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Abstract

The fermionic formulation for low-dimensional Ising models is given in terms

of purely anti-commuting Grassmann variables. The discussion includes

fermionization procedures based on mirror-ordered factorization of the den-

sity matrix, free-fermion representation of the partition function and momentum-

space analysis and analytic solutions. The fermionic decription of the Ising

chain is considered in some detail as an introduction to the 2D Ising model

on a rectangular lattice.

These notes were prepared in relation to lectures given in 2002 at the

School of Theoretical Physics of the Dublin Institute for Advanced Studies.



1 Spin-variable formulation of the 1D Ising

chain

The basic variable in the Ising model is the Ising spin σm = ±1 associated

with a site m. The 1D chain Hamiltonian H is given by

−βH =
L∑

m=1

bm+1σmσm+1, bm =
Jm
kT

, (1.1)

where T is the absolute temperature, k is Boltzmann’s constant, and β =

1/(kT ). The Gibbs density matrix is

e−βH(σ) =
L∏

m=1

ebm+1σmσm+1 (1.2)

=
L∏

m=1

(cosh bm+1 + σmσm+1 sinh bm+1)

=
L∏

m=1

cosh bm+1(1 + σmσm+1 tanh bm+1)

=

{
L∏

m=1

cosh bm+1

}
L∑

m=1

(1 + tm+1σmσm+1), (1.3)

where tm = tanh bm. The partition function becomes

Z =
∑

{σm=±1}

e−βH(σ) =

{
L∏

m=1

(2 cosh bm+1)

}
Q, (1.4)

where the reduced partition function Q is given by

Q = Sp
(σ)

{
L∏

m=1

(1 + tm+1σmσm+1)

}
, (1.5)

in which we defined the normalization spin-averaging by

Sp
(σ)

{· · · } =
L∏

m=1

Sp
σm

{· · · } with Sp
σm

(· · · ) = 1

2

∑
σm=±1

(· · · ).
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Possible spin-closing conditions (boundary conditions) are:

σL+1∗ = σ1 (periodic)

σL+1 = −σ1 (anti-periodic)

σL+1 = 0 (free).

Remark. It turns out that periodic spins correspond to aperiodic fermions

and vice versa in the 1D case.

2 Fermionization for the 1D case

We want to compute the (reduced) partition function

Q = Sp
(σ)

{
L∏

m=1

(1 + tm+1σmσm+1)

}
, (2.1)

by changing the sum over spin variables into a fermionic integral. We perform

this transformation in two steps as follows:

Q = Sp
(σ)

Q(σ)→ Sp
(σ,a)

Q(σ, a)→ Sp
(a)

Q(a),

i.e. we start with a spin-variable densiity matrix Q(σ), then introduce new

(Grassmann) anti-commuting variables (a) by means of a factorization of lo-

cal Boltzmann weights, passing to the mixed (σ, a) representation, and finally

eliminate the spin variables. The result is a purely fermionic representation

for the partition function Q in the form of an ‘integral’ over Grassmann

variables. These variables may be viewed as classical fermions. For any

Grassmann variable a, we set∫
1 da = 0 and

∫
a da = 1.
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This yields the following simple rules for Gaussian Grassmann integrals with

two variables a and a: For any complex variable λ, we have∫
da da eλaa = λ∫

da da a eλaa = 0∫
da da a eλaa = 0∫
da da aa eλaa = 1. (2.2)

This follows from

eλaa = 1 + λaa.

(Note that, for any Grassmann variable a, a2 = 0, and for two variables a

and a, aa+ aa = 0.)

To pass to a fermionic representation, we introduce a pair of Grassmann

variables am and am at each site of the lattice and factorize the local weights

from Q(σ) as follows.

1 + tm+1σmσm+1 =

=

∫
damdam e

amam(1 + amσm)(1 + tm+1σm+1am)

= Sp
(a)

{AmAm+1}, (2.3)

where

Am = 1 + amσm and Am+1 = 1 + tm+1σm+1am, (2.4)

and where Sp(a) denotes the Grassmann integration with a Gaussian weight,

i.e.

Sp
(a)

(· · · ) =
∫
da da eaa(· · · ).

An even more compact notation is to drop the integral notation altogether,

and write simply

1 + tm+1σmσm+1 = AmAm+1. (2.5)

3



The identity (2.3) can be checked by integrating term by term the fermionic

polynomial

(1 + amσm)(1 + tm+1σm+1am) =

= 1 + amσm + tm+1σm+1am + tm+1amamσmσm+1, (2.6)

and following the above rules for Gaussian integrals. (Note that products of

even numbers of Grassmann variables commute with any other element of

the Grassmann algebra, while odd products in general neither commute nor

anti-commute with an arbitrary element of the algebra. )

We now have to substitute the factors (2.5) intoQ(σ) and average over the

spin variables. Note that, although individual factors Am and Am+1 neither

commute nor anti-commute with other elements, the products AmAm+1 can

(effectively) be commuted with each other under the integral sign of total

fermionic averaging over all Grassmann variables am and am. This is the

case because the non-commuting fermionic terms am and am contained in

AmAm+1 average to zero. Note that the indices of the factors Am and Am+1

have been chosen to be the same as those of the spin-variables involved. We

now substitute AmAm+1 into Q(σ) and combine the factors with the same

index m to be averaged over σm = ±1. Assuming free boundary conditions

σL+1 = 0 at this stage, we have AL+1 = 1. The averaging then goes as

follows.

Q(σ) = Sp
(a)

{
L∏

m=1

AmAm+1

}
= Sp

(a)

{
(A1A2)(A2A3) . . . (ALAL+1)

}
= Sp

(a)

{
A1(A2A2)(A3A3) . . . (ALAL)AL+1

}
= Sp

(a)

{
L∏

m=1

AmAm

}
, (2.7)

where we also set A1 = 1, where formally A0 = 0 corresponds to free bound-

ary conditions for fermion variables.

Thus, for the density matrix Q(σ) of the 1D chain with open ends (free
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boundary conditions), we obtain the factorized representation

Q(σ) =
L∏

m=1

(1 + tm+1σmσm+1)
∣∣
σL+1=0

= Sp
(a)

{
L∏

m=1

AmAm

}∣∣∣∣
a0=0

=

∫ L∏
m=1

damdam e
∑L

m=1 amam

L∏
m=1

{(1 + tmam−1σm)(1 + amσm)}.

(2.8)

Next we average over the spins σm = ±1 at each site to obtain

Sp
(σm)

(AmAm) =
1

2

∑
σm=±1

(1 + tmam−1σm)(1 + amσm)

= 1 + tmam−1am

= 1− tmamam−1 = e−tmamam−1 . (2.9)

The partition function then becomes

Q = Sp
(σ)

Q(σ) = Sp
(σ)

Sp
(a)

{
L∏

m=1

AmAm

}

=

∫ L∏
m=1

damdam exp

{
L∑

m=1

[amam − tmamam−1]

}
. (2.10)

Here a0 = 0 for free boundary conditions. This is an exact fermionic represen-

tation for the inhomogeneous 1D Ising chain with open ends (free boundary

conditions).

3 The 1D Ising chain with periodic-aperiodic

closing conditions in terms of

(classical) fermions

In the previous section we considered the fermionization of an open chain.

We now consider a chain which is closed into a ring, i.e. we assume the
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periodic spin-closing condition for the spin variables: σL+1 = σ1. The final

Boltlzmann weight is then of the form 1 + tL+1σLσL+1 = 1 + tL+1σLσ1 =

1 + t1σ1σL if we set t1 = tL+1. In principle we could try to apply directly

the same procedure as in the case of the open chain. This would lead to the

representation

Q(σ) = A1(A2A2) . . . (ALAL)AL+1. (3.1)

For free boundary conditions the last factor AL+1 = 1, and we set A1 = 1.

In the present case, AL+1 = 1 + tL+1aLσL+1 = 1 + t1aLσ1 ̸= 1. This factor

may also be viewed as a factor

A
′
1 = 1 + t1a0σ1

∣∣
a0=aL

.

We then have to move this factor to the beginning of the chain from right to

left. Interchanging this factor with the previous factors, the term involving

aL changes sign an odd number of times, so that we end up with

A1 = 1− t1aLσ1 = 1 + t1a0σ1
∣∣
a0=−aL

. (3.2)

This can also be derived as follows.

1 + tL+1σLσL+1 = 1 + t1σ1σL

=

∫
daLdaL e

aLaL(1− t1aLσ1)(1 + aLσL)

=

∫
daLdaL e

aLaL(1 + t1a0σ1)(1 + aLσL)

= Sp
(aL,aL)

{A1AL}
∣∣
a0=−aL

. (3.3)

Inserting the product of factors AmAm+1, we have

Q(σ) = (A1AL)
L−1∏
m=1

(AmAm+1)

= A1

(
L−1∏
m=1

AmAm+1

)
AL =

L∏
m=1

(AmAm)
∣∣
a0=−aL

, (3.4)

where fermionic averaging with diagonal Gaussian weight is assumed. This is

an exact expression for the periodic Ising chain. The spin-periodic condition

6



σL+1 = σ1 becomes the fermion-antiperiodic condition a0 = −aL. Explicitly,
we have

Q(σ) =
L∏

m=1

(1 + tm+1σmσm+1)
∣∣
σL=1=σ1

=

∫ L∏
m=1

damdam e
∑L

m=1 amam

{
L∏

m=1

AmAm

}∣∣∣∣
a0=−aL

(3.5)

where

Am = 1 + σmam and Am = 1 + tmam−1σm.

Averaging (3.5) over σm = ±1 at each site yields the partition function Q.

This is basically identical to the case of free boundary conditions, and gives

a purely fermionic representation similar to (2.10), but now with a0 = −aL.
This is an exact transformation for the 1D chain of length L with arbitrary

inhomogeneous coupling constants tm+1 = tanh(bm+1). Similarly, the chain

with anti-periodic spin condition σL+1 = −σ1 results in an integral with the

fermion periodic condition a0 = aL, but otherwise identical. The universal

form of the integral is thus

Q = Sp
(σ)

{
L∏

m=1

(1 + tm+1σmσm+1)

}

=

∫ L∏
m=1

damdam exp

{
L∑

m=1

[amam − tmamam−1]

}
, (3.6)

with the following correspondence between boundary conditions for spins and

fermions:

σL+1 = 0 ↔ a0 = 0

σL+1 = σ1 ↔ a0 = −aL
σL+1 = −σ1 ↔ a0 = aL. (3.7)

Remark. The transformation of boundary conditions from spins to

fermions is somewhat more sophisticated in the 2D case, where the result

is a sum of terms with different periodic and anti-periodic conditions.
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4 The Fourier substitution in the 1D Ising

chain (Grassmann variables)

The partition function (3.6) can be explicitly calculated in the homogeneous

case by Fourier substitution for fermions, i.e. by a linear change of variables

{am, am}Lm=1 7→ {ap, ap}L−1
p=0 in the integral. The transformed variables ap and

ap are also Grassmann variables, and the rules of transformation (appearance

of Jacobian, etc.) are known. Thus we consider the integral (3.6) for Q with

tm+1 = t the same at all sites:

Q =

∫ L∏
m=1

damdam exp

{
L∑

m=1

(amam − tamam−1)

}
, (4.1)

where

t = tanh(b) = tanh(βJ).

The Fourier substitution is simplest for periodic fermions, so we first

consider this case:

a0 = +aL (periodic fermions). (4.2)

This corresponds to the anti-periodic spin condition σL+1 = −σ1. Assuming

this condition, we make the standard Fourier substitution

am =
1√
L

L−1∑
p=0

ap e
2πipm/L

am =
1√
L

L−1∑
p=0

ap e
−2πipm/L, (4.3)

where the condition (4.2) is automatically satisfied. Taking into account the

orthogonality properties of the Fourier eigenfunctions,

1

L

L∑
m=1

e2πim(p±p′)/L = δ(p± p′ modL) (4.4)
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the fermionic action becomes

S =
L∑

m=1

(amam − tamam−1)

=
L−1∑
p=0

(
apap − tapape2πip/L

)
=

L−1∑
p=0

(
1− te2πip/L

)
apap (4.5)

and the partition function becomes

Q =

∫ L−1∏
p=0

dapdap exp

{
L−1∑
p=0

(
1− te2πip/L

)
apap

}

=
L−1∏
p=0

∫
dapdap exp

{(
1− te2πip/L

)
apap

}
=

L−1∏
p=0

(
1− te2πip/L

)
, (4.6)

where it is also taken into account that, in general, the Jacobian of the trans-

formation {am, am}Lm=1 7→ {ap, ap}L−1
p=0 will appear on the right-hand side, but

this Jacobian equals 1 due to the orthogonality of the Fourier substitution

(4.3). (In general, the Jacobian appears in the denominator in the right-hand

side.) Writing

Qp =

∫
dapdap exp

{(
1− te2πip/L

)
apap

}
= 1− te2πip/L,

we thus have

Q =
L−1∏
p=0

Qp =
L−1∏
p=0

(
1− te2πip/L

)
= 1− tL. (4.7)

This is an exact expression for the partition function of a finite chain with

fermion-closing condition a0 = aL (that is σL+1 = −σ1). A comment about

the reduction of the product to 1 − tL is given in §6. From (4.7) one can

calculate the free energy per site in the limit of an infinite chain (L→ +∞).

With the 2-dimensional lattice in mind, it is instructive to deal with the
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trigonometric product in (4.7) rather than the closed expression 1−tL. Thus,
we have

−βfQ =
1

L
logQ =

1

L

L−1∑
p=0

log
(
1− te2πip/L

)
. (4.8)

In the limit L→ +∞ the sum is replaced by an integral, and we have

−β lim
L→+∞

fQ =

∫ 2π

0

dp

2π
log(1− teip)

=
1

2

∫ 2π

0

dp

2π
log(1− teip)(1− te−ip)

=
1

2

∫ 2π

0

dp

2π
log[(1 + t2)− 2t cos(p)]. (4.9)

This expression can be compared with the corresponding solution for the 2D

Ising model (Onsager, 1944) with t1 and t2 being the coupling parameters on

the horizontal and vertical bonds, respectively,

−β lim
L1,L2→+∞

f
(2D)
Q =

1

2

∫ 2π

0

∫ 2π

0

dp dq

(2π)2
log
[
(1 + t21)(1 + t22)

−2t1(1− t22) cos(p)− 2t2(1− t21) cos(q)
]
, (4.10)

which reduces to (4.9) if t2 = 0, as it should.

Remark. In fact, in (4.9), −β limL→+∞ fQ = 0, as can be checked di-

rectly in the integral, for example by replacing log(1 − teip) by a series ex-

pansion in teip, and noting that
∫ 2π

0
dp eipn = 0 for n ̸= 0. Of course this

holds only for |t| < 1 which is the case since t = tanh(βJ). As to the

original Ising model, note also that the true partition function is given by

Z = (2 cosh(b))LQ, and the true fee energy density is given by

−βfZ
∣∣
L→+∞ = log(2 cosh(βJ)).

By making use of fermionic integrals like (4.1) one can also evaluate

fermionic correlations ⟨amam′⟩ and spin-spin correlations ⟨σmσm′⟩ for the 1D
chain (finite or infinite). Once the latter are known, one can then sum the

correlations to obtain, for instance, the magnetic susceptibility (in zero field)
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etc. The significance of the fermionic integral (4.1), even in the 1D case,

is in fact somewhat greater than simply the free-energy calculation of (4.9),

resulting in −βfQ = 0 (L→ +∞).

5 The Fourier transformation for aperiodic

fermions (a0 = −aL)

In the previous section the standard (periodic) Fourier substitution was ap-

plied for the case of the Grassmann integral with periodic closing condition

a0 = aL, which actually corresponds to a chain with spin-aperiodic closing

condition σL+1 = −σ1. This may be considered as a normal chain in the

form of a ring but with one ‘negative bond’, or kink somewhere in the chain.

The partition function for this chain was found to be Q = 1 − tL, which is

the correct answer for this case.

Let us now consider the usual homogeneous Ising chain with periodic

boundary condition σL+1 = σ1, and correspondingly a0 = −aL in the fermionic

representation.In this case we would expect that Q = 1 + tL and hence

Z = 2N(cosh(b))NQ = 2N [(cosh(b)N + sinh(b)N ].

In this case we have to apply the aperiodic Fourier transformation. We have

the Grassmann integral

Q =

∫ L∏
m=1

damdam exp

{
L∑

m=1

(amam − tamam−1)

}∣∣∣∣
a0=−aL

. (5.1)

In order to be able to satisfy the aperiodic condition

a = −aL (5.2)

we apply a modified Fourier transformation with half-integer momenta p+ 1
2
:

am =
1√
L

L−1∑
p=0

ap e
2πim(p+ 1

2
)/L

am =
1√
L

L−1∑
p=0

ap e
−2πim(p+ 1

2
)/L. (5.3)
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Then am+L = −am and am+L = −am, and in particular the aperiodic bound-

ary condition holds. The corresponding orthogonality relations are

1

L

L∑
m=1

ei
2πm
L

((p+ 1
2
)−(p′+ 1

2
)) = δp,p′ . (5.4)

The inverse transformation is given by the conjugated matrix and the Ja-

cobian of the combined substitution (5.3) equals 1, as follows from (5.4).

Otherwise, the procedure is quite similar to the periodic case, and the result

is

Q =

∫ L−1∏
p=0

dapdap exp

{
L−1∑
p=0

(
1− tei

2π
L
(p+ 1

2
)
)
apap

}

=
L−1∏
p=0

(
1− tei

2π
L
(p+ 1

2
)
)
= 1 + tL. (5.5)

The physical consequences that follow from this formula are the same as

those for (4.7) with a0 = aL, at least in the thermodynamic limit L → +∞
(the boundary effects do not play a role in the thermodynamic limit). Finally,

it remains to consider the free boundary case (open chain) with σL+1 = 0.

In this case Fourier substitution is not appropriate. The answer is Q = 1,

which can also be guessed of course from superposition of the periodic and

aperiodic solutions:

QσL+1=0 =
1

2

[
QσL+1=σ1 +QσL+1=−σ1

]
=

1

2
[(1− tL) + (1 + tL)] = 1. (5.6)

Remark. The result Q = 1 follows of course directly from (2.10) by

integrating subsequently over a1 and a1, then a2 and a2, etc. The factors

exp[−tamam−1] then reduce to 1 at each stage.

The free-boundary case is also more difficult in the 2D Ising model, where

the exact solution, for a finite lattice, is known for the torus case (spin-

periodic closing of the lattice in both directions), but unknown in closed

form for a lattice with free boundary conditions, or in the cylinder case.
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6 Trigonometric products

In this sections we make some remarks about the trigonometric products

which appeared in the 1D case, and may also be of interest in the subsequent

analysis of the 2D case. First we note that

L−1∏
p=0

(
1− tei

2πp
L

)
= 1− tL (6.1)

follows from the expansion of the polynomial zL− 1 with respect to its roots

in the complex plane. Changing variables to t 7→ teiπ/L we also find

L−1∏
p=0

(
1− tei

2π
L
(p+ 1

2
)
)
= 1 + tL. (6.2)

These identities then evidently generalize to

L−1∏
p=0

(
A−Bei

2πp
L

)
= AL −BL (6.3)

and
L−1∏
p=0

(
A−Bei

2π
L
(p+ 1

2
)
)
= AL +BL. (6.4)

Taking the logarithm of these expressions, one obtains additive identities,

and in the limit L→ +∞, one obtains trigonometric integral formulae:

1

2π

∫ 2π

0

dp log(1− te±ip) = lim
L→+∞

1

L
log(1− tL) = 0 (|t| < 1), (6.5)

and adding,

1

2

∫ 2π

0

dp

2π
log(1 + t2 − 2t cos(p)) = 0 (|t| < 1). (6.6)

More generally,

1

2

∫ 2π

0

dp

2π
log(a2 + b2 − 2ab cos(p)) =

1

2
log(a2) = log |a| (|b| < |a|). (6.7)
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Reparametrizing the last equation according to

A = a2 + b2 B = 2ab

a =
1

2
[
√
A+B +

√
A−B] b =

1

2
[
√
A+B −

√
A−B], (6.8)

it transforms into∫ 2π

0

dp log[A−B cos(p)] = 2π log

[
1

2
(A+

√
A2 −B2)

]
= 2π log

(√
A+B +

√
A−B

2

)2

. (6.9)

There are also discrete product analogues of this formula.

There are many other similar identities which can be deduced analogously,

for instance,

2N−1

N−1∏
p=0

[
cos(γ) + cos

(
π

N
(p+

1

2
)

)]
= cos(γN) (6.10)

and

2N−1

N−1∏
p=0

sin

[
γ +

π

N
(p+

1

2
)

]
= cos(γN), (6.11)

where γ is a parameter.

Still more identities can be obtained by differentiation with respect to a

parameter. For example, differentiating with respect to A in (6.9), we have∫ 2π

0

dp

2π

1

A−B cos(p)
=

1√
A2 −B2

(6.12)

and ∫ 2π

0

dp

2π

cos(p)

A−B cos(p)
=
A−
√
A2 −B2

B
√
A2 −B2

. (6.13)

Another way of calculating integrals of this kind is integrating in the

complex plane with respect to the variable z = eip. We may write A −
B cos(p) = (a − beip)(a − be−ip), where the correspondence A,B ↔ a, b is
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given by (6.8). Then, assuming |a| > |b|, if f(eip) is some polynomial in

z = eip, ∫ 2π

0

dp

2π

f(eip)

A−B cos(p)
=

∮
dz

2iπz

f(z)

(a− bz)(a− bz−1)

=

∮
dz

2iπ

f(z)

(a− bz)(az − b)

=

∮
dz

2iπ

f(z)

a(a− bz)(z − b
a
)

=
f( b

a
)

a2 − b2
=

f( b
a
)

√
A2 −B2

. (6.14)

The integral for −βfQ in the 2D Ising model (see (4.10)) is over two momenta

p and q. One of these integrations can be performed explicitly by means of

the above relations. The other survives, however (due to the appearance

of square roots) and this integral cannot be significantly simplified. The

derivatives of −βf (2D)
Q for the 2D Ising model, like the energy density ⟨ϵ⟩

and the specific heat c can be expressed in terms of elliptic integrals (see e.g.

K. Huang, “Statistical Mechanics”, Wiley, 1987).

7 Dirac fields in the 1D Ising model

It is known1 that the 2D Ising model may be viewed as a Majorana-Dirac

field theory in 2-dimensional euclidean space. A similar Dirac structure is

also visible in the 1D Ising case, using the fermionic description of the model.

In the quantum-field-theoretical (QFT) interpretation, the 1D Ising model

must be considered near its formal critical point t = 1 (zero temperature)

and at low momenta, i.e. in the neighbourhood of p = 0 in momentum space.

1About the Majorana-Dirac interpretation of the 2D Ising model, see C. Drouffe &

J.-M. Itzykson: “Statistical Field Theory”, Vol. 1 (Cambridge Univ. Press, 1989), and

V. N. Plechko, Phys. Lett. A239 (1998), 289; and hep-th/9607053; and J. Phys. Stud.

(Ukr.) 3 (1999), 312–330, issue dedicated to Prof. N. N. Bogoliubov on occasion of his

90th anniversary. For applications in the context of the disordered 2D Ising model, see

also B. N. Shalaev, Phys. rep. 237 (1994), 129; as well as the above Phys. Lett A239

(1998), 289.
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We start with the exact lattice integral

Q =

∫ L∏
m=1

damdam exp

{
L∑

m=1

(amam − tamam−1)

}
, (7.1)

with t = tanh(b) = tanh(βJ). We write the action in the integral in the form

Sm = amam − tamam−1

= (1− t)amam + tam(am − am−1), (7.2)

and define a lattice derivative ∂m such that ∂mam = am − am−1, and let

m = 1− t be the Dirac mass. The total action then takes the form

S =
∑
m

[mamam + tam∂mam] . (7.3)

Near the critical point t ≈ tc = 1 and m ≈ 0.

Taking the formal continuum limit am, am → ψ(x), ψ(x) and ∂m → ∂/∂x,

we obtain a continuum-limit counterpart to the same action:

S =

∫
dx (mψ(x)ψ(x) + tcψ(x)∂xψ(x)). (7.4)

This also assumes that we restrict ourselves to the low-momentum sector

of the lattice theory 0 ≤ |p| ≤ K0, where K0 is some cut-off of order 1.

(Note that the continuum momentum corresponds to 2πp/L, which is small if

p≪ L.) The action (7.3) can be called a 1D Dirac action with corresponding

1D Dirac equation (m+ tc∂x)ψ = 0.

Remark. This terminology is quite conventional, being used commonly,

at least in the 2D case. The true Dirac equation (for electrons) is in 3 +

1 Minkowski space and predicts electron spin and anti-particles. For the

latter, one needs at least 2-dimensional space-time, whereas for spin one

needs higher dimensions as well as a coupling to the electromagnetic field.

In momentum space, the action (7.3) takes the form

S =

∫
|p|≤K0

dp
[
mψpψp − ipψpψp

]
, (7.5)
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where we put t = tc = 1 in the kinetic term. Actually, one can start with

t ̸= tc in

S =

∫
|p|≤K0

dp
[
mψpψp − iptψpψp

]
, (7.6)

and rescale t to 1 by rescaling of the fields ψp, ψp → ψp/
√
t, ψp/

√
t, which

then results in a rescaled mass m→ m′ = 1−t
t
. For this mass,

m′ =
1− t
t

=
cosh(b)− sinh(b)

sinh(b)
=

2e−b

eb − e−b
≈ 2e−2b,

where b→ +∞ and m′ ∼ 2e−2βJ → 0 near criticality, as β = 1/kT → +∞.

We define the normalized averaging in the usual way:

⟨· · · ⟩ =
∫
D eS(· · · )∫
D eS

, (7.7)

where D and S are the corresponding fermionic measure and action, respec-

tively. The action is particularly simple in momentum space: see equation

(7.5). The momentum-space fermionic correlation functions then readily fol-

low. We have ⟨ψpψ−p⟩ = ⟨ψpψ−p⟩ = 0, etc. and

⟨ψpψp′⟩ = δp,p′⟨ψpψp⟩; ⟨ψpψp⟩ =
1

m− ip
=

m+ ip

m2 + p2
, (7.8)

which is the 1D Dirac propagator in QFT language. In real space, we find,

for large R > 0,

⟨ψ(x)ψ(x+R)⟩ =
∫

dp

2π

e−ip|R|

−i(p+ im)
= e−m|R|. (7.9)

Here we assumed that the cutoff K0 is removed to infinity, after which the in-

tegral can be performed using contour integration. The correlator (7.9) is the

same as ⟨ψ(x−R)ψ(x)⟩, so that (7.9) also gives the answer for ⟨ψ(x+R)ψ(x)⟩
with R = −|R| < 0. However, note that, interestingly, the propagator

⟨ψ(x)ψ(x+R)⟩ = 0 for R < 0, and likewise ⟨ψ(x+R)ψ(x)⟩ = 0 for R > 0.

The behaviour of the fermionic correlator (7.9) can be related to the spin-

spin correlator ⟨σm+Rσx⟩, but we will not consider this in more detail here.

Actually, in 1 dimension, the behaviour of ⟨σ0σR⟩ = ⟨σmσm+R⟩ is expected
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to be the same as in (7.9), at least for small mass and large distance. In fact,

the exact lattice result is

⟨σmσm+R⟩ = tR = e−R| log t| ≈ e−mR (7.10)

for small mass m = 1 − t ≈ e−t. The continuum limit approximation thus

indeed reproduces the correct asymptotics for the correlations of the exact

lattice theory. This is expected to be true also in the 2D and 3D cases. In

the 2D case this can in fact be checked at least for fermionic correlations. A

suitable continuum limit (field-theoretical) for the 3D Ising model has so far

not been constructed (at least beyond a phenomenological approach based

on the ϕ4 theory).

Further insight into the continuum approximation is obtained if we con-

sider the exact lattice expression for fermionic correlations in the thermody-

namic limit, which is

⟨apap⟩ =
1

1− teip
. (7.11)

The real-space lattice fermionic correlation follows immediately from this:

⟨amam+R⟩ =
∫ 2π

0

dp

2π

e−ipR

1− teip
=

tR for R ≥ 1,

0 for R ≤ 0.
(7.12)

Multi-point fermionic correlations can also be evaluated easily in terms of

binary correlators by means of Wick’s theorem. The fermionic correlations

can in turn be used to compute the spin-spin correlations. The same ap-

proach works in the 2D case, although the correspondence between spins and

fermions is more complicated. The 2D fermions are in fact superpositions

of spins and the so-called disorder variables (Kadanoff, 1969). This implies

that there is a non-local correspondence between spins and fermions in 2

dimensions. This feature does not appear, or can at least be circumvented

in the 1D case.
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approaches is considerably more complicated than the evaluation of the free

energy. Typically, M2 is obtained as the limiting value of the spin-spin

correlation function at infinity: M2 = ⟨σ(0)σ(R)⟩
��
R→+∞. The correlator

⟨σ(0)σ(R)⟩ is not a simple quantity, however, in the 2D Ising model. It is

expressed as a large-size determinant of order R × R for which there is no

known explicit formula. The limiting value of this determinant as R → +∞
is then obtained using the Szegö-Kac theorem, resulting in the above expres-

sion.7 (The Szegö-Kac theorem is in fact used to compute logM2.) The

formula for M2 can also be obtained using Grassmann variables by first ob-

taining ⟨σ(0)σ(R)⟩ = ⟨σm,nσm+R,n⟩ on the lattice as a large-size Toeplitz

determinant, with known matrix elements and then calculating M2 using

the Szegö-Kac theorem.8 The situation with the spontaneous magnetization

in the 2D Ising model is not completely understood anyhow, and the con-

trast between the simple result (11.17) and its very complicated derivation

remains unresolved. Other known results about the 2D Ising model include

the asymptotics of the correlation functions at large distances, and asymp-

totics of the magnetic susceptibility above and below Tc.

7See E. W. Montroll, R. B. Potts & J. C Ward, J. Math. Phys. 4 (1963), 308, for

a discussion of the spin-spin correlation and the calculation of M2 via the Szegö-Kac

theorem. See also B. M. McCoy & T. T Wu, The two-dimensional Ising model. (Harvard

Univ. Press, 1973).
8In the Grassmann variable approach the correlator ⟨σm,nσm+R,n⟩ appears as a deter-

minant of fermionic Green’s functions:

⟨σm,nσm+R,n⟩ = ⟨
R∏

r=1

Am,nAm+r,n⟩ = det
(
⟨Am′,nAm′′,n⟩

)
.

38

8 Fermionization of the 2D Ising model on a

rectangular lattice

The Hamiltonian of the 2D Ising model on a square lattice with side L is

given by

−βH(σ) =
L∑

m=1

L∑
n=1

[
b
(1)
m+1,nσm,nσm+1,n + b

(2)
m,n+1σm,nσm,n+1

]
, (8.1)

with m,n = 1, . . . , L running in horizontal and vertical directions, respec-

tively, and where σm,n = ±1. As before, we write the partition function in

the form

Z =
∑

σm,n=±1

e−βH(σ) =

{
L∏

m=1

L∏
n=1

2 cosh(b
(1)
m+1,n) cosh(b

(2)
m,n+1)

}
Q, (8.2)

where Q is the reduced partition function

Q = Sp
(σ)

{
L∏

m,n=1

(1 + t
(1)
m+1,nσm,nσm+1,n)(1 + t

(2)
m,n+1σm,nσm,n+1)

}
, (8.3)

with

t(α)m,n = tanh(b(α)m,n) = tanh

(
J
(α)
m,n

kT

)
. (8.4)

It may be noted that the prefactor in (8.2) is essentially the partition function

of the disconnected bonds on the lattice, which gives an additive non-singular

contribution to the free energy and the specific heat.

To evaluate the reduced partition function, we introduce a set of anti-

commuting Grassmann variables am,n, am,n, bm,n, bm,n and factorize the local

Boltzmann weights as follows.

1 + t
(1)
m+1,nσm,nσm+1,n =

=

∫
dam,ndam,n e

amam,n(1+am,nσm,n)(1+t
(1)
m+1,nam,nσm+1,n)

= Sp
(am,n)

{
Am,nAm+1,n

}
(8.5)
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and

1 + t
(2)
m,n+1σm,nσm,n+1 =

=

∫
dbm,ndbm,n e

bmbm,n(1+bm,nσm,n)(1+t
(1)
m,n+1bm,nσm,n+1)

= Sp
(bm,n)

{
Bm,nBm,n+1

}
, (8.6)

where Am,n, Am,n, Bm,n and Bm,n are given by

Am,n = 1 + σm,nam,n

Bm,n = 1 + σm,nbm,n

Am,n = 1 + t(1)m,nσm,nam−1,n,

Bm,n = 1 + t(2)m,nσm,nbm,n−1. (8.7)

These four Grassmann factors correspond to the four different bonds attached

to a given site m,n with spin variable σm,n. Omitting the Gaussian fermionic

averaging as in the 1D case, we write in short-hand notation,

1 + t
(1)
m+1,nσm,nσm+1,n = Am,nAm+1,n

1 + t
(2)
m,n+1σm,nσm,n+1 = Bm,nBm,n+1. (8.8)

To obtain a purely fermionic representation for Q, we have to multiply the

commuting weights (8.8) over the lattice sites m,n and sum over σm,n = ±1

at each site. In this procedure, we want to place the four factors Am,n, Bm,n,

Am,n and Bm,n next to each other at the moment of averaging.

Notice that separable Grassmann factors in a total set

· · · , Am,n, · · · , Bm′,n′ , · · · , Am′′,n′′ , · · · are in general neither commuting nor

anti-commuting with each other. However, we will use the fact that dou-

ble symbols like Am,nAm+1,n and Bm,nBm,n+1 representing the Boltzmann

weights in (8.8), effectively commute with any element of the Grassmann al-

gebra in the total Guassian Grassmann integral, because the non-commuting

linear fermionic terms involved give a contribution zero after averaging. Note

also that the structure of Am,nAm+1,n is such that we may first take the prod-

uct over m with fixed n (with subsequent rearrangements like Am,nAm+1,n →
Am,nAm,n), while the structure of Bm,nBm,n+1 is such that we first have to
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multiply the factors with fixed m as opposed to the m-ordering needed for

Am,nAm+1,n. This problem will be resolved in the following by using a mirror-

ordered arrangement of Bm,n and Bm,n (see below) with respect to the index

m, even though these are ‘vertical’ factors.

In these special ordering arrangements the following two principles will

be used, illustrated here first by tutorial examples. As a first illustration,

consider the linear arrangement

(O0O1)(O1O2)(O2O3)(O3O4) = O0(O1O1)(O2O2)(O3O3)O4,

where the symbols Oi and Oj are arbitrary Grassmann factors. This simple

rearrangement was used in the fermionization of the 1D Ising chain. As a

second illustration, consider the mirror-ordered rearrangement

(O1O1)(O2O2)(O3O3) = (O1(O2(O3O3)O2)O1)

= O1O2O3 ·O3O2O1,

where the doubled symbols (OiOi) are assumed to be totally commuting with

any Oj or Oj.

Now let n be fixed and consider a product over m of vertical weights

Bm,nBm,n+1. Since these are totally commuting with all other Grassmann

factors we can use the above mirror-ordering rule to write

L∏
m=1

(1 + t
(2)
m,n+1σm,nσm,n+1) =

L∏
m=1

Bm,nBm,n+1 =

←−
L∏

m=1

Bm,n

−→
L∏

m=1

Bm,n+1. (8.9)

This ordering of factors is already favourable for introducing horizontal weights

Am,nAm+1,n, as can be guessed from the experience with the 1D chain. In the

mean time we continue by multiplying the partial products (8.9) of vertical

weights, now over n = 1, . . . , L, we find

L∏
n=1

L∏
m=1

(1 + t
(2)
m,n+1σm,nσm,n+1) =

−→
L∏

n=1


←−
L∏

m=1

Bm,n

−→
L∏

m=1

Bm,n+1


=

−→
L∏

n=1


−→
L∏

m=1

Bm,n

←−
L∏

m=1

Bm,n

 , (8.10)
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where we have also assumed free boundary conditions for spin variables in

both directions, and, for the sake of standardization, we have modified the

boundary products of factors. Namely, on the right-hand side of the final

product, the factor
−−−→∏L

m=1Bm,L+1 does not appear since in fact Bm,L+1 = 1

because of the free boundary condition σm,L+1 = 0. Moreover, we introduced

an additional product of factors Bm,1 which are of the form

Bm,1 = 1 + t
(2)
m,1bm,0σm,1,

where we set bm,0 = 0. In this way, the condition σm,L+1 = 0 is transformed

into bm,0 = 0.

In (8.10) we already have a complete product of all vertical weights pre-

pared in a suitable, mirror-ordered, factorized form. It remains to introduce

the horizontal commuting weights Am,nAm+1,n. For evident reasons, we in-

troduce Am,nAm+1,n into the sub-product of Bm,n of (8.10) and then apply

the linear ordering of the first example above. This gives{
L∏

m=1

Am,nAm+1,n

}−→
L∏

m=1

Bm,n =

−→
L∏

m=1

(Bm,nAm,nAm+1,n)

=

−→
L∏

m=1

(Am,nBm,nAm,n), (8.11)

where, in the final line, we again make a boundary modification, removing

AL+1,n = 1 and adding A1,n = 1+ t
(1)
1,na0,nσ1,n = 1 with a0,n = 0. Substituting

(8.11) into (8.10) we obtain the mirror-ordered factorized representation for

the complete density matrix of the 2D Ising model on a rectangular lattice

(complete product of Boltzmann factors), as follows

Q(σ) =
L∏

m=1

L∏
n=1

(1 + t
(1)
m+1,nσm,nσm+1,n)(1 + t

(2)
m,n+1σm,nσm,n+1)

= Sp
(a,b)


←−
L∏

n=1

−→L∏
m=1

(Am,nBm,nAm,n)

←−
L∏

m=1

Bm,n

 , (8.12)

where we have also reinstated the previously dropped symbol Sp for the total
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Gaussian averaging given by the factorized product

Sp
(a,b)

(· · · ) =
∫ L∏

m=1

L∏
n=1

dam,ndam,ndbm,ndbm,n

× exp

[
L∑

m,n=1

(am,nam,n + bm,nbm,n)

] (
· · ·
)
, (8.13)

and a completely explicit form of (8.12) then follows by substituting the ex-

pressions (8.7 for the Grassmann factors. On the left-hand side, free bound-

ary conditions σm,L+1 = σL+1,n = 0 are assumed, and on the right-hand side

the fermionic conditions a0,n = bm,0 = 0 are assumed. With these conditions

equation (8.12) is a mixed spin-fermion representation for the density matrix,

suitable for elimination of the spin variables. This will yield a fermionic inte-

gral for the partition function Q = Sp(σ)Q(σ). The averaging over σm,n = ±1
will be done step-by-step by averaging each product of four neighbouring fac-

tors with the same indices m,n, as follows.

(σm,n)
{
Am,nBm,nAm,nBm,n

}
=

=
1

2

∑
σm,n=±1

(1 + t(1)m,nam−1,nσm,n)(1 + t(2)m,nbm,n−1σm,n)

×(1 + am,nσm,n)(1 + bm,nσm,n)

= 1 + t(1)m,nt
(2)
m,nam−1,nbm,n−1 + am,nbm,n

+(t(1)m,nam−1,n + t(2)m,nbm,n−1)(am,n + bm,n)

+t(1)m,nt
(2)
m,nam−1,nbm,n−1am,nbm,n

= exp
[
t(1)m,nt

(2)
m,nam−1,nbm,n−1 + am,nbm,n

+(t(1)m,nam−1,n + t(2)m,nbm,n−1)(am,n + bm,n)
]
. (8.14)

This identity can be checked by series expansion of the exponential (the series

terminates at the 4-fermion order) or it may be understood in a more general

framework, in view of identities like

(1 + σ0L1)(1 + σ0L2) = eL1L2(1 + σ0(L1 + L2)), (8.15)

where σ0 = ±1 and L1 and L2 are arbitrary forms linear in Grassmann

variables. For example,

(1 + am,nσm,n)(1 + bm,nσm,n) = eam,nbm,n(1 + (am,n + bm,n)σm,n).
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The complete spin-variable averaging in the representation (8.12) now has

to be performed step-by-step at the junction of the two m-ordered products

inside the n-product. Let n therefore be fixed. Then, at the junction of two

m-products for the given n, we have a product of four neighbouring factors

of the type (8.14) with m = L, and after averaging over σL,n we obtain

a totally commuting exponential factor (8.14), which can be removed from

the product. At the junction we then have again a set of four Grassmann

factors, now with m = L − 1. This procedure can thus be repeated for

m = L − 1, L − 2, . . . , 2, 1 for the given n, and then for subsequent values

of n. It is important that after each local averaging over σm,n we obtain an

even polynomial in Grassmann variables, which can be moved outside the

product, thus allowing the next set of four Grassmann factors with a given

m,n to appear side-by-side. This makes it possible to eliminate completely

the spin variables in the mixed (σ, a, b) factorized representation for Q(σ).

Remark. If this were not the case, i.e. if a non-commuting fermionic

expression would result after averaging over σm,n, then it would not be pos-

sible to perform the averaging in a sequential fashion. This is just the case

for the 2D Ising model in a magnetic field. Introducing an additional weight

1+t0σm,n, where t0 = tanh(βh) and h is a non-zero magnetic field, the result-

ing polynomial in fermions also has odd terms, which effectively terminates

the elimination of spin variables at the junction. Alternatively, one can insist

on averaging by transposing (commuting) the factors according to the alge-

braic commutation relations, but this produces a large amount of non-local

terms in the action.

Eliminating all spin variables, we obtain an expression for the partition

function as a product of fermionic factors (8.14) integrated with respect to
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the total Gaussian averaging (8.13). It reads

Q =

∫ L∏
m=1

L∏
n=1

dam,ndam,ndbm,ndbm,n exp

[
L∑

m,n=1

(am,nam,n + bm,nbm,n)

]

× exp

[ L∑
m,n=1

(
t(1)m,nt

(2)
m,nam−1,nbm,n−1 + am,nbm,n

+(t(1)m,nam−1,n + t(2)m,nbm,n−1)(am,n + bm,n)
) ]
. (8.16)

This is an exact fermionic representation for the partition function of the 2D

Ising model on a rectangular lattice with free boundary conditions σm,L+1 =

σL+1,n = 0, where it assumed that a0,n = bm,0 = 0. Note that this Gaussian

fermionic integral for Q is obtained for the most general set of coupling

parameters t
(1)
m,n and t

(2)
m,n.2 This will enable us to compute the spin-spin

and fermion-fermion correlation functions by perturbation of the partition

function: any correlator can typically be expressed as a ratio Q′/Q where Q′

is some perturbed partition function.

In the following section we discuss general features of Gaussian fermionic

integrals, and in the next section we discuss the evaluation of the analogous

integral (8.16) with periodic boundary conditions in the homogeneous case

by transformation to momentum space. This will result in Onsager’s solution

for the free energy.

2The inhomogeneous fermionic integral (8.16) was first obtained in V. N. Plechko, Dokl.

Akad. Nauk SSSR 281 (1985) 834 (English translation: Sov. Phys. Doklady 30 (1985)

271). The mirror-ordered factorization method for obtaining a fermionic representation

(and hence an exact solution) for the 2D Ising model was introduced here. The solution

for a finite torus is in: V. N. Plechko, Teor. Mat. Fiz. 64 (1985) 150 (Sov. Phys.-Theor.

Math. Phys. 64 (1985) 748). Other important references are: F. A. Berezin, Usp. Matem.

Nauk 24, No. 3 (1969), 3 [English translation in Russian Math. Surveys 24 (1961), 1].

This is the first paper where Grassmann variables were applied to the 2D Ising model,

and in a sense, the first practical use of fermionic integrals for explicit calculations. In

S. Samuel, J. Math. Phys. 21 (1980), 2806, another version of combinatorial solution of

the 2D Ising model using Grassmann variables is presented. A good discussion of diverse

related aspects and perspectives from a QFT point of view is in C. Itzykson, Nucl. Phys.

B210 (1982), 448. His method of introducing Grassmann variables is rather based on the

transfer matrix formulation. See also Vol.1 of the book by Drouffe and Itzykson, and a

short review on Grassmann variables by V. N. Plechko, hep-th 9609044.
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9 Gaussian fermionic (Grassmann) integrals

The Gaussian fermionic (Grassmann variable) integral of the first kind equals

the determinant of the coefficient matrix:∫ N∏
i=1

daidai exp

{
N∑

i,j=1

aiAijaj

}
= det(A), (9.1)

where a1, . . . , aN , a1, . . . , aN are Grassmann variables, and the matrix A =

(Aij)
N
i,j=1 is arbitrary.

The Gaussian integral of the second kind is given by the Pfaffian of the

associated skew-symmetric matrix:

∫ ←−N∏
i=1

dai exp

{
1

2

N∑
i,j=1

aiAijaj

}
= Pfaff(A), (9.2)

where A is an arbitrary skew-symmetric matrix, i.e. A + AT = 0, or Aij +

Aji = 0. In particular, Aii = 0. Another way of writing this integral is

∫ ←−N∏
i=1

dai exp

{ ∑
1≤i<j≤N

aiAijaj

}
= Pfaff(A), (9.3)

The number N of variables in these integrals must be even, otherwise the

integrals are identically zero. In general, the determinantal integral of the

first kind may be viewed as a particular case of the integral of the second

kind. Indeed, the Pfaffian of a skew-symmetric matrix equals the square root

of its determinant3

Pfaff(A) =
√

det(A), A+ AT = 0. (9.4)

3The correct form of this identity is det(A) = (Pfaff(A))2 with A + AT = 0. The

knowledge of det(A) does not yet determine the sign of the Pfaffian. The Pfaffian is in

fact defined as a certain combinatorial polynomial associated with a triangular array of

elements (Aij)1≤i<j≤N . The notion of Pfaffian and the determinant identity were known

in mathematics already in the 19th century. The integrals of the second kind can also be

used as alternative definitions of the Pfaffian. In physics, the notion of Pfaffian was first

introduced by E. Caianiello in the early 1950s in the context of the study of the general

structure of perturbation series in quantum electrodynamics (see his book from 1973).
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This identity is in fact easily proved using Grassmann integrals.

Now define the normalized averaging ⟨· · · ⟩ associated with the integral

(9.1) by

⟨· · · ⟩ =

∫ ∏N
i=1 daidai exp

{∑N
i,j=1 aiAijaj

}
(· · · )∫ ∏N

i=1 daidai exp
{∑N

i,j=1 aiAijaj

} (9.5)

where we assume that

det(A) =

∫ N∏
i=1

daidai exp

{
N∑

i,j=1

aiAijaj

}
̸= 0.

The binary fermionic correlation function can expressed in terms of the ele-

ments of the inverse matrix:

⟨aiaj⟩ =

∫ ∏N
i=1 daidai exp

{∑N
i,j=1 aiAijaj

}
(aiaj)∫ ∏N

i=1 daidai exp
{∑N

i,j=1 aiAijaj

} = (A−1)ji, (9.6)

while ⟨aiaj⟩ = ⟨aiaj⟩ = 0 as can be guessed from symmetries. Also, ⟨ai⟩ =
⟨ai′⟩ = 0 and similarly all multi-point correlations of an odd number of

fermion variables equals zero.

In a similar way, if ⟨· · · ⟩ is the normalized averaging associated with an

integral of the second kind, then

⟨aiaj⟩ =

∫ ∏N
i=1 dai exp

{
1
2

∑N
i,j=1 aiAijaj

}
(aiaj)∫ ∏N

i=1 dai exp
{

1
2

∑N
i,j=1 aiAijaj

} = (A−1)ji, (9.7)

assuming Pfaff(A) ̸= 0. The multi-point fermionic averages can be expressed

in terms of binary averages by means of Wick’s theorem.4 An example of

these rules is

⟨A1A2A3A4⟩ = ⟨A1A2⟩ ⟨A3A4⟩ − ⟨A1A3⟩ ⟨A2A4⟩
+⟨A1A4⟩ ⟨A2A3⟩, (9.8)

4ByWick’s theorem we mean combinatorial rules of disentangling the (fermionic) multi-

point correlation functions in terms of binary correlators, which are analogous to the rules

established by Wick (G. C. Wick, Phys. Rev. 80 (1950) 268) for multi-point vacuum

averages for fermions in quantum electrodynamics. Similar rules hold also for (classical or

quantum) bosons. That Wick’s theorem holds for Gaussian Grassmann-variable integral

averages might be expected, but nevertheless needs a separate proof.
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where A1, . . . , A4 are arbitrary linear forms in Grassmann variables involved

in the integration, and ⟨· · · ⟩ is a Gaussian averaging of the first or second

kind. A more general statement is

⟨A1A2 . . . AN ′⟩ = Pfaff
(
(⟨AiAj⟩)N

′

i,j=1

)
, (9.9)

where the meaning of the symbols is the same as in the example, and N ′ ≤ N

is assumed to even (otherwise the average is identically zero). In some cases

(if certain selection rules hold), the Pfaffian can be reduced to a determinant.

In practical calculations, Wick’s theorem is often more conveniently expressed

in the form of known recursive rules, lowering the order of correlations step-

by-step. The Pfaffian in (9.9) is the result of a repeated use of these rules.

In field-theoretical language, binary averages like ⟨aiaj⟩ or ⟨aiaj⟩ in (9.7)

are called Green’s functions (or propagators, in suitable context). Integrals

of the first kind are naturally associated with Dirac-like theories, where there

are two kinds of ‘charge-conjugated’ fermions ai and ai, while integrals of the

second kind correspond to ‘neutral’ Majorana-type fermions.

10 Momentum-space analysis for the 2D Ising

model (exact solution)

The fermionic integral (8.16) can be evaluated explicitly for the homogeneous

lattice t
(1)
m,n = t1, t

(2)
m,n = t2 in the thermodynamic limit by passing to momen-

tum space for fermions and changing the boundary conditions to periodic:

a0,n = aL,n and bm,0 = bm,L. This results in the exact solution (Onsager

solution) of the 2D Ising model on a rectangular lattice. The homogeneous
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partition function is given by

Q =

∫ L∏
m=1

L∏
n=1

dam,ndam,ndbm,ndbm,n exp

[
L∑

m,n=1

(am,nam,n + bm,nbm,n

]

× exp

[
L∑

m,n=1

(
t1t2am−1,nbm,n−1 + am,nbm,n

)]

× exp

[
L∑

m,n=1

(t1am−1,n + t2bm,n−1)(am,n + bm,n)

]
. (10.1)

We are interested in the free energy density in the thermodynamic limit

L → +∞, and will change the boundary conditions from a0,n = bm,0 = 0

to periodic closing conditions for fermions, i.e. a0,n = aL,n and bm,0 = bm,L.

These conditions are more suitable for Fourier transformation, and a change

of boundary conditions is an inessential modification in the limit L → +∞.

(Note that, these fermionic periodic boundary conditions do not correspond

to periodic boundary conditions for spins at finite volume!)

We now define momentum-space fermion variables ap,q, ap,q, bp,q and bp,q

by

am,n =
1

L

L−1∑
p=0

L−1∑
q=0

ap,q e
i 2π
L
(mp+nq),

bm,n =
1

L

L−1∑
p=0

L−1∑
q=0

bp,q e
i 2π
L
(mp+nq),

am,n =
1

L

L−1∑
p=0

L−1∑
q=0

ap,q e
−i 2π

L
(mp+nq),

bm,n =
1

L

L−1∑
p=0

L−1∑
q=0

bp,q e
−i 2π

L
(mp+nq) (10.2)
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Substituting (10.2) into the integral (10.1), we obtain

Q =

∫ L−1∏
p=0

L−1∏
q=0

dap,qdap,qdbp,qdbp,q exp

[
L−1∑
p,q=0

(ap,qap,q + bp,qbp,q)

]

× exp

[
L−1∑
p,q=0

(
ap,qbL−p,L−q + t1t2ap,qbL−p,L−qe

−i 2π
L
(p−q)

)]

× exp

[
L−1∑
p,q=0

(t1e
i 2π
L
pap,q + t2e

i 2π
L
qbp,q)(ap,q + bp,q)

]
. (10.3)

Here the orthogonality relations for the Fourier eigenfunctions (Fourier ex-

ponentials in (10.2) were used as well as the fact that the Jacobian of the

combined transformation (10.2) equals 1 as in the 1D case. It is clear from

(10.3) that the integral decouples into a product of simple low-dimensional

integrals, due to the block-diagonal structure of the action in (10.3). We

have to take into account that, since the variables with momenta p, q and

L − p, L − q ‘interact’, (are coupled), the true independent factor includes

the variables with momenta p, q as well as L− p, L− q for each given value

of p, q. The corresponding terms in the integral give rise to the elementary

factor

Q(2)
p,q =

∫
(db db da da)p,q(db db da da)L−p,L−q exp

{
(ap,qap,q + bp,qbp,q)

+(aL−p,L−qaL−p,L−q + bL−p,L−qbL−p,L−q)

+(ap,qbL−p,L−q + aL−p,L−qbp,q)

+(t̂1t̂
∗
2ap,qbL−p,L−q + t̂∗1t̂2aL−p,L−qbp,q)

+(t̂1ap,q + t̂2bp,q)(ap,q + bp,q)

+(t̂∗1aL−p,L−q + t̂∗2bL−p,L−q)(aL−p,L−q + bL−p,L−q)
}
, (10.4)

where we have introduced abbreviations for the parameters as follows,

t̂1 = t1e
i 2πp

L , t̂∗1 = t1e
−i 2πp

L ,

t̂2 = t2e
i 2πq

L , t̂∗2 = t1e
−i 2πq

L . (10.5)

The extraction of the elementary integral factor (10.4) from (10.3) can

also be interpreted as a symmetrization with respect to the permutation
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p, q ←→ L − p, L − q of the p, q-sum in (10.3). We symmetrize the p, q

sum in (10.3) by combining the terms with p, q and with L − p, L − q, and
reducing the sum to a half-interval with respect to either p or q in order not

to repeat the same terms twice. The complete partition function is obtained

by multiplying the factors (10.4) over the reduced set of points in such a way

that if the factor Q
(2)
p,q is included in the product then the factor Q

(2)
L−p,L−q is

not, and vice versa. Alternatively, we can multiply the factors (10.4) over

the complete set of points in the momentum lattice 0 ≤ p, q ≤ L − 1 but

obtain the square partition function Q2. This can also be seen by comparing

the fermionic measures in (10.3) and (10.4).

Remark. There may be a few self-dual modes among Q
(2)
p,q, i.e. such that

p = L−p and q = L− q. This depends on the parity of L. We would have to

calculate these special mode integrals separately, but they do not contribute

to the thermodynamic limit.

It remains to evaluate the elementary integral factor Q
(2)
p,q of (10.4) in ex-

plicit form. Note that the original integral (10.1) must rather be understood

as a Pfaffian integral (integral of the second kind) as discussed in the previous

section, Eq. (9.2), due to terms like am,nbm,n and am−1,nbm,n−1 present in the

action. The factor Q
(2)
p,q can therefore also be expected to be a Pfaffian. But

in fact it can be read and calculated as the determinant of a 4 × 4 matrix.

For this, we want to interpret the factor Q
(2)
p,q as a determinantal Gaussian

integral of the first kind (9.1), with N = 4, that is,

Q(2)
p,q =

∫ 4∏
j=1

dajdaj exp

{
4∑

i,j=1

Aijaiaj

}
. (10.6)

The factor (10.4) can indeed be written in this form with the following choice

of conjugated fields:

a1, a2, a3, a4 ←→ ap,q, bp,q, aL−p,L−q, bl−p,L−q

a1, a2, a3, a4 ←→ ap,q, bp,q, aL−p,L−q, bl−p,L−q. (10.7)

The factor Q
(2)
p,q is then given in the form (10.6) with the matrix A explicitly
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given by

A =


1− t̂1 −t̂2 0 1

−t̂1 1− t̂2 −1 0

0 t̂∗1t̂2 −1 + t̂∗1 t̂∗1
−t̂1t̂∗2 0 t̂∗2 −1 + t̂∗2

 , (10.8)

where the parameters are given in (10.5). Hence, Q
(2)
p,q = det(A), which can

be evaluated with a straightforward but lengthy calculation, yielding

Q(2)
p,q = (1 + |t̂1|2)(1 + |t̂2|2)− (t̂1 + t̂∗1)(1− |t̂2|2)− (t̂2 + t̂∗2)(1− |t̂1|2)

= (1 + t21)(1 + t22)− 2t1(1− t22) cos
2πp

L
− 2t2(1− t21) cos

2πq

L
.

(10.9)

The product of these factors over the whole momentum space yields the

squared partition function Q2. To get Q itself, we have to take the square

root, or reduce the product to either 0 ≤ p < L and 0 ≤ q ≤ L/2 or

0 ≤ p ≤ L/2 and 0 ≤ q < L. The 2D partition function thus appears in the

form

Q2 =
L−1∏
p,q=0

[
(1 + t21)(1 + t2)

2 − 2t1(1− t22) cos
2πp

L
− 2t2(1− t21) cos

2πq

L

]
.

(10.10)

Remark. The solution (10.10) is exact for the infinite lattice, where

one can neglect boundary effects. Since we have changed the original free

boundary conditions for fermions to periodic boundary conditions in order

to be able to apply Fourier transformation, the expression (10.10) is in fact

also the exact value of the (squared) integral (10.1) with periodic closing

a0,n = aL,n and bm,0 = bm,L, even at finite L.

From (10.10) we can readily obtain the exact expression for the free energy

per site in the thermodynamic limit L→ +∞:

−βf (2D)
Q = lim

L→+∞

1

L2
logQ

=
1

2

∫ 2π

0

∫ 2π

0

dp dq

(2π)2
log

[
(1 + t21)(1 + t22)− 2t1(1− t22) cos

2πp

L

−2t2(1− t21) cos
2πq

L

]
. (10.11)
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This is essentially Onsager’s expression for the free energy. Taking into ac-

count the relation between the full partition function Z and the reduced

partition function Q, the actual free energy of the 2D Ising model becomes

−βf (2D)
Z = lim

L→+∞

1

L2
logZ

= log 2 +
1

2

∫ 2π

0

∫ 2π

0

dp dq

(2π)2
log [cosh(2b1) cosh(2b2)

− sinh(2b1) cos(p)− sinh(2b2) cos(q)] , (10.12)

where one can also change the limits in the integrals from 0, 2π to −π, π
if preferred. The dominant contribution to the singular part of the free

energy, and the corresponding specific heat comes from integration around

the origin p = q = 0 in momentum space (provided we are dealing with

the ferromagnetic case b1, b2 > 0). The free energy expression (10.12) is Eq.

(108) in: L. Onsager, Phys. Rev. 65 (1944) 117. An interesting comment

on the structure of the expression (10.12) follows just after this formula Eq.

(108).

We have thus obtained the exact solution for the 2D Ising model on a

rectangular lattice via Grassmann integration. This method does not use

the transfer matrix, nor is it combinatorial in spirit. It is more like Dirac’s

method of insert unity
∑
|a⟩⟨a| = 1 in quantum mechanics: see P. A. M.

Dirac, The Principles of Quantum Mechanics (Oxford Univ. Press, 1934).

In our case, however, the situation is somewhat more complicated than that

typically occurring in quantum-mechanical problems, as we pass from com-

muting spins to non-commuting Grassmann factors. The crucial point in the

fermionization procedure is the mirror-ordering arrangement of Grassmann

factors, which enables the complete elimination of spin variables. Technically,

the most laborious part of the solution is the evaluation of the 4-th order de-

terminant det(A) where A is given by (10.8). This problem can however be

significantly simplified by eliminating part of the Grassmann variables from

the basic integral for Q before going to momentum space. This effectively

reduces the problem to the evaluation of a 2 × 2 determinant. In the next

section we comment briefly on the thermodynamic properties which can be

derived from the exact solution for fZ .
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11 The free energy and the specific heat sin-

gularity of the 2D Ising model

Let us start from the expression for the free energy

−βf (2D)
Q =

1

2

∫ π

−π

∫ π

−π

dp dq

(2π)2
log

[
(1 + t21)(1 + t22)− 2t1(1− t22) cos

2πp

L

−2t2(1− t21) cos
2πq

L

]
. (11.1)

The singular part of this expression is caused by the singularity of the loga-

rithm near zero. Rewriting the argument of the logarithm as

Q(2)
p,q = (1− t1 − t2 − t1t2)2 + 2t1(1− t22)(1− cos(p))

+2t2(1− t21)(1− cos(q))

≈ (1− t1 − t2 − t1t2)2 + 4t1(1− t22) sin2 p

2
+ 4t2(1− t21) sin2 q

2
(11.2)

we see that this can only approach zero if p, q → 0, in which case

Q(2)
p,q ≈ m2 + A1p

2 + A2q
2 (11.3)

where

m = 1− t1 − t2 − t1t2, A1 = t1(1− t22), A2 = t2(1− t21). (11.4)

We call m the mass. The condition m = 0 determines the critical point:

1− t1 − t2 − t1t2 = 0 ⇐⇒ T = Tc. (11.5)

This is equivalent to the more familiar criticality condition

sinh(2b1) sinh(2b2) = 1. (11.6)

We are interested in the situation where m is small (T close to Tc), where the

approximation (11.3) is good. The singular part of the free energy is thus

(−βf)sing =
1

2

∫ ∫
|(p,q)|≤K0

dp dq

(2π)2
log[m2 + A1p

2 + A2q
2], (11.7)
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where K0 is some small cut-off momentum. The parameters A1 and A2 can

be taken exactly at Tc for our purposes.

We now make some more technical remarks. By rescaling the momenta,

we may replacem2+A1p
2+A2q

2 bym2+
√
A1A2(p

2+q2) and then extract the

factor
√
A1A2 from the kinetic term altogether, giving rise to an insignificant

additive term to the free energy as well as a rescaling of the mass to m2 =

m2/
√
A1A2. The result is

(−βf)sing =
1

8π2

∫ ∫
|(p,q)|≤K0

dp dq log[m2 + p2 + q2], (11.8)

and evaluating the integral,

(−βf)sing =
1

8π
m2 log

const

m2 + const as m→ 0. (11.9)

(The integration is best done in polar coordinates: dp dq = 2π|p| d|p| where
p2 + q2 = |p|2.) Evaluating A1A2 at the critical point, we have

(A1A2)c = t1t2(1− t21)(1− t22) = 4t21t
2
2

1− t21
2t1

1− t22
2t2

= (2t1t2)
2
c

since (
1− t21
2t1

1− t22
2t2

)
c

=
1

sinh(2b1) sinh(2b2)
= 1.

The rescaled mass is therefore

m =
m√

2(t1t2)c
=

1− t1 − t2 − t1t2√
2(t1t2)c

. (11.10)

This mass also appears in the Majorana-Dirac continuum limit formulation

of the 2D Ising model.

The specific heat C is given by

C/k = β2∂
2(−βfZ)
∂β2

, (11.11)

where we can use the expression (11.8) to get the critical singularity of the

dimensionless specific heat C/k (k is Boltzmann’s constant). Near Tc, the
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mass m varies linearly as a function of T − Tc. Differentiating (11.9) twice

with respect to m, we have5

(C/k)sing(m) =
1

4π
log

const

m2 =
1

2π
| log |m||+ const. (11.12)

The specific heat of the 2D Ising model is therefore logarithmically divergent

as T → Tc (since |m| ∼ |T − Tc|). This was first established by Onsager in

1944. Note that near Tc (or βc = 1/kTc) the mass is

m ≈ (m′′)c(β − βc), where (m′′)c =
∂2m

∂β2

∣∣
T=Tc

.

Therefore

(C/k)sing = Ac

∣∣∣∣log |T − Tc|Tc

∣∣∣∣→ +∞ as T → Tc, (11.13)

where

Ac = βc
(m′′)c
2π

(isotropic case). (11.14)

Ac is called the specific heat critical amplitude. In general, Ac depends on the

anisotropy of the interaction (J1/J2), but in the isotropic case it is a definite

dimensionless number. In the isotropic case, t = tanh(b) with b = J/kTc,

and the criticality condition m = 1 − 2t − t2 = 0 yields tc =
√
2 − 1. The

mass, to linear order in b− bc = bc(Tc − T )/Tc becomes

m =
1− 2t− t2√

2tc
=
−2(1 + tc)√

2tc
(t− tc) = 2

tc − t
tc

=
2

tc
(1− t2c)(bc − b) = 4(bc − b) = 4bc

T − Tc
Tc

, (11.15)

tending to +∞ as T → Tc. Hence (m′)2c = 16 and the amplitude for the

specific heat becomes Ac = 8
π
b2c . From tc = tanh(bc) = e−2bc which follows

from sinh(2bc) = 1, we have bc = 1
2
log(1 +

√
2). Thus, for the isotropic

lattice,

(C/k)sing = Ac

∣∣∣∣log ∣∣∣∣T − TcTc

∣∣∣∣ ∣∣∣∣+Bc, where

Ac =
8

π
b2c ≈ 0.495, bc =

J

kTc
=

1

2
log(1 +

√
2) ≈ 0.441.(11.16)

5We can choose m as a measure of |T − Tc| and obtain (C/k)sing(m) in (11.12) by

differentiating twice w.r.t. m. In (11.13) this expression is recalculated to give the true

specific heat singularity of (11.11) in the isotropic case.
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and

1 + t
(2)
m,n+1σm,nσm,n+1 =

=

∫
dbm,ndbm,n e

bmbm,n(1+bm,nσm,n)(1+t
(1)
m,n+1bm,nσm,n+1)

= Sp
(bm,n)

{
Bm,nBm,n+1

}
, (8.6)

where Am,n, Am,n, Bm,n and Bm,n are given by

Am,n = 1 + σm,nam,n

Bm,n = 1 + σm,nbm,n

Am,n = 1 + t(1)m,nσm,nam−1,n,

Bm,n = 1 + t(2)m,nσm,nbm,n−1. (8.7)

These four Grassmann factors correspond to the four different bonds attached

to a given site m,n with spin variable σm,n. Omitting the Gaussian fermionic

averaging as in the 1D case, we write in short-hand notation,

1 + t
(1)
m+1,nσm,nσm+1,n = Am,nAm+1,n

1 + t
(2)
m,n+1σm,nσm,n+1 = Bm,nBm,n+1. (8.8)

To obtain a purely fermionic representation for Q, we have to multiply the

commuting weights (8.8) over the lattice sites m,n and sum over σm,n = ±1

at each site. In this procedure, we want to place the four factors Am,n, Bm,n,

Am,n and Bm,n next to each other at the moment of averaging.

Notice that separable Grassmann factors in a total set

· · · , Am,n, · · · , Bm′,n′ , · · · , Am′′,n′′ , · · · are in general neither commuting nor

anti-commuting with each other. However, we will use the fact that dou-

ble symbols like Am,nAm+1,n and Bm,nBm,n+1 representing the Boltzmann

weights in (8.8), effectively commute with any element of the Grassmann al-

gebra in the total Guassian Grassmann integral, because the non-commuting

linear fermionic terms involved give a contribution zero after averaging. Note

also that the structure of Am,nAm+1,n is such that we may first take the prod-

uct over m with fixed n (with subsequent rearrangements like Am,nAm+1,n →
Am,nAm,n), while the structure of Bm,nBm,n+1 is such that we first have to

20

The value for Ac is exact. The next term Bc can only be determined from

the complete exact expression for (−βfZ) (see Huang, Statistical Mechanics

(Wiley, 1987)).
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Figure 1. The specific heat of the 2D Ising model.

The expression (11.16) only gives the exact asymptotics for the specific

heat as T → Tc (or the mass m → 0). In fact, the specific heat can be derived

exactly by differentiating the free energy twice. The result can be written in

terms of elliptic integrals of the first and second kind: see Huang (1987) or

the original paper by Onsager (1944).6

Another important quantity which is known exactly for the 2D Ising

model is the spontaneous magnetization at zero field. It is given by the

surprisingly simple expression

M =

[
1− 1

sinh2(2b1) sinh
2(2b2)

]1/8
. (11.17)

It implies that near Tc, M ∼ B |τ |1/8, where τ = (Tc − T )/Tc. Despite the

relatively simple form of this expression its derivation in any of the known

6L. Onsager, Phys. Rev. 65 (1944) 117. and K. Huang, Statistical Mechanics (Wiley,

New York 1963; second ed. 1987). In the book by Huang, the 2D Ising model is treated

in some detail within the transfer matrix (algebraic) approach, close to Onsager’s original

method but in spinor-algebra formulation (Kaufman, 1949).

37



approaches is considerably more complicated than the evaluation of the free

energy. Typically, M2 is obtained as the limiting value of the spin-spin

correlation function at infinity: M2 = ⟨σ(0)σ(R)⟩
��
R→+∞. The correlator

⟨σ(0)σ(R)⟩ is not a simple quantity, however, in the 2D Ising model. It is

expressed as a large-size determinant of order R × R for which there is no

known explicit formula. The limiting value of this determinant as R → +∞
is then obtained using the Szegö-Kac theorem, resulting in the above expres-

sion.7 (The Szegö-Kac theorem is in fact used to compute logM2.) The

formula for M2 can also be obtained using Grassmann variables by first ob-

taining ⟨σ(0)σ(R)⟩ = ⟨σm,nσm+R,n⟩ on the lattice as a large-size Toeplitz

determinant, with known matrix elements and then calculating M2 using

the Szegö-Kac theorem.8 The situation with the spontaneous magnetization

in the 2D Ising model is not completely understood anyhow, and the con-

trast between the simple result (11.17) and its very complicated derivation

remains unresolved. Other known results about the 2D Ising model include

the asymptotics of the correlation functions at large distances, and asymp-

totics of the magnetic susceptibility above and below Tc.

7See E. W. Montroll, R. B. Potts & J. C Ward, J. Math. Phys. 4 (1963), 308, for

a discussion of the spin-spin correlation and the calculation of M2 via the Szegö-Kac

theorem. See also B. M. McCoy & T. T Wu, The two-dimensional Ising model. (Harvard

Univ. Press, 1973).
8In the Grassmann variable approach the correlator ⟨σm,nσm+R,n⟩ appears as a deter-

minant of fermionic Green’s functions:

⟨σm,nσm+R,n⟩ = ⟨
R∏

r=1

Am,nAm+r,n⟩ = det
(
⟨Am′,nAm′′,n⟩

)
.
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12 Other representations and the correlation

function with four variables am,n, am,n, bm,n, bm,n

The basic fermionic representation for the partition function Q was obtained

in Eq. (8.16) in the form

Q =

∫ L∏
m,n=1

dam,ndam,ndbm,ndbm,n exp

[
L∑

m,n=1

(am,nam,n + bm,nbm,n)

]

× exp

[
L∑

m,n=1

(
t(1)m,nt

(2)
m,nam−1,nbm,n−1 + am,nbm,n

)]

× exp

[
L∑

m,n=1

(t(1)m,nam−1,n + t(2)m,nbm,n−1)(am,n + bm,n)

]
. (12.1)

This is a representation with four variables per site. Various modifications

of this representation are also possible. For example, one can integrate out

the variables am,n and bm,n in a simple way. The resulting integral with two

variables per site will be discussed later. But here we derive yet another

representation with four variables per site: see (12.3). First note that for

the typical Boltzmann weight in Q we can write 1 + tσσ′ = σσ′(t + σσ′).

Moreover, the circle product of quantities σm,nσm+1,n over m or σm,nσm,n+1

over n equals 1. Therefore, in terms of spin variables, the partition function

Q = Sp
(σ)

{
L∏

m,n=1

(1 + t
(1)
m+1,nσm,nσm+1,n)(1 + t

(2)
m,n+1σm,nσm,n+1)

}

can also be written in the form

Q = Sp
(σ)

{
L∏

m,n=1

(t
(1)
m+1,n + σm,nσm+1,n)(t

(2)
m,n+1 + σm,nσm,n+1)

}
, (12.2)

provided that cyclic closing conditions for the spins are introduced. By ap-

plying the same method that led to the integral (12.1) we then obtain the
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following fermionic integral representation

Q =

∫ L∏
m,n=1

dam,ndam,ndbm,ndbm,n exp

[
L∑

m,n=1

(
am,nbm,n + am,nbm,n

)]

× exp

[
L∑

m,n=1

(am,n + bm,n)(am,n + bm,n)

]

× exp

[
L∑

m,n=1

(
t
(1)
m+1,nam,nam+1,n + t

(2)
m,n+1bm,nbm,n+1

)]
. (12.3)

The starting point for deriving (12.3) is the following factorization of local

weights,

t
(1)
m+1,n + σm,nσm+1,n =

=

∫
dam+1,ndam,ne

t
(1)
m+1,nam,nam+1,n(1 + σm,nam,n)(1 + σm+1,nam+1,n)

(12.4)

and

t
(2)
m,n+1 + σm,nσm,n+1 =

=

∫
dbm,n+1dbm,ne

t
(2)
m,n+1bm,nbm,n+1(1 + σm,nbm,n)(1 + σm,n+1bm,n+1),

(12.5)

where at each site (or at adjacent bonds) we introduce variables am,n, am+1,n,

bm,n and bm,n+1. Then repeating the mirror-ordering procedure for the den-

sity matrix as in Section 8, we obtain the analogue of (8.12) with the aver-

aging on the junction of four factors yielding

Sp
(σm,n)

Am,nBm,nAm,nBm,n =

=
1

2

∑
σm,n=±1

(1 + am,nσm,n)

×(1 + bm,nσm,n)(1 + am,nσm,n)(1 + bm,nσm,n)

= exp
{
am,nbm,n + am,nbm,n + (am,n + bm,n)(am,n + bm,n)

}
. (12.6)

The partition function integral for Q is then formed by the product of such

factors plus the Gaussian terms already introduced by the factorization (12.4)
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and (12.5). This results in (12.3). In this representation we ignored the

boundary effects. This problem may be considered in the standard way

as for the integral (12.1). Notice that in (12.4) and (12.5) we introduced

the variables am,n, am+1,n, bm,n and bm,n+1, so that in the ‘measure’, the

variables a1,n and bm,1 are actually absent, whereas aL+1,n and bm,L+1 do

occur. We can rename the latter a1,n and bm,1 respectively, and reorder

the differentials in order that the basic ‘measure’ is of the standard form∏L
m,n=1(dam,ndam,ndbm,ndbm,n). [This might introduce an extra minus sign

in front of Q.] Alternatively, the boundary terms can be evaluated properly

in the action. In writing (12.3), we assumed the boundary effects to be

inessential as L → +∞. For finite L, these boundary effects have to be

taken into account more precisely. As compared to (12.1), the representation

(12.3) has the advantage that the interaction parameters t
(1)
m,n and t

(2)
m,n are in

a way localized in the action. On the other hand, the combinatorial analogy

with spin-loops in the 2D Ising model are probably less evident in (12.3).9

Returning to the original observation leading to the modified representa-

tion (12.3), notice that the Boltzmann weights can also be written in the form

1+tσσ′ = t(1
t
+σσ′), from which it immediately follows that the spin-variable

partition function can be rewritten, by analogy with (12.3), as follows,

Q =

{
L∏

m,n=1

t
(1)
m+1,nt

(2)
m,n+1

}∫ L∏
m,n=1

dam,ndam,ndbm,ndbm,n

× exp

[
L∑

m,n=1

(
am,nbm,n + am,nbm,n + (am,n + bm,n)(am,n + bm,n)

)]

× exp

[
L∑

m,n=1

(
1

t
(1)
m+1,n

am,nam+1,n +
1

t
(2)
m,n+1

bm,nbm,n+1

)]
. (12.7)

The integral (12.7), though being in close formal analogy with (12.3), is in

fact more directly related to (12.1), and can be obtained from (12.1) (this is

easier to do in the homogeneous case) by transformations like

9The representation (12.3), which here follows by a non-combinatorial factorization

argument, in its final form, can prehaps be considered closest to the representations ob-

tained by combinatorial analysis by S. Samuel, J. Math. Phys. 21 (1980), 2806, in the

homogeneous case.
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am,n, bm,n → am+1,n, bm,n+1 and am,n, bm,n → 1
t1
am,n,

1
t2
bm,n. By a suitable

Fourier transformation, in the homogeneous case, one can pass to momen-

tum space in the integrals (12.3) and (12.7) and evaluate explicitly the free

energy −βfQ, which is of course the same as before. However, as a final note

about (12.3) and (12.7), one may in some cases, gain an effective shift in the

momenta p and q, so the free energy can appear in the form

−βf (2D)
Q =

1

2

∫ 2π

0

∫ 2π

0

dp dq

(2π)2
log
[
(1 + t21)(1 + t22)

+2t1(1− t22) cos
2πp

L
+ 2t2(1− t21) cos

2πq

L

]
, (12.8)

which is to be compared with (10.11). Both expressions are of course equiv-

alent and the (ferromagnetic) critical point is again given by the condition

1 − t1 − t2 − t1t2 = 0, though the critical region in momentum space is

now around the point (π, π) rather than (0, 0). (The point (0, 0) in (12.8) is

associated with the anti-ferromagnetic transition.)

In general, the four special ferromagnetic - antiferromagnetic modes in

momentum space with (p, q) = (0, 0), (0, π), (π, 0) and (π, π) play an impor-

tant role in the structure of the solution for finite L and the interpretation of

the results for the rectangular, as well as for triangular and hexagonal lattice

2D Ising models.10 For the rectangular lattice, these modes are

Q00 = 1− t1 − t2 − t1t2 = 2α00,

Q0π = 1− t1 + t2 + t1t2 = 2α0π,

Qπ0 = 1 + t1 − t2 + t1t2 = 2απ0,

Qππ = 1 + t1 + t2 − t1t2 = 2αππ. (12.9)

In essence, Q00 is the Majorana mass in the ferromagnetic regime, while the

others are masses in the anti-ferromagnetic and mixed regimes.

Another interesting feature is that the spontaneous magnetization for the

10See: V. N. Plechko, Physica A152 (1988), 51. The discussion includes rectangular,

triangular and hexagonal lattices. A variant of the method based on two Grassmann

variables per site is applied in all three cases. The notation 2α00 etc. in (12.9) is the same

as in this paper.
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rectangular lattice can be written in the form

M =

(
−α00α0παπ0αππ

t21t
2
2

)1/8

(12.10)

in the disordered phase where T < Tc, where the numerator in (12.10) is

positive.

13 The 2D Ising model on a finite torus

The partition function of the 2D Ising model on a finite lattice wrapped

around a torus (periodic boundary conditions for spins in both directions) is

Q = Sp
(σ)

{
L∏

m,n=1

(1 + t
(1)
m+1,nσm,nσm+1,n)(1 + t

(2)
m,n+1σm,nσm,n+1)

}
, (13.1)

with σL+1,n = σ1,n and σm,L+1 = σm,1. The Grassmann-variable represen-

tation for this expression is a superposition of four similar integrals with

different periodic-aperiodic conditions for fermions,11

Q =
1

2

[
G
∣∣
−− +G

∣∣
−+

+G
∣∣
+− −G

∣∣
++

]
, (13.2)

where G is the same integral as in (8.16) or (12.1), i.e.

G =

∫ L∏
m,n=1

dam,ndam,ndbm,ndbm,n exp

[
L∑

m,n=1

(am,nam,n + bm,nbm,n)

]

× exp

[
L∑

m,n=1

(
t(1)m,nt

(2)
m,nam−1,nbm,n−1 + am,nbm,n

)]

× exp

[
L∑

m,n=1

(t(1)m,nam−1,n + t(2)m,nbm,n−1)(am,n + bm,n)

]
, (13.3)

11See: V. N. Plechko, Teor. Mat. Fiz. 64 (1985) 150 [English transl. Sov.Phys.-Theor.

Math. Phys. 64 (1985) 748]. The solution of the 2D Ising model on a torus in terms of

Grassmann integrals. Also preprint JINR (1984).

43



and where the boundary conditions are as follows:

(−−) = (a0,n = −aL,n; bm,0 = −bm,L)

(−+) = (a0,n = −aL,n; bm,0 = +bm,L)

(+−) = (a0,n = +aL,n; bm,0 = −bm,L)

(++) = (a0,n = +aL,n; bm,0 = +bm,L). (13.4)

In the homogeneous case, each of these integrals can be calculated by means

of Fourier transformation with the corresponding integer or half-integer mo-

menta:

(−−) ←→ (p+
1

2
, q +

1

2
)

(−+) ←→ (p+
1

2
, q)

(+−) ←→ (p , q +
1

2
)

(++) ←→ (p , q) (13.5)

and one also has to take into account properly the sign of each of the integrals,

which is given precisely by the exceptional modes (12.9), wherever they are

present in a given integral. For instance, for the ferromagnetic case,

Q =
1

2

[
|G−−|+ |G−+|+ |G+−| − sign

(
T − Tc
Tc

)
|G++|

]
, (13.6)

where the integral |G++| is given by

|G++| =
L−1∏
p,q=0

[
(1 + t21)(1 + t22)

−2t1(1− t22) cos
2πp

L
− 2t2(1− t21) cos

2πq

L

]1/2
,

(13.7)

and where the factor sign (T−Tc

Tc
) in the last term is given by the special mode

2α00 = 1−t1−t2−t1t2 with p = q = 0: sign (T−Tc

Tc
) = sign (α00). (Notice that

|1−t1−t2−t1t2| is a factor in |G++| at p = q = 0, as it should be.) The other

three integrals are similar to (13.7) but modified according to the boundary
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conditions (13.5), and that they are always positive in the ferromagnetic case

(where b1, b2 > 0 or t1, t2 > 0, with b1,2 = J1,2/kT ).

In the above, we have written the answers only for the lattice of size

L× L. The answers for rectangular-shaped lattices on a torus L1 × L2 with

L1 ̸= L2 are the same except for the evident change of limits in sums and

products from (L,L) to (L1, L2), and changing
(
2πp
L
, 2πq

L

)
→
(

2πp
L1
, 2πq

L2

)
. The

exceptional modes may then appear (introducing possibly a sign ± in front of

|Gαβ|) in any of the integrals in (13.6) depending on the parity of (L1, L2) and

the ferro- or anti-ferromagnetic regime. However, in the purely ferromagnetic

regime, the only mode that changes sign at Tc is 2α00 = 1− t1− t2− t1t2, and
this mode is always located in G++. So, independent of the parity of L1, L2,

in this regime, the answer is always given by (13.6) and (13.7). Another

simplification occurs if L1 and L2 are both even integers. Then all four

special modes are present in G++ and Q is given by (13.6) with sign
(

T−Tc

Tc

)
to be replaced by sign (α00α0παπ0αππ). This is true in any of the ferro or

anti-ferromagnetic regimes. In general, the critical modes can occur in other

integrals, and one has to consider separate cases individually.

14 Fermionic correlation functions in the 2D

Ising model

The 2D Ising model, having been formulated as Gaussian (free-fermion)

Grassmann integrals on a lattice, the fermionic correlation functions (Green’s

functions) like ⟨am,nam′,n′⟩, ⟨am,nbm′,n′⟩, etc. can be evaluated at least in prin-

ciple by standard tools. The multi-fermion correlation functions can then be

decomposed in terms of binary fermionic correlations by means of Wick’s

theorem (see (9.9)). It then follows that any perturbations of the 2D Ising

model by variation of the parameters t
(1)
m,n and t

(2)
mm,n in the neighbourhood of

the homogeneous case t
(1)
m,n = t1 and t

(2)
m,n can be calculated in terms of binary

correlations. The method of calculating binary fermionic correlations is to

calculate first their Fourier images like ⟨apqapq⟩, ⟨apqb−p,−q⟩, etc. (since the

theory is block-diagonal in momentum space). The real-space correlations
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then follow in an obvious way.12 For example, we have

⟨am,nam′,n′⟩ =
∫ 2π

0

∫ 2π

0

dp dq

(2π)2
⟨ap,qap,q⟩ eip(m−m′)+iq(n−n′), (14.1)

where a direct calculation gives

⟨ap,qap,q⟩ =
(1− 2t2 cos(q) + t22)− t1(1− t22)e−ip

∆p,q

, (14.2)

where

∆p,q = (1 + t21)(1 + t22)− 2t1(1− t22) cos(p)− 2t2(1− t21) cos(q)
= A0 − A1 cos(p)− A2 cos(q), (14.3)

and where, of course, we assumed that the thermodynamic limit has been

performed. The correlator ⟨ap,qap,q⟩ = Q′
p,q/Qp,q is the ratio of two integrals

Q′ and Q, where Qp,q = ∆p,q is known, as it is the value of the determinant

det(A) given by (10.8), i.e. (10.9). Q′
p,q is a reduced integral of this kind, in

which the ap,qap,q-prefactor annihilates some terms in the exponential.

A systematic, more formal way to evaluate all momentum-space correla-

tions is to compute the inverse matrix elements (or minors) of the matrix A

of (10.8). Adopting the notation of (10.7), i.e.

a1, a2, a3, a4 ←→ ap,q, bp,q, aL−p,L−q, bL−p,L−q

a1, a2, a3, a4 ←→ ap,q, bp,q, aL−p,L−q, bL−p,L−q,

we have a Gaussian integral with 4 pairs of variables with action S =∑4
i,j=1 aiAijaj so that∫ 4∏

j=1

dajdaj e
S = det(A) = Q2

p,q,

and the fermionic correlations are given in terms of A−1 as follows,

⟨aiaj⟩ =
(−1)i+j(det(A))ij

det(A)
= (A−1)ji, (14.4)

12The correlation ⟨am,nam′,n′⟩ follows by Fourier substitution (10.2), noting that

⟨ap,qap′,q′⟩ = δp,p′δq,q′⟨ap,qap,q⟩, because of the block-diagonal structure of the action

in momentum space. Similarly, ⟨ap,qb−p′,−q′⟩ = δp,p′δq,q′⟨ap,qb−p,−q⟩, etc.
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where det(A))ij is the minor of the element (ij) in A. With this notation,

⟨ap,qap,q⟩ becomes

⟨a1a1⟩ =
(−1)1+1(det(A))11

det(A)
.

Similarly, ⟨a1a2⟩ = ⟨ap,qbp,q⟩, ⟨a1a3⟩ = ⟨ap,qa−p,−q⟩, ⟨a1, a4⟩ = ⟨ap,qb−p,−q⟩,
etc. In fact, the knowledge of ⟨a1a1⟩ = ⟨ap,qap,q⟩ is essentially enough for

evaluating the spontaneous magnetization of the 2D Ising model. How-

ever, this needs some additional formal work since the relation of spins to

fermions in the 2D Ising model is non-local. Spin-spin correlation functions

like ⟨σm,nσm′,n′⟩ for remote spins are in fact related to a string of fermionic

correlations along some (arbitrary) path on the lattice connecting the points

m,n and m′, n′. The converse statement is also true: a fermionic correlator

like ⟨am,nam′,n′⟩ in terms of spins is a non-local perturbation along a lattice

path. The square of the spontaneous magnetization can be obtained as the

limiting value of the spin-spin correlator ⟨σ(0)σ(R)⟩ = ⟨σm,nσm+R,n⟩. This

will be discussed in the next two sections.

15 The two-spin correlation function

The two-spin correlation function ⟨σm,nσm′,n′⟩ is of interest in the theory of

critical phenomena as well as because its limiting value as R → +∞, where

R2 = (m − m′)2 + (n − n′)2, equals the square of the magnetization.13 In

the following we will consider the correlator of two spins in the same row

⟨σm,nσm+R,n⟩ and obtain the limiting value using the Szegö-Kac theorem

in the next section. The connection between spins and fermions is not lo-

cal in general. However, a product of neighbouring spins like σm,nσm+1,n

can be related to am,nam,n since this product appears in the weights 1 +

13The magnetization in the 2D Ising model was first computed by C. N. Yang in Phys.

Rev 85 (1952) 808–816. For the evaluation of M2 = limR→+∞⟨σm,nσm+R,n⟩, see also E.

W. Montroll, R. B. Potts & J. C. Ward, J. Math. Phys. 4 (1963) 308–322. In this paper

they use dimer-like combinatorics to express ⟨σm,nσm+R,n⟩ as a ratio of two determinants.

The result is a Toeplitz determinant of large size. They were the first to then apply the

Szegö-Kac theorem to this Toeplitz determinant to evaluate M2. Here we obtain this

determinant using the fermionic representation.
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t
(1)
m+1,nσm,nσm+1,n and one can therefore obtain the expectation of this prod-

uct by differentiating the partition function with respect to t
(1)
m,n. Using the

fact that σ2
m,n = 1, we can then write

⟨σm,nσm+R,n⟩ = ⟨
R∏

k=1

σm+k−1,nσm+k,n⟩. (15.1)

Since σm,nσm+1,n is related to fermion binaries by means of differentiation

with respect to t
(1)
m+1,n, it follows that ⟨σm,nσm+R,n⟩ is given by a string of

fermion perturbations along a lattice path. Actually, differentiation with re-

spect to a string of parameters t(1) in the action of (8.16) introduces too many

fermionic terms, and in practice it turns out to be easier to relate σm,nσm+1,n

directly to am,nam,n. Indeed, at the first stages of the fermionization we have

applied the factorization

1 + t
(1)
m+1,nσm,nσm+1,n =

=

∫
dam,ndam,n e

am,nam,n(1 + am,nσm,n)(1 + t
(1)
m+1,nam,nσm+1,n).

(15.2)

Now, introducing the factor am,nam,n into the integral on the right-hand side,

it annihilates all fermion terms, and the result will be 1. Thus we have

1 =

∫
dam,ndam,n e

am,nam,nam,nam,n(1 + am,nσm,n)(1 + t
(1)
m+1,nam,nσm+1,n).

(15.3)

The presence of the factor am,nam,n by itself is not an obstacle to performing

fermionization in the usual way, and the result will be an integral like (8.16)

but with a prefactor am,nam,n. This integral corresponds to a perturbed

partition function Q′ in which the weight 1 + t
(1)
m+1,nσm,nσm+1,n is eliminated

(replaced by 1). We can recover this weight in the density matrix by means

of the identity
1

1 + tσσ′ (1 + tσσ′) = 1.

Therefore, we have a correspondence between am,nam,n and σm,nσm+1,n or

rather

⟨am,nam,n⟩ = ⟨
1

1 + t
(1)
m+1,nσm,nσm+1,n

⟩, (15.4)
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where the average is taken over fermions on the left-hand side and over spins

on the right-hand side. Using the identity

1

1 + t
(1)
m+1,nσm,nσm+1,n

=
1− t(1)m+1,nσm,nσm+1,n

1− (t
(1)
m+1,n)

2
(15.5)

we can write, in the homogeneous case,

⟨σm,nσm+1,n⟩ =
1

t1
⟨1− (1− t21)am,nam,n⟩

=
1

t1
⟨exp

[
−(1− t21)am,nam,n

]
⟩ (15.6)

and therefore

⟨σm,nσm+R,n⟩ = ⟨
m+R−1∏
m′=m

σm′,nσm′+1,n⟩

=
1

tR1
⟨
m+R−1∏
m′=m

[
1− (1− t21)am′,nam′,n

]
⟩

= det

(
1

t1

(
δm′,m′′ − (1− t21)⟨am′,nam′′,n⟩

))
. (15.7)

That the average of the exponential perturbation string is the determi-

nant of an R×R matrix with elements 1
t1
(δm′,m′′ − (1− t21)⟨am′,nam′′,n⟩) can

also be shown directly in terms of general Gaussian integrals, while a more

understandable way is to apply Wick’s theorem, rewriting the exponential as

a product of linear fermionic forms. For each factor, we introduce fermionic

Grassmann variables cm,n, cm,n and write, with λm,n = 1− (t
(1)
m+1,n)

2,

1 + λm,nam,nam,n =

∫
dcm,ndcm,n e

cm,ncm,n

×(cm,n + am,n)(cm,n + λm,nam,n)

= ⟨Lm,nLm,n⟩ (15.8)

with

Lm,n = cm,n + am,n, Lm,n = cm,n + λm,nam,n. (15.9)

Writing

Am,n = Lm,n = cm,n + am,n and

Am,n = t−1
1 Lm,n = t−1

1

(
cm,n + (1− t21) am,n

)
, (15.10)
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it follows that

⟨
R−1∏
k=0

t−1
1

(
1− (1− t21)am+k,nam+k,n

)
⟩(a) =

= ⟨
R−1∏
k=0

(Am+k,nAm+k,n)⟩(a,c)

= det
[
Akl ≡ ⟨Am+k,nAm+l,n⟩

]
= det

[
1

t1

(
⟨cm+k,ncm+l,n⟩+ (1− t21)⟨am+k,nam+l,n⟩

)]
= det

[
1

t1

(
δk,l + (1− t21)⟨am+k,nam+l,n⟩

)]
(15.11)

as was stated already in (15.7). In this derivation we have also made use of

the facts that ⟨am,nam′,n⟩ = 0 and ⟨am,nam′′,n⟩ = 0. This causes the result

to be a determinant rather than a Pfaffian, as it would be in more general

situations. The identities ⟨am,nam′,n⟩ = 0 and ⟨am,nam′′,n⟩ = 0 follow by di-

rect calculation, but this property probably only holds for the corresponding

Green’s functions in the case of variables on the same row: n′ = n. For

example, since

⟨ap,qa−p,−q⟩ = ⟨ap,qaL−p,L−q⟩ =
2it21 sin(q)

∆p,q

,

we have that

⟨am,nam′,n⟩ =
∫ 2π

0

∫ 2π

0

dp dq

(2π)2
2it21 sin(q)

A0 − A1 cos(p)− A2 cos(q)
= 0

by symmetry.

We now have to properly determine the matrix elements ⟨Am,nAm′,n⟩. By
equation (14.2) we have

⟨Am,nAm,n⟩ =
t1
δ m,m′

− 1− t21
t1
⟨am,nam′,n⟩

=
1

t1

∫ 2π

0

∫ 2π

0

dp dq

(2π)2
eip(m−m′)[1− (1− t21)⟨ap,qap,q⟩],

(15.12)
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and substituting for ⟨ap,qap,q⟩ from (14.2),

⟨Ap,qAp,q⟩ =
1

t1
− 1− t21

t1
⟨ap,qap,q⟩

=
1

t1
− (1− t21)[(1 + t22 − 2t2 cos(q))− t1(1− t22)e−ip]

t1[∆p,q = A0 − A1 cos(p)− A2 cos(q)]
,

(15.13)

where

A0 = (1 + t21)(1 + t22),

A1 = 2t1(1− t22),
A2 = 2t2(1− t21). (15.14)

Further algebraic manipulation leads to

⟨Ap,qAp,q⟩ =
−(1− t21)[(1 + t22)− t1(1− t22)e−ip] +D

t1∆p,q

, (15.15)

where D = A0 − A1 cos(p). Note that in the numerator, the momentum

variable q has disappeared14, so that we can integrate over the variable q

without problems, leading to∫ 2π

0

dq

2π

1

∆p,q

=

∫ 2π

0

1

A0 − A1 cos(p)− A2 cos(q)

=
1√

(A0 − A1 cos(p))2 − A2
2

=
1√

(A0 − A1 cos(p)− A2)(A0 − A1 cos(p) + A2)

=
1√

∆p,0∆p,π

=
1

|αp,0αp,π|
, (15.16)

14The variable q is still present in

⟨ap,qap,q⟩ =
|1− t2e

−iq|2 − t1(1− t22)e
−ip

A0 −A1 cos(p)−A2 cos(q)
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where15

|αp,0| = |1− t1eip − t2 − t1t2eip|,
|αp,π| = |1− t1eip + t2 + t1t2e

ip|. (15.17)

Remarkably, the same expressions αp,0 and αp,π appear also as factors in the

numerator of (15.15). Indeed,

1

t1

(
−(1− t21)[(1 + t22)− t1(1− t22)e−ip] +D

)
=

= 2t1(1 + t22)− t21(1− t22)e−ip − (1− t22)eip

= −eip(1− t1e−ip − t2 − t1t2e−ip)(1− t1e−ip + t2 + t1t2e
−ip)

= −eip(1− t2 − t1(1 + t2)e
−ip)(1 + t2 − t1(1− t2)e−ip)

= −eip(1 + t2)
2

(
1− t2
1 + t2

− t1e−ip

)(
1− t1

1− t2
1 + t2

e−ip

)
= −eip(1 + t2)

2
(
t∗2 − t1e−ip

) (
1− t1t∗2e−ip

)
= −(1 + t2)

2(t∗2e
ip − t1)(1− t1t∗2e−ip)

= t1(1 + t2)
2

(
1− t∗2

t1
eip
)
(1− t1t∗2e−ip), (15.18)

where t∗2 is the Kramers-Wannier conjugation of t2 given by

t∗1 =
1− t1
1 + t1

= e−2b1 and t∗2 =
1− t2
1 + t2

= e−2b2 . (15.19)

(Note that this transformation is self-dual.)

Using (15.16), we now arrive at the following representation∫ 2π

0

dq

2π
⟨Ap,qAp,q⟩ =

(1− t1t∗2e−ip)(1− t∗2
t1
eip)∣∣∣(1− t1t∗2e−ip)(1− t∗2

t1
eip)
∣∣∣ . (15.20)

15Note that another representation for ∆p,q is

∆p,q = |1− t1e
ip − t2e

iq − t1t2e
i(p+q)|2 − 4t1t2 sin(p) sin(q)

and in particular,

∆p,0 = |1− t1e
ip − t2 − t1t2e

ip|2

and

∆p,π = |1− t1e
ip + t2 + t1t2e

ip|2.
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Hence, the spin-spin correlation function ⟨σm,nσm+R,n⟩ is given by the deter-

minant of a matrix with elements ⟨Am′,nAm′′,n⟩ (m,m′ = 1 . . . , R), which are

essentially fermionic Green’s functions related to ⟨am′,nam′′,n⟩:

⟨Am,nAm′,n⟩ =

∫ 2π

0

dp

2π
eip(m−m′)

(1− t1t∗2e−ip)(1− t∗2
t1
eip)∣∣∣(1− t1t∗2e−ip)(1− t∗2

t1
eip)
∣∣∣

=

∫ 2π

0

dp

2π
eip(m−m′)

[
(1− t1t∗2e−ip)(1− t∗2

t1
eip)

(1− t1t∗2eip)(1−
t∗2
t1
e−ip)

]1/2

=

∫ 2π

0

dp

2π
e−ip(m−m′)

[
(1− t1t∗2eip)(1−

t∗2
t1
e−ip)

(1− t1t∗2e−ip)(1− t∗2
t1
eip)

]1/2
.(15.21)

The spin-spin correlator is thus

⟨σm,nσm+R,n⟩ = det
[(
Am′,nAm′′,n

)R
m′,m′′=1

]
. (15.22)

(Note that C(m−m′) = ⟨Am,nAm′,n⟩ only depends on the differencem−m′ as

a result of the translation-invariance of the model. It is therefore a Toeplitz

determinant. The expression (15.21) is in agreement with the results in the

literature: see Montroll, Potts and Ward (1963) and the book by McCoy and

Wu (1973). In the next section we compute the squareM2 of the spontaneous

magnetization as a limit of the correlator as R→ +∞.

16 The spontaneous magnetization of the 2D

Ising model

The result (11.17) for the spontaneous magnetization of the 2D Ising model

was apparently known to Onsager, who reported it at a few conferences

and seminars (for the symmetric case t1 = t2), though without proof. The

first published derivation is due to C. N. Yang (1952)16. It is based on the

algebraic transfer matrix approach and is mathematically very complicated as

Yang himself in fact remarks in a comment at the end of his paper. Another

16Phys. Rev 85 (1952) 808–816.
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(combinatorial) proof was given by Montroll, Potts and Ward17 in which

the problem is reduced to the evaluation of the limiting value of a Toeplitz

determinant by means of the Szegö-Kac theorem. Here we evaluate the

limiting value in the special case of horizontally separated spins: M2 =

limR→+∞⟨σm,nσm+R,n⟩.

We consider the matrix elements in the form of an integral as in the last

line of (15.21). The magnetization is then given by

M2 = lim
R→+∞

⟨σm,nσm+R,n⟩

= lim
R→+∞

det
[
⟨Am′,nAm′′,n⟩

]
= lim

R→+∞
det[C(m′ −m′′)], (16.1)

where C is the Toeplitz matrix with elements C(r) (r = m′ −m′′) given by

C(r) =

∫ 2π

0

dp

2π
e−ipr

[
(1− λ1eip)(1− λ2e−ip)

(1− λ1e−ip)(1− λ2eip)

]1/2
=

∫ 2π

0

dp

2π
e−iprC(p) (16.2)

where λ1 = t1t
∗
2 and λ2 = t∗2/t1.

According to the Szegö-Kac theorem, we first have to evaluate the Fourier

transform of logC(p), i.e.

g(n) =

∫ 2π

0

dp

2π
e−ipn logC(p). (16.3)

Then the Szegö-Kac theorem states18 that (with C given by (16.2))

M2 = lim
R→+∞

det[C(m′ −m′′)] = exp

{
∞∑
n=1

n g(n) g(−n)

}
. (16.4)

Now, logC(p) is given by

logC(p) = log

[
(1− λ1eip)(1− λ2e−ip)

(1− λ1e−ip)(1− λ2eip)

]1/2
, (16.5)

17E. W. Montroll, R. B. Potts & J. C. Ward, J. Math. Phys. 4 (1963) 308–322.
18As regards the application to the 2D Ising model, we we must assume that T ≤ Tc,

i.e. λ2 ≤ 1
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where

λ1 = t1t
∗
2 = t1

1− t2
1 + t2

, λ2 =
t∗2
t1

=
1− t2

t1(1 + t2)
, (16.6)

and the elements g(n) can be computed by series expansion of the logarithms

and integrating term by term. For example, using

log
1

1− λ1eip
=

∞∑
n′=1

(λ1e
ip)n

′

n′ ,

we have

−
∫ 2π

0

dp

2π
log(1− λ1eip) =

∫ 2π

0

dp

2π

∞∑
n′=1

λn
′

1

n′ e
in′p =

λn1
n
,

and in general,

g(n) =

∫ 2π

0

dp

2π
e−ipn logC(p) =

λn1 − λn2
2n

, (16.7)

g(−n) = −g(n) (16.8)

and

b g(n) g(−n) = − n

4n2
(λn1 − λn2 )2 =

−λ2n1 − λ2n2 + 2λn1λ
n
2

4n
. (16.9)

Hence,

logM2 =
∞∑
n=1

−λ2n1 − λ2n2 + 2λn1λ
n
2

4n

=
1

4
log(1− λ21) +

1

4
log(1− λ22)−

1

2
log(1− λ1λ2)

=
1

4
log

[
(1− λ21)(1− λ22)

(1− λ1λ2)2

]
. (16.10)

The spontaneous magnetization of the 2D Ising model is therefore

M =

[
(1− λ21)(1− λ22)

(1− λ1λ2)2

]1/8
. (16.11)

Expressing this in terms of the variables t1 and t2, we have

M =

[
1− (1− t21)2(1− t22)2

(4t1t2)2

]1/8
, (16.12)
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or, equivalently, in terms of b1 = βJ1 and b2 = βJ2,

M =

[
1− 1

sinh2(2b1) sinh
2(2b2)

]1/8
. (16.13)

This holds in the ordered phase where 1− t1− t2− t1t2 < 0 (with t1, t2 > 0).

In the disordered phase, M = 0.

Other correlation functions can also be expressed in terms of determinants

of large size (of order R, where R is the lattice distance between spins).

Their structure is in general more complicated than that of the correlator

considered here in detail. However, significant simplifications occur for the

diagonal correlator ⟨σm,nσm+R,n+R⟩ at T = Tc. For this correlator one finds

that at Tc, it behaves like ∼ 1/R4 (Onsager and Kaufman, 1949).

17 Concluding comments

In the above discussion, the 2-dimensional Ising model has been analysed as a

theory of free fermions on a lattice. Anti-commuting (Grassmann) variables

were used. For the most general, inhomogeneous set of coupling parameters

t
(1)
m,n and t

(2)
m,n on the lattice, the partition function Q was presented as a

fermionic Gaussian integral (8.16) in the case of free boundary conditions.19

A Gaussian fermionic representation also exists for the 2D Ising model on a

finite periodic lattice (lattice wrapped around a torus). In this case the spin-

variable partition function is expressed as a superposition of four fermionic

Gaussian integrals with different periodic-aperiodic boundary conditions for

the fermions. The fermionization procedure is based on a mirror-ordered

factorization of the local Boltzmann weights as discussed in §13. In sub-

sequent sections we discussed the momentum-space analysis and the exact

19A fermionic representation of the 2D Ising model with two Grassmann variables per

site rather than the four variables am,n, bm,n, am,n and bm,n in equation (8.16) first

appeared in the context of a spin-polynomial interpretation of the 2D Ising model on

triangular-like lattices in V. N. Plechko, Physica A152 (1988), 51, and more recently was

discussed in Phys. Lett A239 (1998), 289 for the inhomogeneous rectangular lattice in

the context of a disordered Ising model (site and bond dilution). In the latter reference,

the Majorana-Dirac interpretation is also presented.
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solution for the homogeneous 2D Ising model on the standard rectangular

lattice, the evaluation of fermionic Green’s functions and the determinan-

tal representation for binary spin correlation functions ⟨σm,nσm+R,n⟩. The

squared spontaneous magnetization M2 was then obtained by means of the

Szegö-Kac theorem. Other subjects of interest would be a Gaussian fermionic

integral representation for Q with two Grassmann variables per site, which

admits in particular the field-theoretical Majorana-Dirac interpretation of

the 2D Ising model, already at the level of a lattice, and the consideration of

the continuum limit of the 2D Ising model near the critical point (T ∼ Tc)

in the region of low momenta.
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