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THEORY OF AN INVERTED PENDULUM WITH TRIFILAR
SUSPENSION

ABSTRACT

The theory of small oscillations is applied to the inverted, trifilar suspension pendulum. The
potential energy in a small displacement is calculated from geometrical considerations using vectorial
methods. The periods of the principal modes of oscillation are found. The theory is applied to the
O’LEARY Seismograph (mass 1§ tons) at Rathfarnham Castle and gives results in close agreemert with
the measured values.

The pendulum discussed in the following pages was designed by the Rev. WILLIAM
O’LEARY, S.J., and incorporated in two seismographs he built and in a later model constructed
at Rathfarnham. It is an inverted, vertical pendulum and achieves a long period by its
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F16. I — Diagrammatic Section of the O’LEARY Inverted Pendulum Seismograph
at Rathfarnham Castle, Dublin



4 THEORY OF AN INVERTED PENDULUM

trifilar suspension. The fundamental periods of this pendulum are calculated and comp
with the existing models. Previous, unpublished solutions for the motion in one partic
plane were given by Rev. D. O’ConNNELL, S.J., REv. P. HEELAN, S.J. and REev. R. E. INGR
S.J. and also by Dr. A. ConwAYy, ProF. A. O'RaHILLY and Rev. W. O’LEARY, though
these there is no record in the observatory. :

The theory, as developed here, makes three assumptions. (1) The suspension
remain constant in length when the pendulum oscillates. (2) The stiffness of the wir
not involved in the energy terms of the system. (3) The motion of the pendulum is s

The pendulum is a heavy cylindrical mass M fitted to a long shaft at the .
which there is a small circular plate A (Fig. I). Three suspension wires of equal length
attached to symmetrical points 4, , A., A,, apices of an equilateral triangle (Fig. II) at
distances a from the centre of the plate A and to adjustable points of support B,, B,
in a horizontal plane just below the cylindrical mass. These points of support can |
on lines which, if produced, would meet on the central axis and have angles of int
equal to 277/3. But they are always kept at equal distances b from the central a
with b greater than a. As the supports are moved out ( b is increased ) the period
oscillation increases until stability is lost. The points 4,, 4., A; move on spheres
centres are B,, B,, B; and which have the same radiil. With the pendulum
undisplaced, central position the wires would meet, if produced, in a point I below
lower plate. The horizontal axis about which the pendulum begins to rotate is thi
this point and perpendicular to the plane of initial motion. The pendulum may also
about the vertical axis. We will find the periods 7 and 7’ corresponding to these
principal modes of oscillation.

Let

M = Mass of pendulum
Mik* — Moment of inertia about a horizontal axis through the centre of gra

Mk'2 Moment of inertia about central axis
! = Length of each wire (4,B,, A,B,, A:B;)
h = Height of centre of gravity G above lower plate
a — Radius of lower plate, or distance of end of each wire from central

pendulum
b Distance of each point of support from the central axis of the pendd
rest ; b can be wvaried
d = Vertical distance of lower plate beneath plane of support
p = Distance of instantaneous centre below lower plate
I* — (b — a)* + d2,
p(b —a) = ad
V/_ith the pendulum at rest and its axis vertical, we take a reference frame of C:
co-ordinates fixed in space through G, z vertically upwards, x in the plane GB 1 and
B, and y perpendicular to this plane to form a right hand system (Fig. II)- We

a row vector and a as a column vector and have the following scheme for the penc
rest in its central position.

Point Vector Coordinates
A; a; (—acosa, asina, —h )
B; b; (—bcosa, bsina, d — h)

where a = #, n/3, — /3 asj=1,2,3
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F16. II —Diagram of the Pendulum in Equilibrium Position
F1G. ITI — Diagram of the Pendulum in Displaced Positi

Themtgmadmovmtofthcpendulumisauamhm,whmbythcmpeof
gravity,G,movufromthcoﬁginmanewposiﬁongivmbyduvecmx'withooordmzm
(x, », 2), and a rotation about this point. Let R be the rotation matrix with RR’ = I, the
unit matrix. The points B, are fixed. The points 4 move as

§ - ¥ + 4R
subject to the condition that they move on spheres with centres B, and radii equal to [.
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These equations of constraint are given by the scalar products

x +a;R —b)(x+ Ra; — b)) = (b; — a)) (b — a)
x'x + 2x'Ra; — 2x’b; + a;R'Ra; — 2b;R a; + bb;, = (b; — a;) (b; — a)
x'x + ax'(R — Da; — ax’b; — 2b;(R — Da; + ax'a; — ab;a; s,a, + bjb;

’

x'x  + 2x(R — Da; — ax'(b; — a;) = ab;(R — Da;
Rotations 6,, 0,, 0; about axes fixed in the body give

cos 0, cos 0, 5 — cos 0, sin 0,
R=( sinf,sinf,cos0;+cosO,sinfl, , cosl,cosl,—sinb,sinb,sin b,

—cos0,sinf,cos0;+sinf;sinfl; , sinf,cosl;+cosO,sinb,sinf; , co§_0;

To the second order of small quantities

1 —%(03—}— 0§) ’ F40 os » 0.
R“‘( 0,0, + 0,4 s —3(6 + 6)) , — 0, )
— 05+ 65,0, , 0, + 0,04 > 1 — 3(62+ 63)
0 05 5 Uy }(024—03, 9 2
I_R=(_ 03 > o > 01 ) e ( —‘olol » *(o¥+o§)’
Oaiiyi 10, ) o 8y 0y 4 — 02605 , (6%
ik = + Q

To solve the equations of constraint (1) for (x,y,z), we take the
approximation as given by

x(b; —a;) — b; Pa,

— (b —a)cos a
( (b——-a)s:na)

b;Pa, — — [ad + h(b — a)] (0, sin a + 0, cos @)
b—a)x +dz — [ad +~h(b —a)] 0
(b —a)xcosz/3+ (b —a)ysinn/3 — — [ad + h(b — a)] (0,sinz/3 + 05
—((®—a)xcoszx/3 —(b—a)ysinn/3 = — [ad + h(b — a)] (——Blsmﬂ/;
Hence . s
x:‘(P+h)629 y=*(}’+h)ol: z=0
where

e Gl
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Since the oscillations are about a position of equilibrium, z is obviously of the second order
in small quantities.
Let x; = (x,, ¥1, z,) be the second order approximation to the solution of the constraint
equations (1). We have, on neglecting terms of order higher than the second,
x'x — 2x'Pa; — 2x'(b; — a)) — 2x(b; — a,) = — 2b; Pa, — 2b;Qa;,
using (2)

and by (3)
(p+h)2(0F + 03) —2(p + h) [A(0O; + 03 —ab,0,cos a + al,0,sin a +
+2x;(b —a)cosa — 2y, (b — a) sin a — 2dz,] =
= — ab( 6} + 63) cos>a — 2ab 0,0, sin a cos a — ab( 0% + 63) sin*a — 2a(d — h) 6, 6, cos a
+ 2a(d — h) 0,05 sina + h(d — h) (67 + 63).
— 2x,(b — a) cos a + 2y, (b — a) sin a + 2dz, —
= (p* — hd + absin®a) 67 + (p* — hd + ab cos®a) 63 + ab 62 + 2ab 0,0, sin a cos a -+
+2a(p +d)0,0;cos a — 2a(p + d) 6,6, sin a
Replacing a by &, 7/3 and — 7/3 and solving
2z:d = [p* — hd + ab(x — cos 7/3)]16; + [p* — hd + ab cos /3] 6% + ab 62
The potential energy is
M; ab ab, I
2—:{(p'—hd+—2«— o+ (p*—hd+ )0z + aboz |
The initial kinetic energy is
IM (K307 + K303 + K303) + A M (p + W8 + 8
The equations of motion are

x’x — 2x’Pa; — 2x;(b; — a;) = — 2b;Qa;

Mk + @+ w26, + M8(pr na+ o, — 0

MK+ o+ w26, + f‘i‘(p- faromn ‘?}o, “o

MK b, +Mg:—b

Since k; = ky = k and k; = k’, the periods are
[dt + G+ p7)
T=T;=Ts=ax $3° TErer SEEEET Ty
\/ g (P' M %/

0, = 0

and i
dk’*
T'-T,mr; ;;b
T increases with b until stability is lost when p* & ab/a — hd .
T’ decr as b incr This period is the period of a rotation about the central axis

which occurs rarely.
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APPLICATION OF THE I HEORY TO EXISTING MODELS

Two models of the O’LEARY seismograph are in existence. The larger one, with a
of 13 tons, is installed at the Seismological Observatory of Rathfarnham Castle and has
daily records for the past 37 years. The smaller one, with a mass of 50 lbs., is at p:
in an experimental setup at the School of Cosmic Physics. It is being converted for
magnetic pickup and photographic recording. :

The large seismograph was installed in a narrow pit to reduce thermal effects but un
tunately in such a manner that it is not now possible, without dismantling, to ascertain 1
is the true manner of oscillation and whether assumptions 1 and 2 mentioned at the begi
are applicable. No records of details of the construction are available and it is assumed
the suspension wires consist of steel cables about a quarter of an inch in diameter v
are probably strong but flexible enough to satisfy the assumptions.

For the large O’LEARY Seismograph at Rathfarnham Castle
M = 3,040 lbs.

i — 8g ins,
k?* = 173 ins2.
k' = 84 ins2.
L= J3 dns:
a = 3% ins.

With & — 5-7 ins., the calculated values of the periods are
I = 15-7 secs and T' — 5°7 secs.
The measured values are

T — 15-6 secs and 7’ — 6-0 secs
which is as good an agreement as can be expected.

It is intended that, whenever the routine observations can be suspended
while, the seismograph will be dismantled, the various constants remeasured and the
sion wires inspected.

. The case of the small seismograph is quite different. The suspension wires are of
wire with diameters within the range 25 to 42 thousandths of an inch. For small d
wires assumption 1r would not hold but 2 would, while for the larger diameter
reverse is more likely. Suitable small steel cables which might satisfy both as
have not been obtained as yet ; the only available samples, because they are not under
tens.lolt:, act like small springs and in fact with them, it is not practicable to keep the
upright. ;

The periods of this pendulum, not isingly, do not agree with the theory
above and both experimental and theorest‘ijgflr;srﬁigs}i's being continued to solve the
of this seismograph.

Seismological Observatory,
Rathfarnham Castle,
Dublin,

January 7, 1954



