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1 Euclidean Quantum Fields: the theory of

very smooth partition functions

Questions by Don Zagier, 40 years ago

- What is quantum �eld theory?

- What is a �eld?

- Why are physicists interested in
automorphic forms, in particular
in modular forms?

Mathematicians need short, memorable answers.

Here is an attempt for the euclidean case, presented at a leisurely pace.
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Any (specimen of) euclidean quantum �eld theory is determined by
its partition function.

First, �x a dimension d.

Let R be the set of compact d-dimensional manifolds M with
Riemannian metric g (up to isomorphisms).

Partition functions are maps

Z : R → R+.

One example is
Z = det(∆g + m2)−1/2,

where ∆g is the Laplacian for the metric g and m is a real number. This
de�nes the quantum �eld theory of a free scalar of mass m.
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An example for d = 2 is the (2,5) minimal model. When M has the
topology of a torus, hermitean metric g = exp(χ)dzdz̄ and modulus τ as
a complex curve one has

Z(M) = exp

(
− 11

120π

∫
χK

)
(|f (τ )|2 + |g(τ )|2),

where f, g are the Rogers-Ramanujan modular functions and

K = −∂∂̄χ

is the Gauss curvature. Modular forms come into play, since

det′(∆g) = V exp

(
− 1

24π

∫
χK

)
Im(τ )|η(τ )|4.
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Partition functions must satisfy three axioms: They must

• be multiplicative on disjoint unions,

• be smooth,

• have �nite bound for derivatives.

To get some feeling for the impact of the axioms, we immediately
consider the case d = 1, though in this case there are no proper �elds,
just 'cosmological constants'.

The axioms need some polishing. In particular one has to decide
which metrics are allowed (continuous and piecewise smooth may work).
Moreover, smoothness will be required with respect to both a�ne and
(newly de�ned) boundary derivatives. The third axiom refers to the
latter. Consideration of a�ne derivatives may turn out to be unnecessary.

To de�ne smoothness for functions on in�nite dimensional spaces we
need the following, fairly standard notation. For any set S let [S] be the
real vector space with basis [s] for any s ∈ S. To de�ne derivatives we
will need sets such that any element s can be scaled by positive real ε,
but note that [εs] is another basis element and not equal to ε[s].
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1.1 The �rst axiom

Z(M1 tM2) = Z(M1)Z(M2).

For d = 1 this axiom implies that Z is determined by its values on
circles of circumference L.

1.2 The second axiom

For d = 1 the second axiom states that Z is C∞. There are two ways
to generalize smoothness to higher d. One is based on the fact that the
space of metrics on a compact manifold is locally a�ne, the second one
deals with changes in small bounded neighbourhoods of M . The second
way is more general, because it allows changes of the topology. To be on
the safe side, we require that Z is smooth with respect to both.
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Derivatives of any order will be de�ned at once.
For functions f on R the standard second derivative can be written in
terms of f (x− ε)− 2f (x) + f (x+ ε), higher derivatives in terms of �nite
sums

∑
i aif (x + εvi) with suitable ai, vi. This can be generalized to

in�nite dimensions.

Let A be an a�ne space and F a set of functions with domain A and
range R. Let V be the set of vectors of A. The elements of [V ] have the
form A =

∑
i ai[vi] (�nite sum, real ai). We de�ne F to be smooth if for

any non-zero A there is a real number k so that for any f ∈ F the limit

D(A)f (x) = lim
ε→0

ε−k
∑
i

aif (x + εvi)

exists and is generically non-zero. The number k is the order ofD(A). An
a�ne derivative of F is a �nite sum of such derivatives, not necessarily
of the same order, modulo sums that annihilate all elements of F .

When A has �nite dimension and F is the set of all C∞ functions the
vector space of a�ne derivatives is just the ordinary one.
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Part A of the second axiom is that the set given by Z and its a�ne
derivatives with respect to the metric is smooth.

For part B we consider derivatives for partition functions based on
local changes of elements of R. A natural operation is cutting and glue-
ing. Let B be the set of manifolds with Riemannian metric that have the
unit sphere in Rd as boundary. Such manifolds can be scaled by ε ∈ R+

so that the boundary becomes the sphere with radius ε. Given a frame
(vielbein) E at a point x ∈ M one can cut out a small sphere of radius
ε in M and glue in the rescaled b. The result will be called bεM(x). Let
B ∈ [B] so that B =

∑
i ai[bi]. Local derivatives D(B) of order k ∈ R

are de�ned as before, as limits

D(B, x,E)Z = lim
ε→0

ε−k
∑
i

aiZ(biεM(x)).
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More generally, for any n ∈ N let Bn be the set of Riemannian man-
ifolds b with n numbered boundary components, each provided with a
metric isomorphism to the unit sphere in Rd. After scaling by su�-
ciently small ε, b can be glued in at n distinct points x1, . . . , xn of M .
Linear combinations yield multilocal derivatives D(B, x1, . . . , xr). We
call n the boundary number of the derivative.

Part B of the second axiom requires that Z is smooth with respect to
derivatives of arbitrary boundary number.

For d = 1, a�ne derivatives and B1 derivatives have the same e�ect.
In contrast, let b ∈ B2 be given by a circle with two intervals removed.
Such a b can be glued inM1tM2 so that it connects the two components.
It yields a derivative D([b]) of order 0 so that D([b])Z(L1, L2) = Z(L1 +
L2).
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1.3 The third axiom

Disjoint union yields a natural map Bm × Bn → Bm+n, which lifts to
a bilinear map [Bm] × [Bn] → [Bm+n]. Thus certain derivatives can be
written in terms of derivatives of lesser boundary number. The third
axiom states that there is a natural number N (the bound of Z) so that
any derivative of Z of boundary number greater than N can be written
bilinearly in terms of derivatives of lesser boundary number.

For d = 1 and N = 1 this means in particular that Z(L1 + L2) can
be written as a bilinear expression in the derivatives of Z at L1 and at
L2. This means that Z satis�es a linear ODE with constant coe�cients.
Moreover it is easy to see that for d = 1 any partition function of �nite
bound has bound 1. Thus the three axioms �t well together. One obtains
a strati�ed set of possible partition functions, with a �nite number of
parameters for each stratum, as expected for higher d.
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2 The �elds

The B-type derivatives of the partition function are �elds of the theory.
Their order yields the scaling dimensions of the �elds. For B ∈ [Bn],
D(B)Z is the corresponding n-point function.

By construction the �elds form a vector space that is �ltered by the
scaling dimension. One expects that the corresponding graded quotients
are �nite dimensional. This excludes the free scalar �eld theory for d = 2,
which has in�nitely many �elds of scaling dimension 0.

Free scalar �elds for d > 2 have another important feature. The
standard �eld φ that satis�es the equation (∆g +m2)φ = 0 changes sign
under an involution symmetry of the theory. Only even �elds can be
constructed as derivatives of Z. The B2 �eld φ(x1)φ(x2) is even, but can
only be factorized by introducing odd supplementary �elds.
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There are more examples of this phenomenon. Partition functions
that satisfy the axioms form a semigroup under multiplication. Generi-
cally all �elds of the factors should be recovarable as �elds of the product,
but this is not always the case. Consider the n-th power of a partition
function. All �elds of Zn are invariant under permutations of the fac-
tors. In this case it is natural to recover the �elds of the factors in terms
of supplementary �elds in non-trivial representations of the permutation
group. If Z has bound 1, this recovers bound 1 for the product theory.

In the analogous case of algebraic quantum �eld theory on Minkowski
space it has been argued that this situation is generic. In tne Euclidean
case one also would like to prove that one can construct a bound 1 theory
with a symmetry group G for which all �elds invariant under G are
derivatives of Z.
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2.1 The energy-momentum tensor

Einstein descibed the energy-momentum tensor as a�ne derivative with
respect to the metric. Let v = (hµν). Then

D([v]− [0])Z = −1

2

∫
hµν(x)T µν(x)ZdV,

with the volume measure dV given by the metric g. In terms of boundary
derivatives, let b1, b2 be unit balls with metrics g1, g2 and corresponding
volume elements dV 1, dV 2. Then D([b1]− [b2]) is a derivative of order d
and an interchange of limits yields

D([b1]− [b2])(x) = −1

2
T ij(x)

∫
(g1
ijdV

1 − g2
ijdV

2),

where the indices i, j refer to the frame.

Derivatives of boundary number 1 using unit balls only are de�ned to
yield the �elds in the vacuum sector of Z.
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2.2 Unitary and non-unitary theoories

For a�ne derivatives continuity yieldsD([v]) = 1 for any v. Similarly, for
a unit ball b with any metric one expects D([b]) = 1. Unitary theories
are presumably characterized by the property that D([b]) = 1 for any
b. In other theories, D([b]) may have negative scaling dimension. The
simplest case is the (2,5) minimal model. When b is any torus with a disk
removed, D([b]) has order -2/5. All such D([b]) are proportional. The
rest of the talk concerns this �eld.
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3 Conformal �eld theory for d = 2

The (2,5) minimal model is a conformal theory with d = 2. Such theories
are characterized by the fourth axiom

gµνT
µνdV = − c

12π
K,

where K is the Gauss curvature of the metric and the number c is called
the central charge. From now on we only will consider theories of this
kind.

Consider two metrics related by a Weyl transformation,

g2 = exp(χ)g1.

Weyl transformations are generated by gµνT
µν, so their e�ect on Z can

be calculated. One obtains

log(Z(g2)/Z(g1)) =
c

48π

∫
χ(K1 + K2),

where K1, K2 are the Gauss curvature forms of g1, g2.
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When the genus of M is zero, then any two metrics are related by
an isomorphism and a Weyl transformation, so Z is �xed up to a factor,
which can be chosen according to convenience.

By de�nition, the elements of R are de�ned up to isomorphism. Thus
a change of the metric by reparametrization must not change Z. For in-
�nitesimal reparametrizations this is expressed by the continuity equation

DµT
µν = 0,

whereDµ is the covariant derivative onM with respect to the Levi-Civita
connection for g.

Let g = eρdzdz̄. It is convenient to express T µν in terms of the
complexi�ed tangent space with basis ∂z, ∂z̄. Then Tz

	
z is given by the

curvature and Tz̄z̄ is the complex conjugate of Tzz. One calculates that

T (z) = 2πTzz +
c

12
(∂2
z log ρ− 1

2
(∂zρ)2)

is invariant under Weyl transformations. Moreover the continuity equa-
tion just states that T (z) is holomorphic.
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Whereas Tzz transforms homogeneously under complex coordinate
change, T (z) transforms as a projective connection. Invariance under
di�eomorphisms implies that T (z)T (w)Z has a Laurent expansion of the
Virasoro form

T (z)T (w) =
c

2
(z−w)−4+(z−w)−2(T (z)+T (w))+N(TT )(w)+O(z−w).

In general, arbitrary holomorphic �elds Φ,Ψ of Z have similar Laurent
expansions, with a constant term denoted by N(ΦΨ). The operation
N de�nes an algebra on the vector space of holomorphic �elds that is
neither commutative nor associative. When the Laurent expansion is
written in terms of the Fourier components

∮
znΦ(z)ds one obtains a

W -algebra (Zamolodchikov), graded by the rotations of z. The vertex
operator algebra community calls the grade 0 part Zhu's algebra, which
is a bit preposterous. On the other hand Zhu appears to be the �rst
person who conceptionalized the fact that the algebra given byN becomes
commutative and associative when one mods ou the ideal given by the
image of ∂z, in other words the derivative �elds. The resulting algebra
will be called Zhu's algebra without further speci�cation.
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When Zhu's algebra is �nite dimensional as a vector space (in partic-
ular nil), Z can be calculated explicitly in terms of ordinary di�erential
equations with regular singularities. The simplest non-trivial case is the
two-dimensional algebra spanned by 1 and the class T of T . The relation
T 2 = 0 translates into N(TT ) = α∂2T . Invariance of the Virasoro Lau-
rent expansion under coordinate change yields c = −22/5 and α = 3/10.

For simplicity let M be hyperelliptic and let the metric be given by
the �at metric of the complex plane, except for circles around ∞ and
the rami�cation points zi. Inside of those circles we also choose the ap-
propriate �at metric. Di�erentiation of Z with respect to zi is given by∮
dzT (z)Z, where the integral is along a small circle around the corre-

sponding rami�cation point. Di�erentiation of T (z)Z with respect to the
zi is given by

∮
dwT (w)T (z)Z and so on. When Zhu's algebra is �nite,

the n-point functiions for large n can be expressed linearly in terms of
n-point functiions with smaller n, so that one obtains linear holomorphic
ODEs for Z. Thus Z factorizes locally into a �nite sum of products of
holomorphic and anti-holomorphic functions of the zi.
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The bound on n arises as follows. The Virasoro Laurent expansion
speci�es all singularities of the n-point functions, so the latter are given by
sections of holomorphic line bundles. Due to the relationN(TT ) = α∂2T
their restriction to the partial diagonals is given by (n−1)-point functions.
For su�ciently large n this restriction determines the n-point function
entirely. For genus g ofM this happens when n is the Fibonacci number
F2g. Thus one obtains second order ODEs for g = 1 and �fth order ODEs
for g = 2 with respect to any of the rami�cation points.

The solutions form a �nite dimensional vector space and the mon-
odromy group for the zi equation is independent of the location of the
other rami�cation points. For g = 1 one �nds a classical hypergeometric
ODE with algebraic solutions, contained in the famous list of Schwarz. In
terms of the complex modulus the solutions are the Rogers-Ramanujan
functions, as stated in the beginning of this talk.
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At the locus of nodal curves the Frobenius indices are 0 and -2/5.
When a zero cycle in holonomy is contracted and M becomes a union
M1 tM2 with one marked point in each component, the -2/5 compo-
nent yields the one-point function of the corresponding D([b1]) on M2 or
conversely. When another cycle is contracted, this yields a manifold M
of genus g − 1 with two marked points. The -2/5 component yields the
2-point function of the corresponding D([bi]) i = 1, 2 on M . They also
satisfy ODEs obtained by reduction of the original system. When one
starts at g = 2 the �fth order equation reduces to an order 3 equation
of the �eld D([b]) of scaling dimension -2/5. The ODEs determine the
n-point functions of the �elds up to proportionality constants. Finiteness
of the bound implies that there are no multiplicities, so the correspond-
ing partition function is unique, up to normallization by a cosmological
constant.
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4 Conclusion

For conformal �eld theories in 2 dimensions, the axioms given above
are easy to work with and immediately yield interesting mathematical
results. They are much easier to remember than the vertex operator al-
gebra axioms of Borcherds. When Zhu's algebra is not �nite dimensional
one needs more powerful methods, but they certainly are within reach.
The next cases to be considered are massive perturbations of conformal
theories for d = 2 and conformally invariant theories for d = 3. There
are many known results and it may be interesting to integrate them in
the frame described above.

Apart from people mentioned already the ideas sketched above go
back to work of G. Segal, D. Friedan, A. Raina and to a stimulating note
by S. Hawking, who suggested that there are no fundamental uncharged
scalar �elds, since they might tunnel through small black holes anywhere,
resulting just in a cosmological constant.
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