranging from 30 to 110.

Fig. 10 shows combined data for different N . When we approximate the
near-critical behavior of the specific as Cv ∼ C0− + A−|Tc − T |−α and use
a three parameter fit we find C0− = 0.76 ± 0.09, A− = 0.051 ± 0.017 and
α = −0.50± 0.04. All three parameters are in very good agreement with (25).
One might expect C0− to be the least sensitive of the parameters in the approach
to the singularity, and it is tempting to set C0− to the theoretical background
value and refine the estimate of A− and α. When this is done we find A− =
0.043±0.0014 and α = 0.5197±0.0054. If we also set α = 1

2 for a one parameter
fit we get A− = 0.0487 ± 0.0002 which suggests that the true value is indeed
A− = 3

64 = 0.046875. It should be noted that the form (25) is only asymptotic
and has additional corrections. Also our data still has finite size effects included.
As a final estimate we set C0− = 29

36 and perform a two parameter direct fit to
the data we get A0− = 0.047 ± 0.001 and α = 0.51 ± 0.01. In summary we
believe that our data gives reasonable evidence that (25) captures the true large
N behaviour of the system.

On the high temperature side of the transition we find no divergence of
the specific heat, and our numerical measurements show good agreement with
the value Cv = 3

4 = const. To conform to the standard scenario of critical
phenomena there are two alternatives: either A+ = 0 or α = 0 for T > Tc. If we
assume the critical exponent is equal on the two sides of the transition we are led
to the conclusion that A+ = 0. Then we have the universal ratio U0 = A+/A− =
0, the amplitudes A+ andA− are system and/or interaction dependent, but U0 is
universal. This provides important information for determining the universality
class of the system.
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6 Conclusions and outlook

One of the key features of our simulations is that the matrix phase configura-
tions tend to be extremely stable. Fluctuations around these are small, they
have a restricted ensemble specific heat of Cv = 3

4 in comparison with the fuzzy
sphere background whose minimum specific heat is Cv = 1. This means that
the decay of matrix phase configurations becomes very unlikely even very close
to the transition. The small fluctuation analysis of section 2.1 suggests that the
principal mode of decay of such configurations is via the negative eigenvalue
identified in section §2.1 and due to the Myers term. The largest eigenvalue
separation of matrix phase configurations is ∆a

ij = 2R and such configurations
have eigenvalues described by the parabolic distribution (16) so one would ex-
pect the matrix phase to become unstable if on average the eigenvalues of one
of the matrices are too close together. Taking the expectation value of (11),
assuming a parabolic distribution of the eigenvalues, one obtains that the ma-

trix phase becomes unstable for g2 > g2m ≃ 1
3

<∆2

ij>

4 = R2

10 , where the factor of
1/3 comes from averaging over the number of matrices. For g̃ independent of

N this gives g̃m ≃ R
√
N√
10

. So the matrix phase becomes more and more stable

as N increases. Noting that numerically R = 2.0 we find that g̃m ≃ 0.632
√
N

so that for N < 11 we have g̃m(N) < (83 )
3

4 while for N ≥ 11 it is larger. For
large N and fixed g̃ we therefore expect simulations to get trapped in the matrix
phase if the simulation ever falls into such configurations and we further expect
that for matrix sizes much larger that N = 11 it will be virtually impossible to
escape from the matrix phase. This is precisely what we observe in simulations.
We find that with effort one can escape from the matrix phase for N ≤ 14 but
our simulations have great difficulty escaping for N = 15 and do not escape
for larger N . In fact older numerical simulations [6] give the instability of the
matrix phase as gm = 0.66 which is consistent with our observations.

Simulations on small matrix sizes then have quite a different character to
those for large matrix sizes. They exhibit fluctuations that make transitions
between the two types of typical configuration–the fuzzy sphere and the matrix
phase. For largerN such fluctuations are absent and one is forced to take data in
a restricted ensemble where the fluctuations are either around the fuzzy sphere
or around the matrix phase.

In this work we have not endeavoured to study small enough systems where
fluctuations between the matrix phase and the fuzzy sphere are possible. We
have rather concentrated on larger matrix sizes as our goal is to check finite
size scaling of fluctuations with N . Our simulations therefore probe the scaling
properties of fluctuations in the fuzzy sphere phase. The fluctuations grow with
N and diverge in the large N limit at a critical temperature with the large

N fuzzy sphere becoming unstable at g̃ ≃ (83 )
3/4

corresponding to a critical

temperature Tc ≃ (38 )
3
. These fluctuations, since they do not probe the matrix

phase configurations, are what we call restricted ensemble fluctuations.
It may be that the true thermodynamically stable ground state of the system

is in fact the matrix phase, and simulations on small matrix sizes tend to suggest
this, however, in the large N limit and for T < (38 )

3 fluctuations never escape
from the vicinity of the fuzzy sphere. If the fuzzy sphere phase is only a local
minimum and not a global minimum in the vicinity of this transition, then it
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would be clear why the transition appears to be one-sided—the interpretation
would be that the system is trapped in a local minimum which is stable due to
the large N limit and the observed transition would be due to the configurations
eventually escaping over the barrier once the temperature is high enough. The
transition would then be very similar to the two dimensional quantum gravity
transition discussed in the matrix model literature [28] which also has a one
sided transition. The quantum gravity system is exactly solvable and in the
case of four valent planar graphs where the potential is

V (Φ) = NTr(
1

2
Φ2 − g

4
Φ4) (60)

the eigenvalue distribution is given by

ρ(x) =
1

2π
(1− g

a2

2
− gx2)

√
a2 − x2 with a2 =

2

3g
(1−

√
1− 12g) (61)

and the specific heat by

Cv =
1 + 54g2 − (1 + 6g)

√
1− 12g

216g2
. (62)

By rescaling Φ → ϕ/
√
g one can rewrite V (Φ) = N

g Tr(
1
2ϕ

2 − 1
4ϕ

4) and we
can be interpreted the coupling as temperature, g = T . The system has a
critical temperature Tc = gc = 1

12 and a non-analytic specific heat Cv = 11
12 +√

12
√
Tc − T + · · · corresponding to specific heat exponent α = − 1

2 . As in our
case, a restricted ensemble, where the system is confined to the well near the
origin, will capture this behaviour. The critical point is when the eigenvalues
spread enough to spill over the barrier.

As far as our simulations are concerned we start them in, or near, the fuzzy

sphere ground state and, for T ≤ (38 )
3
and sufficiently largeN , they almost never

escape from this. Our principal observations are restricted to this regime and
in this context we have demonstrated that, despite the non-locality of matrix
actions and the absence of a characteristic size, finite-size scaling, with matrix
size N , is still valid.

We have measured the critical temperature and the specific heat critical
exponent, α, along with the finite-size scaling exponents ω and λ near the phase
transition. Our numerical analysis is compatible with the hypothesis that finite-
size scaling is valid, see §3.3 for details.

The values obtained for these exponents are new and we know of no other
system with these exponents which suggest that the model under study belongs
to a new universality class. We expect that the critical exponents are universal
within the class of models with fuzzy sphere geometries evaporating.

Since we have not measured a correlation length and associated critical
exponent we cannot establish that our shift exponent λ is related to the the
correlation exponent. The measurement of a correlation length exponent is a
non-trivial exercise in this context.

In order to verify the relations (55), i.e. λ = 2
dν , one needs to measure the

exponent ν for some appropriately defined effective correlation length ξ(T ). It
seems plausible that a correlation length could be extracted by studying the
fall-off of two point correlators, but this is left to future work.

Acknowledgements: We wish to thank Thomas Kaltenbrunner for many
helpful discussions.
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A Critical Slowing Down

In numerical calculations critical slowdown manifests itself as a growth in the
number of consecutive measurements of an observable P which are correlated
as the transition is approached, i.e. the autocorrelation time τP grows as the
transition is approached.

Consider a simulation consisting of Nmc Monte Carlo steps producing a
set of measurements {P1, . . . PNmc}. If τP ≤ 1 an expectation value < P >
can be computed and assigned an uncertainty σ ∼ 1/

√
Nmc. When τP > 1

this error estimation is too optimistic, because the measurements are not fully
independent, and a better estimation is given by στP ∼ 1/

√
Nmc/(2τP ). The

correlated data set is effectively equivalent to an uncorrelated data set consisting
of Nmc/(2τP ) measurements.

The autocorrelation time associated with an observable P is expected to be
governed by the correlation length and near a critical point should behave as

τP ∼ ξ(T )d+z(P ), (63)

with dynamical scaling exponent z(P ), which is algorithm and observable de-
pendent. One aim in designing an efficient algorithm is to reduce z(P ).

For a critical matrix model with size N we would expect, assuming (40),
(47), (48) and (55),

τP ∼ N2+z(P ) 2

d . (64)

In principle the autocorrelation time for an infinite data set is computed
using the series

τP =
1

2

∞∑

n=−∞

∞∑

τ=−∞

< (Pn− < P >)(Pn+τ− < P >) >

< (Pn− < P >)2 >
, (65)

but in practice the sum
∑∞

τ=−∞ must obviously be truncated to
∑τ0

τ=−τ0
with

τ0 finite and in general the obtained value for τP depends on τ0. Clearly the
truncated version of (65) can only be sensitive to autocorrelation times. τ0 so, if
τ0 ≪ Nmc, τp might be underestimated for systems with severe autocorrelation.
On the other hand, if τ0 ∼ Nmc, the convergence of (65) becomes very poor.
We can not rely only on the above expression to determine τP .

In our analysis we allow for autocorrelations using the jackknife procedure,
see e.g. [27], which computes the uncertainty taking into account the autocor-
relation of the data. As a consistency check we compute the autocorrelation
using the expression (65), with empirically chosen τ0 and then we compare the
result with τP as determined by the jackknife procedure.

28



References

[1] T.Banks, W.Fischler, S.Shenker and L.Susskind, “M theory as a matrix
model: a conjecture,” Phys.Rev. D55 (1997) 5112, [hep-th/9610043].

[2] N.Ishibashi, H.Kawai, Y.Kitazawa, A.Tsuchiya, “A Large N reduced model
as superstring,” Nucl.Phys. B498 (1997) 467, [hep-th/9612115].

[3] D. Berenstein, J. Maldacena, H. Nastase, “Strings in flat space and pp waves
from N = 4 Super Yang Mills,” JHEP 0204 (2002) 013, [hep-th/0202021].

[4] H. Steinacker, “Emergent Geometry and Gravity from Matrix Models: an
Introduction,” Class. Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134 [hep-
th]].

[5] R.Myers, “Dielectric branes,” JHEP 9912 (1999) 022, [hep-th/9910053].

[6] T. Azuma, S. Bal, K. Nagao and J. Nishimura, “Nonperturbative studies of
fuzzy spheres in a matrix model with the Chern-Simons term,” JHEP 0405

(2004) 005 [hep-th/0401038].

[7] P. Castro-Villarreal, R. Delgadillo-Blando and B. Ydri, “A Gauge-invariant
UV-IR mixing and the corresponding phase transition for U(1) fields on the
fuzzy sphere,” Nucl. Phys. B 704 (2005) 111 [hep-th/0405201].

[8] T. Azuma, K. Nagao and J. Nishimura, “Perturbative dynamics of fuzzy
spheres at large N,” JHEP 0506 (2005) 081 [hep-th/0410263].

[9] D. O’Connor and B. Ydri, “Monte Carlo Simulation of a NC Gauge Theory
on The Fuzzy Sphere,” JHEP 0611 (2006) 016, [hep-lat/0606013].

[10] R. Delgadillo-Blando, D. O’Connor and B. Ydri, “Geometry in transi-
tion: A model of emergent geometry,” Phys. Rev. Lett. 100 (2008) 201601
[arXiv:0712.3011 [hep-th]].

[11] R. Delgadillo-Blando, D. O’Connor and B. Ydri, “Matrix Models, Gauge
Theory and Emergent Geometry,” JHEP 0905 (2009) 049 [arXiv:0806.0558
[hep-th]].

[12] R. Delgadillo-Blando and D. O’Connor, “Matrix geometries and Matrix
Models,” JHEP 1211 (2012) 057 [arXiv:1203.6901 [hep-th]].

[13] J. Madore, “The Fuzzy sphere,” Class. Quant. Grav. 9 (1992) 69.

[14] J.Hoppe, “Quantum Theory of A Massless Relativistic Surface and A Two-
Dimensional Bound State Problem,” MIT Ph.D.Thesis, 1982.

[15] M.N. Barber, “Finite Size Scaling” in Phase Transitions and Critical Phe-

nomena, Vol. 8,” Edited by C. Domb and J.L. Lebowitz, Academid Press,
London 1983, p. 145.

[16] Finite-Size Scaling, Current Physics Sources and Comments, Vol. 2 Edited
by John L. Cardy, North-Holland, (1988).

[17] D. E. Berenstein, M. Hanada and S. A. Hartnoll, “Multi-matrix models and
emergent geometry,” JHEP 0902 (2009) 010 [arXiv:0805.4658 [hep-th]].

29



[18] D. O’Connor and V. G. Filev, “Near commuting multi-matrix models,”
[arXiv:1212.4818[hep-th]].

[19] V. G. Filev and D. O’Connor, “Multi-matrix models at general coupling,”
[arXiv:1304.7723 [hep-th]].

[20] A. Pelissetto and E. Vicari, “Critical phenomena and renormalization group
theory,” Phys. Rept. 368 (2002) 549 [cond-mat/0012164].

[21] B. Widom, “The critical point and scaling theory,” Physica 73 (1974) 107.

[22] H. E. Stanley, “Scaling, universality, and renormalization: Three pillars of
modern critical phenomena,” Rev. Mod. Phys. 71 (1999) S358.

[23] N. Goldenfeld, “Lectures on phase transitions and the renormalization
group,” Addison-Wesley (1992), Frontiers in physics, 85.

[24] D. O’Connor and C. Nash, “ Topological phase transitions and holonomies
in the dimer model,” J. Phys. A42 (2009) 012002 [arXiv:0809.2960]

[25] J. M. Kosterlitz and D. J. Thouless, “Ordering, metastability and phase
transitions in two-dimensional systems,” J. Phys. C6 (1973) 1181.

[26] S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, “Hybrid Monte
Carlo,” Phys. Lett. B195 (1987) 216.

[27] I. Montvay and G. Munster, “Quantum fields on a lattice,” (1997), Cam-
bridge University Press.

[28] P. Di Francesco, “2D quantum gravity, matrix models and graph combina-
torics,” in Application of random matrices in physics. Proceedings, NATO

Advanced Study Institute, Les Houches, France, June 6-25, 2004 [math-
ph/0406013].

30


	1 Introduction
	2 The three matrix model
	2.1 The commuting matrix phase
	2.2 The fuzzy sphere phase
	2.3 Excited fuzzy sphere states
	2.4 A 1.5 order phase transition

	3 Finite size critical systems
	3.1 Thermodynamic limit away from the critical point
	3.2 Finite size effects and the correlation length
	3.3 Scaling in terms of N

	4 Near-critical simulation difficulties
	4.1 Critical Slowing Down
	4.2 Excited states
	4.3 Energy separation between different phases
	4.4 Comments on the algorithm

	5 Numerical measurement of critical exponents and finite size scaling
	5.1 Estimating Tc and  and 
	5.2 Direct measurement of  from collapsed data

	6 Conclusions and outlook
	A Critical Slowing Down

