Composite dark matter and the role of lattice field theory

David Schaich (U. Liverpool)

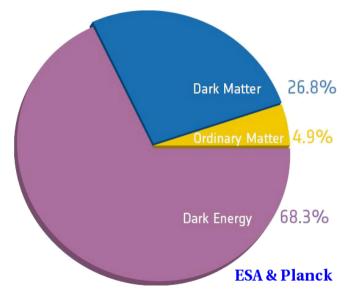
Theoretical Physics Seminar

Dublin Institute for Advanced Studies

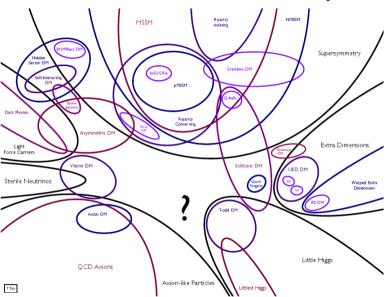
17 November 2021

arXiv:2006.16429 and more to come with the Lattice Strong Dynamics Collaboration

Dark matter — we observe it...



...we don't yet know what it is



Overview and plan

Composite dark matter is an attractive possibility

Lattice field theory is needed to test models against experimental results

Why: Composite dark matter

How: Lattice field theory

What: Recent, ongoing & planned work

Direct detection experiments

Gravitational-wave observatories

Collider experiments, galactic sub-structure, ...

Overview and plan

Composite dark matter is an attractive possibility

Lattice field theory is needed to test models against experimental results

Why: Composite dark matter

How: Lattice field theory

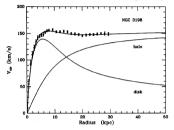
What: Recent, ongoing & planned work

These slides: davidschaich.net/talks/2111Dublin.pdf

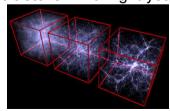
Interaction encouraged — complete coverage unnecessary

Gravitational evidence for dark matter

Rotation $\sim 10^3$ – 10^6 light-years

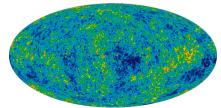


 $\textbf{Structure} \sim 10^9 \text{ light-years}$



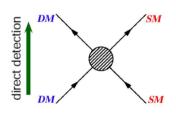
Lensing $\sim 10^6$ light-years

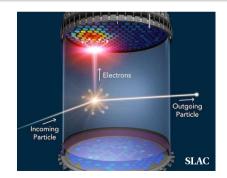
Cosmic background $\sim 10^{10}$ ly



Three search strategies

Direct scattering in underground detectors

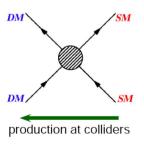




Three search strategies

Direct scattering in underground detectors

Collider production at high energies

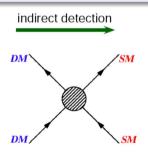


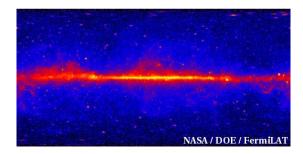
Three search strategies

Direct scattering in underground detectors

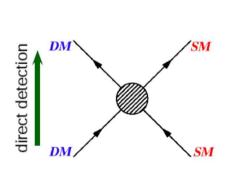
Collider production at high energies

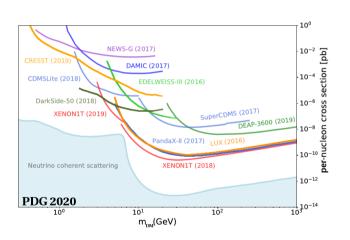
Indirect annihilation into cosmic rays





No clear signals so far

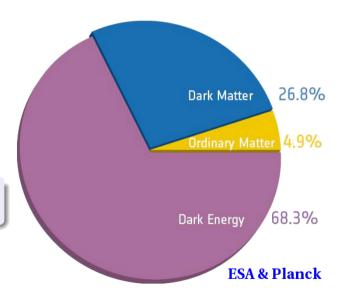




Why we expect non-gravitational interactions

$$\frac{\Omega_{\text{dark}}}{\Omega_{\text{ordinary}}} \approx 5 \quad \dots \text{not } 10^5 \text{ or } 10^{-5}$$

Explained by non-gravitational interactions in the early universe



Composite dark matter



Early universe

Deconfined charged fermions \longrightarrow explain relic density

Present day

Confined neutral 'dark baryons' --> no experimental detections

Composite dark matter

Present day

Confined neutral 'dark baryons' --- no experimental detections

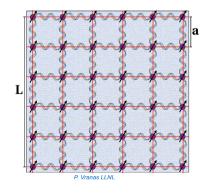
Interact via charged constituents

---- need **lattice calculations** for quantitative predictions

Lattice field theory in a nutshell

Formally
$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]}$$

Regularize by formulating theory in finite, discrete, euclidean space-time Gauge invariant, non-perturbative, 4-dimensional



Spacing between lattice sites ("a")

 \longrightarrow UV cutoff scale 1/a

Remove cutoff: $a \to 0$ $(L/a \to \infty)$

Hypercubic \longrightarrow Poincaré symmetries \checkmark

Numerical lattice field theory calculations

High-performance computing \longrightarrow evaluate up to \sim billion-dimensional integrals (Dirac operator as $\sim 10^9 \times 10^9$ matrix)

Results to be shown, and work in progress, require state-of-the-art resources

Many thanks to national labs, USQCD-DOE, and computing centres!

Lassen @Livermore

USQCD @Fermilab

Barkla @Liverpool

Numerical lattice field theory calculations

USQCD @Fermilab

Barkla @Liverpool

Importance sampling Monte Carlo

Algorithms sample field configurations with probability $\frac{1}{Z}e^{-S[\Phi]}$

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]} \longrightarrow \ \frac{1}{N} \sum_{i=1}^N \mathcal{O}(\Phi_i) \ \text{with stat. uncertainty} \ \propto \frac{1}{\sqrt{N}}$$

Numerical lattice field theory calculations

Importance sampling Monte Carlo

Algorithms sample field configurations with probability $\frac{1}{Z}e^{-S[\Phi]}$

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]} \longrightarrow \ \frac{1}{N} \sum_{i=1}^N \mathcal{O}(\Phi_i) \ \text{with stat. uncertainty} \ \propto \frac{1}{\sqrt{N}}$$

Lattice calculation requires specific theory \longleftrightarrow lattice action $S[\Phi]$

Our strategy aims to gain generic insights into composite dark matter

Lattice Strong Dynamics Collaboration

Argonne Xiao-Yong Jin, James Osborn

Bern Andy Gasbarro

Boston Venkitesh Ayyar, Rich Brower, Evan Owen, Claudio Rebbi

Colorado Anna Hasenfratz, Ethan Neil, Curtis Peterson

UC Davis Joseph Kiskis

Livermore Dean Howarth, Pavlos Vranas

Liverpool Chris Culver, DS

Michigan Enrico Rinaldi

Nvidia Evan Weinberg

Oregon Graham Kribs

Siegen Oliver Witzel

Trieste James Ingoldby

Yale Thomas Appelquist, Kimmy Cushman, George Fleming

Exploring the range of possible phenomena in strongly coupled field theories



Direct detection of composite dark matter

Charged constituents \longrightarrow form factors \longrightarrow experimental signals

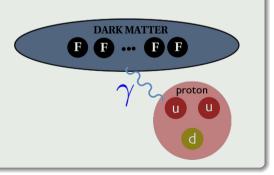
Photon exchange from electromagnetic form factors

Effective interactions suppressed by powers of dark matter mass

Magnetic moment $\sim \frac{1}{M_{DM}}$

Charge radius $\sim \frac{1}{M_{DM}^2}$

Polarizability $\sim \frac{1}{M_{DM}^3}$



Direct detection of composite dark matter

Charged constituents \longrightarrow form factors \longrightarrow experimental signals



Direct detection of composite dark matter

Charged constituents \longrightarrow form factors \longrightarrow experimental signals

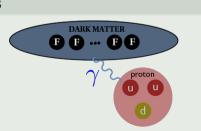
Simple first case: Dark matter as a "more-neutral neutron"

SU(3) with weak singlets $\;\longrightarrow\;$ no Higgs-exchange interaction

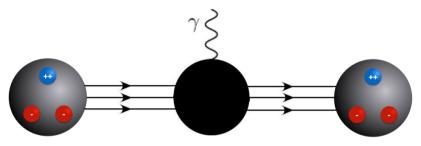
Investigate leading photon-exchange contributions

Magnetic moment $\sim \frac{1}{M_{DM}}$

Charge radius $\sim \frac{1}{M_{DM}^2}$



Magnetic moment and charge radius



$$\left\langle \mathit{DM}(p')\left|\Gamma_{\mu}(q^2)\right|\mathit{DM}(p)
ight
angle \ \sim \ \emph{\emph{F}}_{1}(q^2)\ \gamma_{\mu} + \emph{\emph{F}}_{2}(q^2)\ rac{i\sigma_{\mu
u}q^{
u}}{2M_{DM}}, \qquad q=p'-p$$

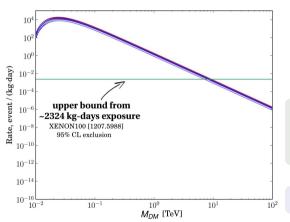
Electric charge: $F_1(0) = 0$ Magnetic moment: $F_2(0)$

Charge radius:
$$\langle r_E^2 \rangle = -6 \left. \frac{dF_1(q^2)}{dq^2} \right|_{q^2=0} + \frac{3F_2(0)}{2M_{DM}^2}$$

Resulting direct detection constraints

Lattice calculations of magnetic moment and charge radius

 \longrightarrow event rate vs. dark matter mass



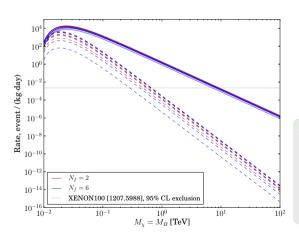
XENON100 \longrightarrow $M_B \gtrsim$ 10 TeV

XENON1T $\longrightarrow M_B \gtrsim 30 \text{ TeV } [1805.12562]$

Little effect from varying model params

Magnetic moment dominates event rate

Dashed charge radius contributions suppressed $\sim 1/M_{DM}^2$



Can change symmetries to forbid both magnetic moment and charge radius

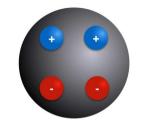
More interesting second case: 'Stealth Dark Matter'

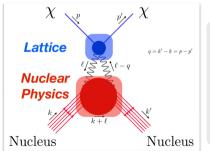
SU(4) Stealth Dark Matter

Fermions now include weak doublet & singlets

Scalar 'baryon' \longrightarrow no magnetic moment \checkmark

+/- charge symmetry \longrightarrow no charge radius \checkmark





(Tiny) Coupling to Higgs needed for nucleosynthesis

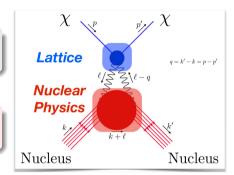
Polarizability $\sim 1/M_{DM}^3$ dominates direct detection

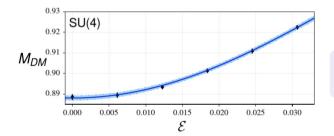
 Unavoidable lower bound on broad set of composite dark matter models

Polarizability of Stealth Dark Matter

Unavoidable lower bound on broad set of composite dark matter models

Nuclear physics very complicated with large uncertanties



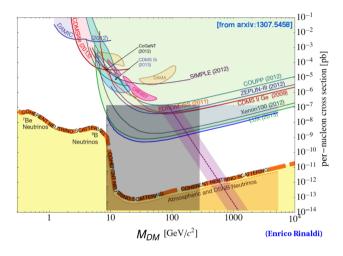


Polarizability is dependence of lattice M_{DM} on external field \mathcal{E}

Lower bound on direct detection

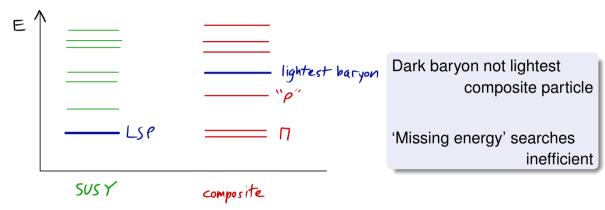
Results specific to Xenon detectors

Uncertainty dominated by Xenon nuclear physics



Shaded region is complementary constraint from particle colliders

Collider constraints



Collider constraints from lighter **charged** ' Π ' plus lattice calculation of M_{DM}/M_{Π}

Gravitational waves

Gravitational-wave observatories opening new window on cosmology

First-order confinement transition $\,\longrightarrow\,$ stochastic background of grav. waves

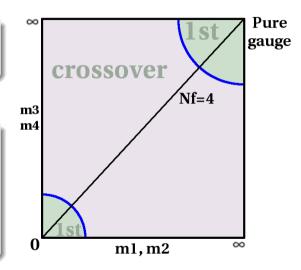
⇒ Lattice studies of Stealth Dark Matter phase transition

Pure-gauge transition is first order

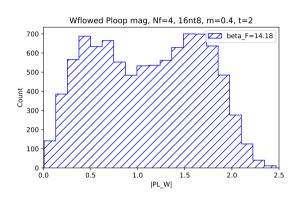
Becomes stronger as N increases

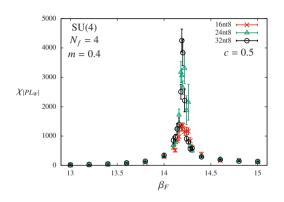
First-order transition persists for sufficiently heavy fermions $\longrightarrow M_P/M_V \gtrsim 0.9$

Form factor calculations considered $0.55 \le M_P/M_V \le 0.77$



Determining order of thermal transition





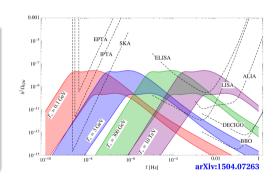
Left: Phase coexistence in Polyakov loop magnitude histogram

Right: Volume scaling of Polyakov loop susceptibility

From first-order transition to gravitational wave signal

First-order transition \longrightarrow gravitational wave background will be produced

Four key parameters
Transition temperature $T_* \lesssim T_c$
Vacuum energy fraction from **latent heat**
Bubble nucleation rate (transition duration)
Bubble wall speed



Low frequencies require space-based observatories or pulsar timing arrays

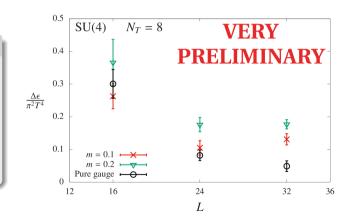
Work in progress: Latent heat $\Delta \epsilon$

First-order transition \longrightarrow gravitational wave background will be produced

Vacuum energy fraction

$$lpha pprox rac{30}{4N(N^2-1)} rac{\Delta\epsilon}{\pi^2 T_*^4}$$

Latent heat $\Delta\epsilon$ is change in energy density at transition



Work in progress: Density of states

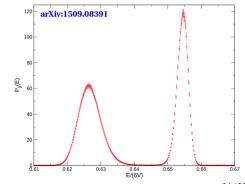
Markov-chain importance sampling can struggle at first-order transition:
difficult to tunnel between coexisting phases

'LLR' generalization of Landau-Wang algorithm

 \longrightarrow continuous density of states $\rho(E)$ with exponential error suppression

$$\begin{split} \langle \mathcal{O} \rangle &= \frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]} \\ &\longrightarrow \frac{1}{\mathcal{Z}} \int dE \ \mathcal{O}(E) \ \rho(E) \ e^{-E} \end{split}$$

Work by Felix Springer SU(4) code developed, analyses underway



Recapitulation and outlook

Composite dark matter is an attractive possibility

Lattice field theory is needed to test models against experimental results

Form factors for direct detection

 \longrightarrow Stealth Dark Matter setting lower bound

First-order early-universe transition

 \longrightarrow gravitational waves depending on latent heat etc.

And more: Collider experiments; galactic sub-structure; indirect detection; relic abundance; ...

Thank you!

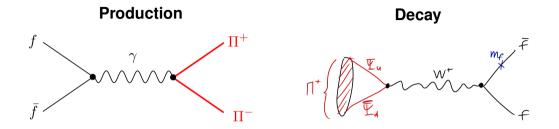
Lattice Strong Dynamics Collaboration & Felix Springer

Funding and computing resources

UK Research and Innovation

Supplement: Stealth Dark Matter at colliders

arXiv:1809.10184

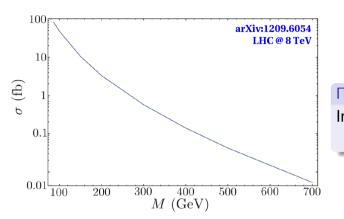


"Particularly tricky" at the LHC

Published bounds $M_\Pi \gtrsim 130$ GeV similar to $M_\Pi \gtrsim 100$ GeV from LEP [ATLAS-CONF-2020-051 reports $M_\Pi \gtrsim 340$ GeV for lifetimes \sim 0.1 ns]

More form factors to compute: $F_1(4M_{\Pi}^2)$ for Π and decay constant F_{Π}

Form factors for collider searches



 Π pair production cross section Integrate over proton parton dist., here setting $F_1(4M_{\Pi}^2)=1$

For
$$M_\Pi \gtrsim$$
 200 GeV, LHC can search for $\Pi^+\Pi^- \longrightarrow t\overline{b} + \overline{t}b$ in addition to $\tau^+\tau^- + \cancel{E}\tau$

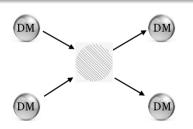
Supplement: Self-interactions and 'small-scale' structure

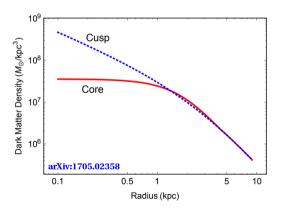
Astrophysical observations vs. collisionless dark matter

Persistent discrepancies on galactic scales

["core vs. cusp"; "too big to fail"; "missing satellites"; "diversity" — Review: arXiv:1705.02358]

Can be addressed by dark matter self-interactions

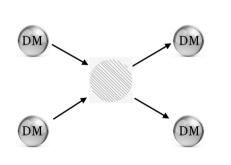


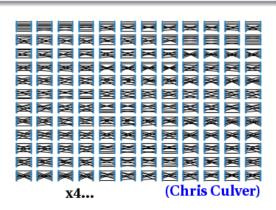


Baryon-baryon scattering work in progress

 $2\times 4 fermions \times SU(4) \ gauge \ group \ \longrightarrow \ proliferation \ of \ contractions \\ [comparable to QCD \ triton \ or \ He \ nucleus]$

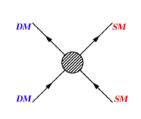
Work in progress to apply state-of-the-art stochastic LapH methods



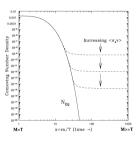


Backup: Thermal freeze-out for relic density

Requires non-gravitational interactions with known particles



 $\mathsf{DM} \longleftrightarrow \mathsf{SM} \ \text{ for } \ T \gtrsim M_{\mathsf{DM}}$



2
$$ightarrow$$
 2 scattering relates coupling and mass, 200 $lpha \sim \frac{\textit{M}_{\textit{DM}}}{100~\text{GeV}}$

Strong $\alpha \sim$ 16 \longrightarrow 'natural' mass scale $\textit{M}_{\textit{DM}} \sim$ 300 TeV

Smaller $M_{DM} \gtrsim 1$ TeV possible from $2 \rightarrow n$ scattering or asymmetry

Backup: Two roads to natural asymmetric dark matter

Idea: Dark matter relic density related to baryon asymmetry

$$\Omega_D pprox 5\Omega_B \ \Longrightarrow M_D n_D pprox 5 M_B n_B$$

$$n_D \sim n_B \implies M_D \sim 5 M_B \approx 5 \text{ GeV}$$
 High-dim. interactions relate baryon# and DM# violation

$$M_D\gg M_B \implies n_B\gg n_D\sim \exp{[-M_D/T_s]} \qquad T_s\sim 200~{\rm GeV}$$
 Electroweak sphaleron processes above T_s distribute asymmetries

Both require non-gravitational interactions with known particles

Backup: More details about form factors

Photon exchange via electromagnetic form factors

Interactions suppressed by powers of confinement scale $\Lambda \sim \textit{M}_{\textit{DM}}$

Dimension 5: Magnetic moment $\longrightarrow (\overline{X}\sigma_{\mu\nu}X) F^{\mu\nu}/\Lambda$

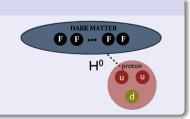
Dimension 6: Charge radius $\longrightarrow (\overline{X}X) v_{\mu} \partial_{\nu} F^{\mu\nu} / \Lambda^2$

Dimension 7: Polarizability $\longrightarrow (\overline{X}X) v_{\mu}v_{\nu}F^{\mu\alpha}F_{\alpha}^{\ \nu}/\Lambda^{3}$

Higgs exchange via scalar form factors

Higgs couples through $\,\sigma\,$ terms $\,\left\langle \mathbf{\textit{B}}\left|\mathbf{\textit{m}}_{\!\psi}\overline{\psi}\psi\right|\mathbf{\textit{B}}\right
angle$

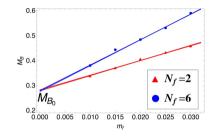
Produces rapid charged 'Π' decay needed for Big Bang nucleosynthesis



Backup: More details about SU(3) composite dark matter model

Same SU(3) gauge group as QCD

Re-analyze existing data sets: $32^3 \times 64$ lattices, domain wall fermions



Scan relatively heavy fermion masses $m_F \longrightarrow 0.55 \lesssim M_\Pi/M_V \lesssim 0.75$

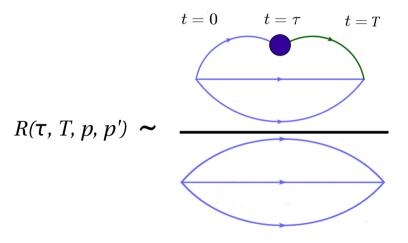
Compare $N_F=2 ext{ or 6 }$ degenerate flavors with same $M_{B_0}\equiv \lim_{m_F o 0} M_B$

Unlike QCD, fermions are all $SU(2)_L$ singlets $\longrightarrow Q = Y$

Setting $Q_{\rm P}=2/3$ and $Q_{\rm M}=-1/3$,

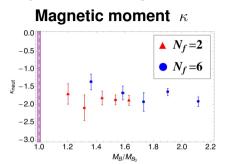
dark matter candidate is singlet "dark baryon" B = PMM

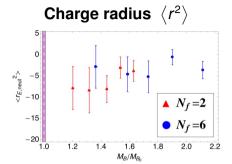
Backup: Form factor calculations on the lattice



$$R_{\Gamma}(\tau, T, p, p') \longrightarrow \langle \mathit{DM}(p') | \Gamma_{\mu}(q^2) | \mathit{DM}(p) \rangle + \mathcal{O}(e^{-\Delta \tau}, e^{-\Delta T}, e^{-\Delta (T-\tau)})$$

Backup: Electromagnetic form factor results





Little dependence on N_F or on $m_F \sim M_B/M_{B_0}$

 κ comparable to neutron's $\kappa_N = -1.91$

 $\langle r^2 \rangle$ smaller than neutron's $\langle r^2 \rangle_N \approx -38$ (related to larger M_Π/M_V)

Insert into standard event rate formulas...

Backup: Event rate formulas and lattice input

$$\begin{aligned} \text{Rate} &= \frac{\textit{M}_{detector}}{\textit{M}_{T}} \frac{\rho_{\textit{DM}}}{\textit{M}_{\textit{DM}}} \int_{\textit{E}_{min}}^{\textit{E}_{max}} \textit{dE}_{\textit{R}} \; \textit{Acc}(\textit{E}_{\textit{R}}) \; \left\langle \textit{v}_{\textit{DM}} \frac{\textit{d}\sigma}{\textit{dE}_{\textit{R}}} \right\rangle_{\textit{f}} \\ \frac{\textit{d}\sigma}{\textit{dE}_{\textit{R}}} &= \frac{\overline{|\mathcal{M}_{\textit{SI}}|^{2}} + \overline{|\mathcal{M}_{\textit{SD}}|^{2}}}{16\pi \left(\textit{M}_{\textit{DM}} + \textit{M}_{\textit{T}}\right)^{2} \textit{E}_{\textit{R}}^{\textit{max}}} \qquad \qquad \textit{E}_{\textit{R}}^{\textit{max}} &= \frac{2\textit{M}_{\textit{DM}}^{2}\textit{M}_{\textit{T}}\textit{v}_{\textit{col}}^{2}}{\left(\textit{M}_{\textit{DM}} + \textit{M}_{\textit{T}}\right)^{2}} \end{aligned}$$

From magnetic moment κ and charge radius $\langle r^2 \rangle$

$$\begin{split} \frac{\overline{|\mathcal{M}_{SI}|^2}}{e^4 \left[ZF_c(Q)\right]^2} &= \left(\frac{M_T}{M_{DM}}\right)^2 \left[\frac{4}{9} M_{DM}^4 \left\langle r^2 \right\rangle^2 + \frac{\kappa^2 \left(M_T + M_{DM}\right)^2 \left(E_R^{max} - E_R\right)}{M_T^2 E_R}\right] \\ \overline{|\mathcal{M}_{SD}|^2} &= e^4 \frac{2}{3} \left(\frac{J+1}{J}\right) \left[\left(A \frac{\mu_T}{\mu_n}\right) F_s(Q)\right]^2 \kappa^2 \end{split}$$

Backup: Event rate formulas and lattice input

$$\begin{aligned} \text{Rate} &= \frac{\textit{M}_{\textit{detector}}}{\textit{M}_{\textit{T}}} \frac{\rho_{\textit{DM}}}{\textit{M}_{\textit{DM}}} \int_{\textit{E}_{\textit{min}}}^{\textit{E}_{\textit{max}}} \textit{dE}_{\textit{R}} \, \textit{Acc}(\textit{E}_{\textit{R}}) \, \left\langle \textit{v}_{\textit{DM}} \frac{\textit{d}\sigma}{\textit{dE}_{\textit{R}}} \right\rangle_{\textit{f}} \\ &\frac{\textit{d}\sigma}{\textit{dE}_{\textit{R}}} = \frac{\overline{|\mathcal{M}_{\textit{SI}}|^2} + \overline{|\mathcal{M}_{\textit{SD}}|^2}}{16\pi \left(\textit{M}_{\textit{DM}} + \textit{M}_{\textit{T}}\right)^2 \, \textit{E}_{\textit{R}}^{\textit{max}}} \qquad \textit{E}_{\textit{R}}^{\textit{max}} = \frac{2\textit{M}_{\textit{DM}}^2 \textit{M}_{\textit{T}} \textit{v}_{\textit{col}}^2}{\left(\textit{M}_{\textit{DM}} + \textit{M}_{\textit{T}}\right)^2} \end{aligned}$$

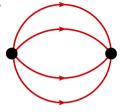
From **polarizability** C_F

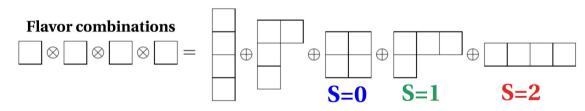
$$\sigma_{SI} = rac{Z^4}{A^2} rac{144\pi lpha_{em}^4 \widetilde{M}_{n,DM}^2}{M_{DM}^6 R^2} C_F^2 \propto rac{Z^4}{A^2} \quad ext{per nucleon}$$

Backup: More details about SU(4) Stealth Dark Matter

Quenched SU(4) lattice ensembles

Lattice volumes up to $64^3 \times 128$, several lattice spacings to check systematic effects

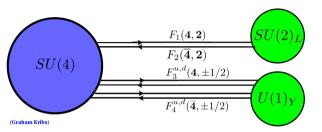




Dark matter candidate is spin-zero baryon → no magnetic moment

Need at least two flavors to anti-symmetrize \longrightarrow no charge radius

Backup: Even more details about SU(4) Stealth Dark Matter



Field	$SU(N_D)$	$(SU(2)_L, Y)$	Q
$\overline{F_1 = \left(\begin{array}{c} F_1^u \\ F_1^d \end{array}\right)}$	N	(2, 0)	$\begin{pmatrix} +1/2 \\ -1/2 \end{pmatrix}$
$F_2 = \begin{pmatrix} F_2^u \\ F_2^d \end{pmatrix}$	$ar{\mathbf{N}}$	(2 , 0)	$\begin{pmatrix} +1/2 \\ -1/2 \end{pmatrix}$
F_3^u	N	(1, +1/2)	+1/2
F_3^d	N	(1,-1/2)	-1/2
F_4^u	$\bar{\mathbf{N}}$	(1, +1/2)	+1/2
F_4^d	$ar{\mathbf{N}}$	(1, -1/2)	-1/2

Mass terms
$$m_V (F_1 F_2 + F_3 F_4) + y (F_1 \cdot HF_4 + F_2 \cdot H^{\dagger} F_3) + \text{h.c.}$$

Vector-like masses evade Higgs-exchange direct detection bounds

 $\begin{array}{ccc} \textbf{Higgs couplings} & \longrightarrow & \textbf{charged meson decay before Big Bang nucleosynthesis} \\ & \textbf{Both required} & \longrightarrow & \textbf{four flavors} \end{array}$

Backup: 'Stealth' composites from conspicuous constituents

Direct detection cross section (pb)

Neutrino $\sigma \sim 10^{-2}$

Radar cross section (m^2)

747 $\sigma \sim 10^2$

SUSY neutralino $10^{-6} \lesssim \sigma \lesssim 10^{-5}$

Falcon $\sigma \sim 10^{-2}$

Stealth Dark Matter $\sigma \sim \left(\frac{200 \text{ GeV}}{M_{DM}}\right)^6 \times 10^{-9}$

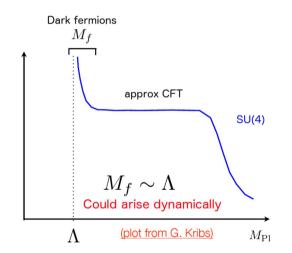
Stealth F-22 $\sigma < 10^{-3}$

Backup: Stealth Dark Matter mass scales

Lattice studies focus on $m_{\psi} \simeq \Lambda_{DM}$ where effective theories least reliable

 $m_\psi \simeq \Lambda_{DM}$ could arise dynamically

Collider constraints on M_{DM} become stronger as m_{ψ} decreases



Backup: Effective Higgs interaction

 $M_H = 125 \text{ GeV} \longrightarrow \text{Higgs}$ exchange can dominate direct detection

$$\sigma_{H}^{(SI)} \propto \left| rac{\widetilde{M}_{DM,N}}{M_{H}^{2}} \;\; y_{\psi} \left\langle DM \left| \overline{\psi} \psi \right| DM
ight
angle \;\; y_{q} \left\langle N \left| \overline{q}q \right| N
ight
angle
ight|^{2}$$

Quark
$$y_q = \frac{m_q}{v}$$

Dark
$$y_{\psi} = \alpha \frac{m_{\psi}}{v}$$
 suppressed by $\alpha \equiv \frac{v}{m_{\psi}} \frac{\partial m_{\psi}(h)}{\partial h} \bigg|_{h=v} = \frac{yv}{yv + m_{V}}$

Determine using Feynman–Hellmann theorem
$$\langle DM | \overline{\psi}\psi | DM \rangle = \frac{\partial M_{DM}}{\partial m_{\psi}}$$

Backup: Feynman-Hellmann theorem

 $m_\psi \overline{\psi} \psi$ is the only term in the hamiltonian that depends on m_ψ

$$\Longrightarrow \left\langle B \left| \frac{\partial \widehat{H}}{\partial m_{\psi}} \right| B \right\rangle = \left\langle B \left| \overline{\psi} \psi \right| B \right\rangle$$

Since $\widehat{H}|B\rangle = M_B|B\rangle$ and $\langle B|\widehat{H} = \langle B|M_B|$ we have

$$\frac{\partial}{\partial m_{\psi}} M_{B} = \frac{\partial}{\partial m_{\psi}} \left\langle B \left| \widehat{H} \right| B \right\rangle = \left\langle \frac{\partial B}{\partial m_{\psi}} \left| \widehat{H} \right| B \right\rangle + \left\langle B \left| \widehat{H} \right| \frac{\partial B}{\partial m_{\psi}} \right\rangle + \left\langle B \left| \frac{\partial \widehat{H}}{\partial m_{\psi}} \right| B \right\rangle
= M_{B} \left\langle \frac{\partial B}{\partial m_{\psi}} \left| B \right\rangle + M_{B} \left\langle B \left| \frac{\partial B}{\partial m_{\psi}} \right\rangle + \left\langle B \left| \overline{\psi} \psi \right| B \right\rangle
= M_{B} \frac{\partial}{\partial m_{\psi}} \left\langle B \middle| B \right\rangle + \left\langle B \left| \overline{\psi} \psi \middle| B \right\rangle = \left\langle B \left| \overline{\psi} \psi \middle| B \right\rangle \qquad \Box$$

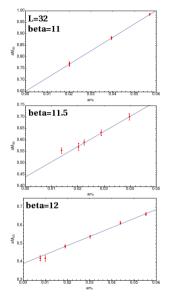
Backup: Lattice results for Higgs exchange constrain α

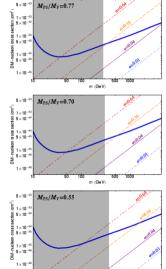
$$\sigma_{H}^{(SI)} \propto \left| \emph{y}_{\psi} \left\langle \emph{DM} \left| \overline{\psi} \psi \right| \emph{DM}
ight
angle
ight|^{2}$$

Matrix element $\propto \frac{\partial \textit{M}_{\textit{DM}}}{\partial \textit{m}_{\psi}}$ (Feynman–Hellmann)

Stealth Dark Matter: $0.15 \lesssim \frac{m_\psi}{M_{DM}} \frac{\partial M_{DM}}{\partial m_\psi} \lesssim 0.34$

Larger than QCD $0.04 \lesssim \frac{m_q}{M_N} \frac{\partial M_N}{\partial m_a} \lesssim 0.08$

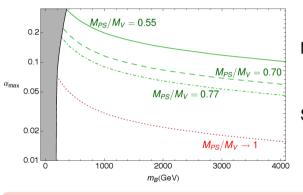




m (GeV)

Backup: Bounds on effective Higgs coupling

Higgs-exchange cross section \longrightarrow maximum α allowed by LUX [1310.8214]



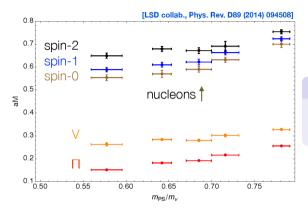
Maximum α depends on M_Π/M_V and dark matter mass

Smaller $M_{\Pi}/M_{V} \longleftrightarrow m_{F}$ \longrightarrow stronger constraints from colliders

Effective Higgs interaction tightly constrained

 $lpha \lesssim 0.3$ for $M_\Pi/M_V \gtrsim 0.55$ \longrightarrow fermion masses must be mainly vector-like

Backup: Indirect detection



Lattice results for composite spectrum

Predict γ -rays from splitting between baryons with spin S=0, 1 and 2

Much more challenging future work

DM-DM annihilation into (many) lighter Π that then decay

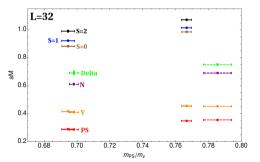
Backup: Large-N predictions for SU(4) baryons

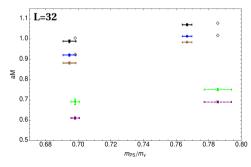
Tune (β, m_F) to match SU(3) M_{Π} and M_V (dashed)

Rotor spectrum for spin-
$$J$$
 baryons: $M(N,J) = NM_0 + C + B\frac{J(J+1)}{N} + O\left(\frac{1}{N^2}\right)$

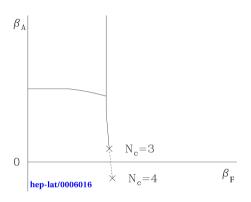
Fit M_0 , C and B with nucleon, Δ and spin-0 baryon masses

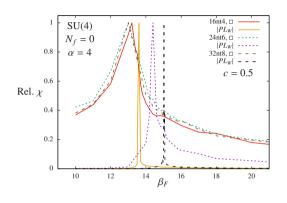
 \longrightarrow predictions for S = 1, 2 baryons (diamonds)





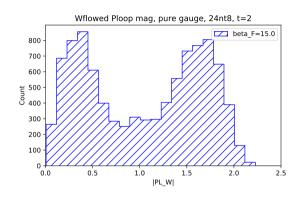
Backup: Thermal transition vs. bulk transition

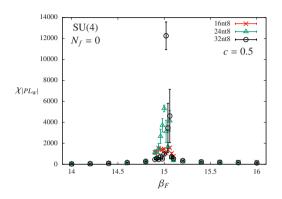




Try to avoid bulk transition for small $L^3 \times N_T$ volumes \longrightarrow use $\beta_A = -\beta_F/4$ Still need $N_T > 4$ for clear separation between bulk & thermal transitions

Backup: Compare with known first-order pure-gauge transition





Signals are stronger but qualitatively same as for $M_P/M_V \approx 0.96$

No clear hysteresis even in pure-gauge case