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Abstract: We construct a novel supergravity background holographically dual to the

flavoured N = 1 Supersymmetric Yang-Mills theory. We consider flavours of different

masses that produce spherical cavities with radii corresponding to the quark masses. The

positive beta function blows at some large radial distance corresponding to the Landau

pole of the theory. We explore the Wilson loop between two families of light and heavy

quarks and observe a screening of the heavy light potential.
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1 Introduction

The gauge/gravity correspondence [1] (for a resent pedagogical introduction see [2]) can

potentially address many features of strongly coupled gauge theories. The original formu-

lation of the duality relates N = 4 SYM with a string theory on AdS5 × S5.

An important extension of the duality, that initially was limited to adjoint degrees

of freedom, is the inclusion of fundamental matter [3]. That is realised though flavour

branes, extending along the holographic direction, occupying the gauge theory directions

and wrapping some non-compact internal cycle (in order to promote a symmetry of the

worldvolume to a global flavour symmetry). When the number of flavours is significantly

less than the number of the colours, we are in the limit that we can safely neglect their

effect on the geometry and consider them as probes. On the contrary, when the number

of flavours and colours become comparable, a fully backreacted background needs to be

constructed, since we cannot neglect anymore the backreaction of the flavour branes on

the geometry.

In order to follow this path we need to solve the equations of motion that originate

from a system that combines gravity plus brane sources. Since generically it is difficult to

construct localised backreacted solutions we will follow a different approach [4, 5] (see [6]

for a review and [7] for some more smeared solutions), that delocalises the branes’ sources.

The advantage of this approach is the replacement of the delta functions in the equations

of motion with continuous brane distribution functions. Instead of U(Nf ), which would be

for the localised solution, the flavour symmetry of the dual gauge theory for the smeared

solution is U(1)Nf . The smeared solutions are generally less supersymmetric but much

simpler (and sometimes analytic as in the current paper) with respect to the localised. On
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the field theory side the smeared construction is equivalent to the Veneziano limit, where

both the number of colours and flavours are large but their ratio is fixed and finite.

There are two types of backreacted flavours in a gravity setup. On one hand, when the

flavours extend along the full range of the holographic coordinate, the solutions correspond

to the addition of massless quarks. These backgrounds (for the D3/D7 case see [8, 9])

generally possess a curvature singularity in the IR, which is the result of a high brane

density close to the origin that all the flavours pass through. On the other hand, when the

flavours do not reach the origin of the geometry, the solutions correspond to the addition

of massive quarks. Such a construction will remove the IR singularity (for the D3/D7 case

with regular massive solutions see [10, 11]).

In this paper we move one step forward from the massive solution of [10] in order to

produce a new background that has multiple cavities of D7 flavour branes. This background

will be supersymmetric, like the analog with one cavity, since kappa symmetry does not

prevent us from adding a second (or multiple cavities). We will test this new solution by

calculating the beta function and the running of the coupling constant. Constraining to the

case of two cavities, we perform the wilson loop computation that extends between them.

This will reflect the forces between the quarks in a heavy light meson. This result extends

previous computations in the probe limit (see [12]) and confirms the screening effect of the

flavours previously seen in [10, 11] in a slightly different context.

2 Construction of the geometry

The background consists of colour D3-branes and flavour D7-branes that extend along the

radial direction and smear homogeneously over the transverse space.

2.1 Ansatz and the BPS equations

The ansatz for the metric (in the Einstein frame) is (inspired from [8, 13])

ds2
10 = h−

1
2

[
−dt2 +dx2

1 +dx2
2 +dx2

3

]
+h

1
2

[
S8F 2dσ2 +S2ds2

CP 2 +F 2(dτ +ACP 2)2
]
, (2.1)

where the CP 2 metric has the following parametrisation

ds2
CP 2 =

1

4
dχ2 +

1

4
cos2 χ

2
(dθ2 + sin2 θdϕ2) +

1

4
cos2 χ

2
sin2 χ

2
(dψ + cos θdϕ)2 &

ACP 2 =
1

2
cos2 χ

2
(dψ + cos θdϕ) . (2.2)

The range of the angles is 0 ≤ (χ, θ) ≤ π, 0 ≤ ϕ, τ < 2π, 0 ≤ ψ < 4π. The background is

supplemented with a set of RR forms

F5 =
Qc
h2

dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dσ + Hodge dual ,

F1 =

η∑
κ=1

Qκf pκ(σ) θ(σ − σκ) (dτ + ACP 2) , (2.3)

where the latter parametrises the presence of a smeared fundamental matter in the system.

Explaining the symbols that appear in (2.3): Qκf , pκ & σκ are the charge, the distribution
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function and the position of every cavity, respectively1. As a result of the smearing, all

the functions of the ansatz, h, S, F,& Φ, depend only on the radial coordinate, while the

function pκ(σ) depends on the brane embedding. We choose the usual frame for (2.1)

e0 = h−
1
4 dt , e5 = 1

2 h
1
4 S dχ

e1 = h−
1
4 dx1 , e6 = 1

2 h
1
4 S cos χ2 dθ

e2 = h−
1
4 dx2 , e7 = 1

2 h
1
4 S cos χ2 sin θ dφ

e3 = h−
1
4 dx3 , e8 = 1

2 h
1
4 S cos χ2 sin χ

2 (dψ + cos θ dφ)

e4 = h
1
4 S4 F dσ , e9 = h

1
4 F (dτ + ACP 2) .

(2.4)

The constants Qc and Qf are proportional to the number of colours and flavours

Nc =
Qc V ol(S5)

(2π)4gs α′2
& Nf =

4Qf V ol(S5)

2π2 gs
. (2.5)

The killing spinor in the frame basis defined in (2.1) is [14]

ε = h−
1
8 e−

1
2
i σ2 ψ e−

3
2
i σ2 τ η (2.6)

where η is a constant spinor that satisfies the following set of projections

iΓ0123 σ2 η = iΓ49 σ2 η = η & iΓ58 σ2 η = iΓ67 σ2 η = − η . (2.7)

The analysis of the different components of the susy variations for the dilatino and the

gravitino, leads to the following BPS system of first-order differential equations [8, 13, 14]

∂σh = −Qc , ∂σF = S4 F

[
3 − 2 F 2

S2 − 1
2 e

Φ

η∑
κ=1

Qκf pκ(σ) θ(σ − σκ)

]
,

∂σS = S3 F 2 , ∂σΦ = eΦ S4

η∑
κ=1

Qκf pκ(σ) θ(σ − σκ) . (2.8)

2.2 Solving the BPS system of equations

Combining the BPS equations (2.8) with the equation for the profile of the embedding

(see the kappa symmetry analysis in appendix A) and the explicit expression for the brane

distribution function (see appendix B), we have a system of first order differential equations

that satisfy the second order equations of motion. In order to solve this system we change

variables from σ to ρ in the following way, dρ = S4dσ. The embedding profile in the

ρ-coordinate is obtained in the appendix A and it is

χκ(ρ) = 2 arcsin
eρκ

eρ
, (2.9)

1The cavity charges Qκf sum to the full flavour charge

η∑
κ=1

Qκf = Qf
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where ρκ is the radius of the κ-th cavity. Combining (2.9) with (B.10) and (2.8), after

changing variables from σ to ρ, we end up with the following system of differential equations

∂ρh = −Qc S−4 , ∂ρ logF = 3 − 2 F 2

S2 − 1
2 e

Φ

η∑
κ=1

Qκf

(
1 − e2ρκ

e2ρ

)2

θ(ρ − ρκ) ,

S ∂ρS = F 2 , ∂ρΦ = eΦ

η∑
κ=1

Qκf

(
1 − e2ρκ

e2ρ

)2

θ(ρ − ρκ) . (2.10)

Following the same analysis as in [14], we define a set of new fields Z, U and V as

W (ρ) = S(ρ)4 , V (ρ) =
F (ρ)2

S(ρ)2
, & Z(ρ) = eΦ(ρ) . (2.11)

The equations of motion for W , V and Z are

∂ρ logW (ρ) = 4V , (2.12)

∂ρ log V (ρ) = 6 (1− V )− p(ρ)Z , (2.13)

∂ρ logZ(ρ) = p(ρ)Z , (2.14)

with

p(ρ) ≡
η∑

κ=1

Qκf

(
1 − e2ρκ

e2ρ

)2

θ(ρ − ρκ) . (2.15)

while the equation for h is decoupled and will be solved in the end separately. The equation

of motion for Z can be easily integrated

Z−1 = 1 +

η∑
κ=1

Qκf (fκ(ρ∗) − fκ(ρκ)) −
η∑

κ=1

Qκf (fκ(ρ) − fκ(ρκ)) θ(ρ − ρκ) , (2.16)

where ρ∗ is a radial UV scale and we fix the constant of integration in a way that Z(ρ∗) = 1.

The function fκ(ρ) is defined as follows

fκ(ρ) = ρ +
e2ρκ

e2ρ
− 1

4

e4ρκ

e4ρ
. (2.17)

The function Z, that is related to the dilaton, has a pole which is determined by the

following relation

1 +

η∑
κ=1

Qκf (fκ(ρ∗) − fκ(ρLP )) = 0 . (2.18)

The dilaton diverges at ρLP , which is the energy scale corresponding to the Landau pole

of the theory. This is the outcome of the positive contribution of the flavour to the beta

function of the theory.

Proceeding as in [14], we combine (2.12), (2.13) and (2.14) in obtaining an equation for V

∂ρ log(Z V W 3/2) = 6 ⇒ V (ρ) =
cV e

6ρ

Z(ρ)W (ρ)3/2
. (2.19)

Substituting (2.19) into (2.12) and using (2.16), we obtain a differential equation for W ,

which we solve as follows

W (ρ) = α′2 e4ρ

[
η∑

κ=1

Qκf (fκ(ρLP ) − fκ(ρκ)) −
η∑

κ=1

Qκf (Aκ(ρ) −Aκ(ρκ)) θ(ρ − ρκ)

]2/3

,

(2.20)
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where we have fixed the constant of integration in complete analogy to [8, 14] and used

(2.18) . The function Aκ(ρ) is defined as follows

Aκ(ρ) = ρ +
3

2

e2ρκ

e2ρ
− 3

4

e4ρκ

e4ρ
+

1

6

e6ρκ

e6ρ
. (2.21)

The corresponding solution for V (ρ) is

V (ρ) =

η∑
κ=1

Qκf (fκ(ρLP ) − fκ(ρκ)) −
η∑

κ=1

Qκf (fκ(ρ) − fκ(ρκ)) θ(ρ − ρκ)

η∑
κ=1

Qκf (fκ(ρLP ) − fκ(ρκ)) −
η∑

κ=1

Qκf (Aκ(ρ) −Aκ(ρκ)) θ(ρ − ρκ)

. (2.22)

Combining (2.16), (2.20) & (2.22) together with (2.11) it is possible to obtain expressions

for the Φ, F & S as functions of ρ. These expressions are

e−Φ(ρ) =

η∑
κ=1

Qκf (fκ(ρLP ) − fκ(ρκ)) −
η∑

κ=1

Qκf (fκ(ρ) − fκ(ρκ)) θ(ρ − ρκ) ,

S(ρ) =
√
α′ eρ

[
η∑

κ=1

Qκf (fκ(ρLP ) − fκ(ρκ)) −
η∑

κ=1

Qκf (Aκ(ρ) −Aκ(ρκ)) θ(ρ − ρκ)

]1/6

,

F (ρ) =
√
α′ eρ

[ η∑
κ=1

Qκf (fκ(ρLP ) − fκ(ρκ)) −
η∑

κ=1

Qκf (fκ(ρ) − fκ(ρκ)) θ(ρ − ρκ)
]1/2

×

×

[
η∑

κ=1

Qκf (fκ(ρLP ) − fκ(ρκ)) −
η∑

κ=1

Qκf (Aκ(ρ) −Aκ(ρκ)) θ(ρ − ρκ)

]−1/3

. (2.23)

3 Properties of the solution

In this section we will probe the new solution by calculating several physical observables.

In order to simplify the analysis most of the time we will restrict to cases with two cavities.

3.1 Calculation of the quark masses

The constituent mass mq of the dynamical quarks is related to the radial distance ρq of

each one of the multiple cavities of the solution. As usual it is proportional to the energy

of a straight string stretched along the radial direction, from the origin of the geometry at

ρ → −∞ to the position of every spherical cavity. For the physical mass of the massive

flavours corresponding to the κ-th family, using the Nambu-Goto action we obtain:

mq κ =
1

2π α′

ρκ∫
−∞

dρ
√
−Gs00G

s
ρρ =

1

2π α′

ρκ∫
−∞

dρ e
1
2

Φ(ρ) F (ρ) . (3.1)

Where the functions Φ(ρ) and F (ρ) are defined in equation (2.23) and ρκ is the radius to

the cavity. When there is just one cavity at ρ = ρq we re-obtain the result of [10]:

mq =
1

2π
√
α′

eρq

Q
1/3
f

[
fκ(ρLP ) − fκ(ρq)

]−1/3
, (3.2)
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where Qf & ρq are the charge and the radial position of the spherical cavity respectively.

As it was observed in [10], in the limit ρq → ρLP the mass diverges, but this is consistent

with the fact that we do not trust the supergravity solution in this limit since the dilaton

blows up.

Going one step further we will focus on the case with two spherical cavities and calcu-

late the masses of the two quarks, one “light” and one “heavy”. The mass of the “light”

quark, that corresponds to a string stretching from the origin until the first cavity ρ1 (we

have assumed that ρ2 > ρ1) is given by the following expression

mlight =
1

2π
√
α′
eρ1

[
2∑

κ=1

Qκf (fκ(ρLP ) − fκ(ρκ))

]− 1
3

. (3.3)

where Q1
f & Q2

f are the flavour charges of every cavity. The calculation for the mass of

the second quark can split in two pieces. The first one is going to give the mass of the

“light” quark in (3.3), while the second is going to essentially give the difference between

the masses. The explicit formula is the following

mheavy = mlight +
1

2π
√
α′

ρ2∫
ρ1

eρ

[
2∑

κ=1

Qκf (fκ(ρLP ) − fκ(ρκ)) − Q1
f (Aκ(ρ) −Aκ(ρ1))

]− 1
3

.

(3.4)

Since the above integral cannot be performed analytically, we will expand for Q1
f � Q2

f

and perform the integral order by order in the expansion. In order to present the result in

a compact form we introduce the following auxiliary function

g(ρ) =
eρ

eρ1

(
7

6
− ρ + ρLP

)
+

1

30

e5ρ1

e5ρ
+

3

2

eρ1

eρ
− 1

4

e3ρ1

e3ρ
+
eρ+ ρ1

e2ρLP
− 1

4

eρ+ 3ρ1

e4ρLP
. (3.5)

Using (3.5) it is easier to derive the following formula, which gives the ratio of the mass

difference and the mass of the “light” quark as a series expansion in ε ≡ Q1
f

Q2
f
.

mheavy − mlight

mlight
=

(
eρ2

eρ1
− 1

)
× (3.6)[

1 +
ε

3

fκ(ρLP )− fκ(ρ1)

fκ(ρLP )− fκ(ρ2)

(
1 − eρ1

eρ2 − eρ1

g(ρ2) − g(ρ1)

fκ(ρLP )− fκ(ρ1)

)]
.

For ε = 0 the above formula gives zero for the mass difference, since in this case ρ2 = ρ1.

3.2 Running of the coupling constant and the beta function

In this section we will study the Yang-Mills coupling g2
YM of the dual field theory and

illustrate the dependence on the number of flavours distributed in more than one cavity

(for concreteness we will focus on the case of two cavities). The actual expression relating

the coupling with the dilaton is

g2
YM = 4π gs e

Φ(ρ) . (3.7)

In order to study the running of g2
YM with the energy scale µ we need to specify the precise

radius/energy relation. We will use the radius/energy relation that corresponds to the

smearing of massless flavour D7-branes [8, 10, 14]

ρ = ρLP + log
µ

ΛLP
⇒ ρqi = ρLP + log

mqi

ΛLP
, (3.8)
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an expression which is expected to be valid also for the smearing of massive flavour D7-

branes (at least as a good approximation), when the flavours are close to the IR (cor-

responding to very light quarks). Using the radius/energy relation (3.8) we can study

the running of g2
YM with the energy scale µ. Focusing again to the case of two cavities

corresponding to “light” and “heavy” quarks we have

4πgs
g2
YM

= −
2∑

κ=1

Qκf

[3

4
+ log

mκ

ΛLP
−
(
mκ

ΛLP

)2

+
1

4

(
mκ

ΛLP

)4 ]

−
2∑

κ=1

Qκf

[
− 3

4
− log

mκ

µ
+

(
mκ

µ

)2

− 1

4

(
mκ

µ

)4
]
θ(µ − mκ) . (3.9)

Moving one step forward (and using again (3.8)) we can calculate the corresponding beta

function βg2
YM

, in order to determine its dependence on the presence of the different cavities.

Substituting the multicavity solution (2.23) on the actual expression for the beta function

βg2
YM

=
∂ g2

YM

∂ (log µ
ΛLP

)
= 4π gs e

Φ(ρ) Φ′(ρ) , (3.10)

we get a very lengthy and non-illuminating expression that we will not write explicitly.

Instead in figure 1 we provide the plots for the running of both the coupling constant and

the beta function with respect to the energy scale.

Plotting g2
YM and βg2

YM
for different values of both the quark masses and the charges

of the spherical cavities, one can see that the corresponding quantity grows at all energy

scales. At the energy scale (radial distance) that a cavity is located there is change on the

slope of the corresponding quantity, and the change is related to the number of flavours of

the cavity. The more flavours we put, the more severe the change of the slope is.

3.3 Wilson loops between cavities

In the previous sections we constructed the gravity dual of N = 4 SYM with a large number

of backreacted dynamical flavours, distributed in a series of multiple cavities. In order to

study the multicavity effect on the perturbative dynamics we will probe this background

with a quark-antiquark pair. We will constrain to the case of two cavities and study

the embedding of a static string with one edge on the outer and the other edge on the

inner cavity.2 In this way we will study the forces between the quarks of a heavy-light

meson. So far in the literature there are studies of the flavour effects of a single cavity

on the Wilson loop (see [10] & [11]) or studies of Wilson loops for heavy-light mesons

but in geometries without backreacting flavour (see [12]). In the current paper we will

cover the full parametric space by studying heavy-light Wilson loops in a fully backreacted

background.

The string in the bulk of the geometry bends and reaches a minimal radial distance

ρ0. The Minkowski separation L between the quarks and the total energy of the system

both depend on ρ0 and manipulating those relations we can deduce the Q̄Q potential as a

function of the separation L. As usual the open string embedding is

t = τ, y = σ, ρ = ρ(y) , (3.11)

2To this end we introduce two additional probe D7-branes wrapping contracting cycles in the internal

directions of the geometry, and reaching minimal distances from the origin at each cavity. The ends of the

strings are attached to each brane.
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2

Figure 1. Plots for the dependence on the energy scale for both the coupling constant g2YM

and the beta function βg2
Y M

. The two plots on the top & bottom right are magnifications of the

corresponding plots on the left, in order to illustrate the effect of the presence of the cavities.

where y ∈ [−L/2, L/2] is a Minkowski direction. The string action is

S = − 1

2πα′

∫
dtdy

√
H(ρ)2 + G(ρ)2 (∂yρ)2 , (3.12)

where the functions F and G are defined as follows

H ≡ e
Φ
2 h−1/2 , G ≡ e

Φ
2 F . (3.13)

Following the standard references (see [15] & [16]) we can write the string length and

energy3

L(ρ0) =

∫ ρQ1

ρ0

GH0

H
√
H2 − H2

0

dρ +

∫ ρQ2

ρ0

GH0

H
√
H2 − H2

0

dρ ,

E(ρ0) =
1

2πα′

[∫ ρQ1

ρ0

GH√
H2 − H2

0

dρ +

∫ ρQ2

ρ0

GH√
H2 − H2

0

dρ

]
, (3.14)

where ρQ1 & ρQ2 are the radial positions of the light and heavy quark branes, respectively.

In fact equations (3.14) describe only one class of open string embeddings, when the em-

bedding reaches a minimal radial distance between the two edges of the string (figure 2a).

These embeddings are realised when the quarks (attached to the probe flavour branes) are

sufficiently separated. Decreasing the separation of the quarks leads to a configuration for

which the minimum of the string coincides with its lower end point (figure 2b). Configura-

tions with lower separations are possible only for monotonic string embeddings (figure 2c).

3When we use the subindex 0 we refer to a quantity evaluated at ρ = ρ0
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⇢Q2

⇢Q1

⇢0

⇢Q2

⇢Q1
= ⇢0

⇢Q1

⇢Q2

⇢0

a) b) c)

Figure 2. Sketches of the different classes of string embeddings. Plot a) represents string

embedding, which reaches a minimal radial distance between the end points, it is realised for

sufficiently large separations of the quarks (the sting’s endpoints). Plot b) represents a critical

embedding when the position of the minimum is reached at the lower end of the string. Plot c)

represents monotonic string embeddings, although the minimum is not realised the parameter ρ0
still characterises the embedding.

In this case the expressions for the string length and energy (assuming ρQ1 < ρQ2) are

modified to:

L(ρ0) =

∫ ρQ2

ρQ1

GH0

H
√
H2 − H2

0

dρ ,

E(ρ0) =
1

2πα′

∫ ρQ2

ρQ1

GH√
H2 − H2

0

dρ . (3.15)

Note that the quantities with subindex 0 in equation (3.15) are still evaluated at a radial

distance ρ0, which although not reached by the string, enters as a parameter characterising

the shape of the embedding. Generally ρ0 ≤ ρQ1 < ρQ2 , and at ρ0 = ρQ1 one has the

critical embedding from figure 2b. In the limit ρ0 → −∞ a configuration with radially

stretched string, corresponding to a bound state of heavy and light quarks, is realised.

Another quality of interest is the potential V between the quarks, which can be obtained

by subtracting from the energy E of the configuration the total mass of the quarks:

V = E − (mlight + mheavy) , (3.16)

where mlight and mheavy are given by (3.3) and (3.4), and the energy E is given either by

(3.14) or (3.15).

To study the effect of the dynamical flavours on the quark potential we have to fix a

comparison scheme, namely we have to decide which quantities we will keep fixed while

changing the number of flavours. The first choice that we will consider is to keep the

radii of the cavities ρi and the UV scale ρ∗ (defined below equation (2.16)) fixed. The

motivation for this scheme is the relation of the radii of the cavities to the bare quark

masses. Indeed, in the limit of vanishing number of backreacted flavours, the fiducial

embeddings determining the density of the smeared flavour branes describe probe branes

in pure AdS5×S5 space-time, and the parameters eρi are exactly the bare masses of these

branes. Therefore, to zeroth order in the number of backreacted flavours the radii of the

cavities correspond to the bare mass parameters of the probe branes. The exact relation

between the bare masses and the radii becomes more involved once back reaction is taken

into account and we refer the reader to refs. [17–19] for details. For the purpose of our
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study it is sufficient to know that keeping the radii of the cavities fixed corresponds to

keeping the bare masses of the quarks fixed. The choice to keep the UV cutoff eρ∗ fixed

is related to the fact that the position of the Landau pole should be allowed to change as

the number of dynamical flavours is changed to ensure that the limit of zero number of

backreacted flavours can be taken properly.

A plot of the quark potential V versus the distance between the quarks L for various

number of dynamical flavours is presented in figure 3. The plots are for mass parameters

(related to the radial position of the cavities) ρq1 = −3, ρq2 = 0, for UV cut-off parameter

ρ∗ = 2, and for equal numbers of heavy and light quarks (Q1
f = Q2

f ). The total density of

the flavour branes parameter Qf = Q1
f +Q2

f from the top to the bottom is: 1, 1/2, 1/4, 1/8

and one can see that as the quark density is increased the quark potential becomes more

shallow due to screening of the dynamical flavours. The solid segments of the curves corre-

spond to configurations with realised minima in figure 3a. At large distance the potential

follows the Coulomb law something that it is expected since the theory without flavours

is conformal. On the contrary the dashed segments correspond to short string configura-

tions (figure 3c). One can see that as the separation L approaches zero the potential V is

approximately harmonic. The transition from Coulomb to harmonic potential takes place

near the critical configuration (figure 3b), where the potential has an inflection point, and

it is a smooth crossover. The value of the potential at L = 0 corresponds to the binding

energy of the heavy-light bound state. As expected one can see that it decreases as the

number of dynamical flavours increases.

As we discussed above there are other comparison schemes that one could use. It

is natural to compare the theories with different number of dynamical flavours when the

infrared parameters of the theory, such as the physical masses and the low energy effective

Yang-Mills coupling (given by equation (3.7)) are kept fixed. Keeping the physical masses

determines two of the parameters of the geometry. The third one could be the Yang-

Mills coupling either at the light quark energy scale (at the inner cavity) or at the heavy

quark energy scale (the outer cavity). Intriguingly if we fix the Yang-Mills coupling at

the inner cavity we do not observe any screening as the number of flavours is changed.

For different flavours the potential remains the same as the upper curve in figure 3. On

the contrary if we keep the physical masses and the effective Yang-Mills coupling at the

outer cavity fixed we do observe a screening effect. The resulting plots are presented in

figure 4. From top to bottom the curves correspond to flavour brane density parameters

Q1
f = Q2

f = 1, 1/2 , 1/8 , 1/32. Note also that at L = 0 the curves have the same binding

energy V (0). The reason is that L = 0 corresponds to the limit ρ0 → ∞, when H0 in

equation (3.15) vanishes and the expression for the energy reduces to the expression for

the difference of the masses E(0) = mheavy −mlight (see equation (3.4)). For the binding

energy V (0) we obtain V (0) = E(0)− (mheavy +mlight) = −2mlight and hence it remains

fixed if the physical mass of the light quark is kept fixed.

4 Conclusions and outlook

In this paper we constructed a novel supergravity background holographically dual to

a flavoured N = 1 Supersymmetric Yang-Mills theory. Our study builds on previous

studies in the literature by considering flavours with different masses. In the supergravity

background each family of dynamical flavours produces a spherical cavity with radius
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Figure 3. Plots of the heavy–light quark potential (in units of (2π
√
α′)−1) for mass parameters

(position of the cavities) ρq1 = −3, ρq2 = −1, and for equal numbers of heavy and light quarks

(Q1
f = Q2

f ). The total density of the flavour branes parameter Qf = Q1
f +Q2

f from the top to the

bottom is: 1, 1/2, 1/4, 1/8. One can see that as the quark density is increased the quark potential

becomes more shallow due to the screening of the dynamical flavours.
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Figure 4. Plots of the heavy-light potential at fixed physical masses and fixed effective Yang-Mills

coupling (at the outer cavity). From top to bottom the curves correspond to flavour brane density

parameters Q1
f = Q2

f = 1, 1/2 , 1/8 , 1/32. One can see the screening effect of the dynamical flavours

while at L = 0 all curves start from the same value, since the binding energy remains fixed.

proportional to the corresponding quark mass. As a result the geometry has a family of

concentric cavities with the density of the flavour branes changing gradually at each cavity,

reaching a maximum at the outermost cavity and vanishing inside the innermost cavity.

The positive beta function of the flavoured theory is reflected in the grow of the dilaton

with the radial distance. The dilaton blows at some large radial distance corresponding to

the Landau pole of the theory. Our solution is uniquely determined by the specification of

the position of the Landau pole and the radii of the cavities.

In the first part of section two we presented our ansatz and the corresponding su-

pergravity equations. In the last part of this section we presented our solution to the

supergavity equations and discussed the choice of the integration constants. In the third

section of the paper we investigated various properties of our set-up. We began with the

– 11 –



derivation of the physical quark masses of each family of dynamical flavours by calculating

the energy of a string stretched from the corresponding cavity to the origin of the geometry.

In the next subsection we studied the running of the Yang-Mills coupling of the theory, cor-

responding to the running of the dilaton. We showed how the introduction of an additional

family of dynamical flavours increases the beta function of the theory. Finally, in the last

part of section three, we investigated the Wilson loop between two cavities, corresponding

to two families of light and heavy quarks. We considered different comparison schemes

and studied the effect of changing the number of backreacted flavours. As expected we

observed a screening of the heavy light potential.

We will close this discussion section by pointing out some directions for future studies.

An obvious generalization of this work could be the application of the same philosophy

in order to obtain multicavity solutions for other smeared backreacted backgrounds. The

natural next candidate in this series of backgrounds would be the ABJM (see [20] & [21,

22] for the addition of massless and massive flavour D6-branes). The advantage of this

construction with respect to the current one is the fact that the UV of the theory does

not suffer from the presence of a Landau pole. This reflects the fact that D6-branes lift

to pure geometry in eleven dimensions, so a nice geometrical interpretation of matter is

possible. Moving to backgrounds that are closer to realistic theories, we could follow the

current philosophy for the field theory that is obtained after wrapping Nc D5-branes on a

two-cycle of the resolved conifold (see [23] & [5, 24] for the addition of massless and massive

flavour D5-branes). The importance of this construction is that in a geometric setup it

successfully encodes confinement and chiral symmetry breaking.

This last construction is also motivated from the recent activity in the front of the

holographic computation of the Entanglement entropy [25], and especially the generaliza-

tion of the standard prescription to include non-conformal field theories [26]. Since the

functional forms for both the length of the strip associated to the Entanglement entropy

and the length of the Wilson loop are similar, the Entanglement entropy and the energy

of the Wilson loop as a function of the length, are similar also [27]. Including multiple

cavities in the Maldacena-Nuñez solution [23] will imply a confining model that presents

multiple first order phase transitions for the Wilson loop. It would be interesting to study

the effect of this phenomenon on the Entanglement entropy of such a background.
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A Analysis of the kappa symmetry for the flavour D7-brane

In this part of the appendix we will determine the profile of the supersymmetric embedding

for the flavour D7-brane. For that we need to specify the kappa symmetry matrix and

impose the following condition

Γκ ε = ε , (A.1)
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where ε is a killing spinor of the background (2.1). The form of the kappa symmetry matrix

for a Dp-brane in a type IIB theory is

Γκ =
1√
−det g

(iσ2) Γ(0) , (A.2)

where Γ(0) is denoted as

Γ(0) =
1

(p+ 1)!
εa1···ap+1 γa1···ap+1 , (A.3)

with γa1···ap+1 the antisymmetrized product of the induced gamma matrices.

We choose the following worldvolume coordinates for the D7-brane4

ξα = (xµ, ρ, θ, ϕ, ψ) (A.4)

and constrain our analysis to configurations that τ and χ depend on the worldvolume

coordinates in the following way

τ = constant & χ = χ(ρ) . (A.5)

Using (A.1) together with the set of projections (2.7) we will be able to determine the exact

form of the function χ(ρ). The induced gamma matrices have the following expressions

γxµ = h−
1
4 Γµ , γρ = h

1
4

[
F Γ4 +

1

2
sin θ χ′ Γ5

]
,

γθ =
1

2
cos

χ

2
S h

1
4 Γ6 , γψ =

1

4
h

1
4

[
2 cos2 χ

2
F Γ9 + sinχS Γ8

]
, (A.6)

γϕ =
1

4
h

1
4

[
2 cos θ cos2 χ

2
F Γ9 + 2 sin θ cos

χ

2
S Γ7 + cos θ sinχS Γ8

]
.

Following the definition for Γ(0) in (A.3) we have

Γ(0) =
1

16
sin θ cos3 χ

2
S2 Γ0123

[
2 sin

χ

2
F S Γ4867 + sin

χ

2
S2 χ′ Γ5867 +

2 cos
χ

2
F 2 Γ4967 + cos

χ

2
F S χ′ Γ5967

]
. (A.7)

Using the projections of (2.7) together with the two relations

Γ4967 ε = −Γ5867 ε = ε , Γ4867 ε = Γ5967ε = iΓ59 σ2 ε , (A.8)

that easily follow from (2.7), we obtain the precise way that Γ(0) acts on the killing spinor

Γ(0) ε =
1

16
cos4 χ

2
sin θ S2

[
F S

(
χ′ + 2 tan

χ

2

)
Γ59 + i F 2

(
χ′ tan

χ

2

S2

F 2
− 2

)
σ2

]
ε .

(A.9)

Since we want to fulfill the condition (A.1), the term that is proportional to Γ59 should

vanish. In this way we obtain the differential equation for χ(ρ)

dχ

dρ
= − 2 tan

χ

2
. (A.10)

4We have already changed variables from σ to ρ as it is explained in section 2.2, namely dρ = S4dσ .
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Substituting (A.10) to the determinant of the induced metric we obtain

√
−det g|BPS =

1

8
cos4 χ

2
sin θ F 2 S2

(
1 + tan2 χ

2

S2

F 2

)
. (A.11)

Therefore, from (A.9), (A.10), (A.11) and (A.2) (for p=7), the kappa symmetry condition

(A.1) is satisfied. Integrating of (A.10) will give us the profile of χ as a function of ρ

χ(ρ) = 2 arcsin
eρq

eρ
, (A.12)

where ρq is the position of the cavity. Notice that when ρq → −∞, corresponding to the

massless case, the angle χ goes to zero.

B Brane distribution function

In this section we will determine the brane distribution function of every cavity pκ(σ)

following the analysis of [21, 24]. In order to perform this computation we will compare the

action of the full set ofNf flavour branes with the one that corresponds to the representative

embedding. Since supersymmetry guarantees that both the DBI and WZ parts of the action

are the same, we can chose either of them.

The smeared WZ action is coming from the following expression

SsmearedWZ = T7

∫
M10

C8 ∧ Ω2 , (B.1)

where Ω2 is the smearing form

Ω2 = − dF1 = −
∑
κ

Qκf p
′
κ dσ ∧ (dτ + ACP 2) −

∑
κ

Qκf pκ dACP 2 , (B.2)

and C8 is the potential that is coming from the Hodge dual of F1 in the standard way,

F9 = e2Φ ? F1 . (B.3)

The explicit expression for the potential may come from the following calibration condition

? F1 = e−2Φ d(eΦK) ⇒ C8 = eΦK , (B.4)

where K is the calibration form

K = − 1

2
h−1 d4x ∧ J2 ∧ J2 , (B.5)

and J2 the following two-form

J2 = e4 ∧ e9 − e5 ∧ e8 − e6 ∧ e7 . (B.6)

Combining (B.1), (B.2) & (B.4) and integrating over the angles of the sphere (χ, θ, ϕ, ψ &

τ) we obtain the following expression for the smeared WZ action

LsmearedWZ =
1

2
π2 T7 e

Φ S4
∑
κ

Nκ
f

[
p′κ + 4 pκ F

2 S2
]
. (B.7)
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Multiplying the lagrangian for a single massive embedding5 with Nκ
f we get

LWZ =
1

4
π2 T7 e

Φ S4
∑
κ

Nκ
f

[
8F 2 S2 cos4 χκ

2
+ 2 ∂σ

(
cos4 χκ

2

)]
. (B.8)

Equating the coefficients in front of the charges Nκ
f in both equations (B.7) & (B.8), we

obtain the differential equation for the brane distribution function for every cavity

∂σ

[
pκ − cos4 χκ

2

]
+ 4F 2 S2

[
pκ − cos4 χκ

2

]
, (B.9)

which is trivially solved

pκ(σ) = cos4 χκ(σ)

2
. (B.10)
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