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Matrix Quantum Mechanics

* |tis clear at this point that space is emergent.

* Quantum mechanical theories of large N matrices can
produce semiclassical, gravitating spacetime.

 We don't really understand how the matrix degrees of
freedom re-arrange themselves into spacetime.

e |n Matrix Quantum Mechanics there is no field-
theoretic locality built in. All of space must emerge.

e \Want to solve Matrix Quantum Mechanics theories.



Matrix Quantum Mechanics

* Simplest theory is of a single matrix. Solved by
mapping eigenvalues to free fermions. Key part of
two dimensional string theory in early 90's.

* Richest theories are BFSS ['96] and BMN ['02].
Many matrices. Maximally supersymmetric.

* Many theories in between. Can vary number of
matrices and degree of supersymmetry.

e Theories with more than one matrix not solved.



Matrix Quantum Mechanics

* Our work is inspired by a beautiful paper of
[Henry Lin arXiv:2002.08387]

 That paper solved large N matrix integrals using
positivity constraints. We will use the same philosophy
for large N matrix quantum mechanics.

o Strateqgy: Relate expectation values of simple operators
to those of long ones. Positivity constraints on the long
operators strongly constrain the simple ones.

* Obtain new results for two matrix guantum mechanics.



Plan

 Warm-up: The anharmonic oscillator revisited.
* One matrix guantum mechanics.

* [wo matrix quantum mechanics.



The anharmonic oscillator
H=p*+a”+ga"

Step 1. Recurrence relation between expectation values

(|H,0]) =0 with O=z%  O=z'p
[Commute operators, eliminate p2in terms of energy EJ
AE () +t(t — 1)t —2) {23 —4(t + D)zt —4g(t + 2)(z'?) =0

Obtain all expectation values <x2> from E and <x2>.



The anharmonic oscillator

Step

Impl

MUuUSt

2. Impose positivity Constraint' [cf. Lin "20]

(0T0) >0, VO = Zc@ ,

ies that the (K+1)x(K+1) matrix M;; = (z*+7)

be positive semidefinite.

Fix K. Scan over £ and <x2>. Compute the eigenvalues of
M and thereby see if values are excluded by positivity...



The anharmonic oscillator
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One matrix theory

Step 1. Relations between expectation values:

(H,trXP]) =0 = 2(trP?) =2(trX?) + trX4

=0 and ([H,tr X?])

(trXP) =—(trPX) = ﬁ



One matrix theory

Step 2. Take a selection of operators and write down a matrix
that must be non-negative.

eq. I X2 X P
I | {rl) {(tr X?) 0 0
X% | (tr X?2)  {(tr X% 0 0

X 0 0 (tr X?) (tr XP)

P 0 0 (tr PX) (tr P?)

We already established relationships between some of these
quantities. Positivity therefore implies constraints such as:

(tr X 2) ((trX2> + QNg<trX4>> >



One matrix theory

Take all strings of X's and P’'s of length < L. There are 2- such
strings. These give a matrix with 22 entries.

Write down all relationships of the types discussed between
these strings. Furthermore consider large N cyclicity:

(tr X P°) = (tr P°X) + 2iN (tr P*) + i(tr P)(tr P)
Continuum of energies allowed by the positivity constraints.

Lowest allowed such energy will approximate ground state.
Do gradient descent of the energy within space allowed by
operator and positivity constraints.
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Two matrix theory

The strategy is the same as for the one-matrix case, except
that now at length L the matrix has 4L entries.

We imposed rotational invariance to reduce the number of
independent variables:




Two matrix theory

The two matrix theory is not (known to be) soluble.

Check numerical results using a Born-Oppenheimer
wavefunction. One matrix is diagonalized and the other
placed In its “instantaneous” ground state:

N

V(X,Y) = (i) H (Qwij/ﬂ)1/4e_%wijlyij|2
ij=1

wi; = m® + g°(z; — x;)

2

Gives rigorous upper and lower bounds on the ground state
energy, using single-matrix techniques.



Ey/N?

(trX? + trY?) /N?
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Final comments

Positivity constraints give a powertul approach to matrix
guantum mechanics wavefunctions.

New results for two matrix quantum mechanics.

More matrices and termions doable, especially with rotational
invariance. Plan: characterize the BFSS ground state!?

Nonzero temperatures are possible. Connection to existing
Monte-Carlo results? Black hole microstates?

More fine-grained information about holographic quantum
states?



