On Colour-Kinematics Duality and Double Copy

Leron Borsten
Maxwell Institute for Mathematical Sciences \& Heriot-Watt University, Edinburgh

Dublin Institute for Advanced Studies, 11 November 2021

Based on joint work 2007.13803, 2102.11390, 2108.03030 and 21xx.xxxxx with Branislav Jurčo, Hyungrok Kim, Tommaso Macrelli, Christian Saemann and Martin Wolf

Gravity and gauge theory

- Gravity as a gauge theory:
- Gauge theory of Lorentz, (super) Poincaré or de Sitter symmetries
[Utiyama '56; Kibble '61; MacDowell-Mansouri '77; Chamseddine-West '77; Stelle-West 79]
- Holographic principle - AdS/CFT correspondence
['t Hooft '93; Susskind '94; Maldacena '97]

Gravity and gauge theory

- Gravity as a gauge theory:
- Gauge theory of Lorentz, (super) Poincaré or de Sitter symmetries [Utiyama '56; Kibble '61; MacDowell-Mansouri '77; Chamseddine-West '77; Stelle-West 79]
- Holographic principle - AdS/CFT correspondence
['t Hooft '93; Susskind '94; Maldacena '97]
- Here, we appeal to a third and (superficially) independent perspective:

$$
\text { Gravity }=\text { Gauge } \times \text { Gauge }
$$

- The theme of gravity as the "square" of Yang-Mills has appeared in a variety of guises going back to the KLT relations of string theory [Kawai-Lewellen-Tye '85] Cf. Field theory [Feynman-Morinigo-Wagner; Papini '65]
- Bern-Carrasco-Johansson colour-kinematic (CK) duality and double-copy of (super) Yang-Mills (plus matter) scattering amplitudes
[Bern-Carrasco-Johansson '08, '10; Bern-Dennen-Huang-Kiermaier '10]

Gravity $=$ Gauge \times Gauge

Longstanding open questions

- Does CK duality (in some appropriate sense) hold to all orders?
- Does the double copy hold: is Einstein really the square of Yang-Mills?
- Is this restricted to the S-matrix or more general?

Gravity $=$ Gauge \times Gauge

Off-shell field theory approach

- CK duality is property of the Yang-Mills Batalin-Vilkovisky (BV) action, up to Jacobian counter terms [BJKMsw '21]

$$
S_{\mathrm{BRST}-\mathrm{CK}}^{\mathrm{YM}}=\int c_{i j} c_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}
$$

Gravity $=$ Gauge \times Gauge

Off-shell field theory approach

- CK duality is property of the Yang-Mills Batalin-Vilkovisky (BV) action, up to Jacobian counter terms [BJKMSW '21]

$$
S_{\mathrm{BRST}-\mathrm{CK}}^{\mathrm{YM}}=\int C_{i j} c_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}
$$

- Natural, but non-standard notion of CK duality:
- Infinite dimensional symmetry of the BV action
- Loop amplitude integrands CK dual automatically
- Anomalous - broken by Jacobian counterterms
- Generalised unitarity proof of double copy doesn't straightforwardly apply

Gravity $=$ Gauge \times Gauge

Off-shell field theory approach

- CK duality is property of the Yang-Mills Batalin-Vilkovisky (BV) action, up to Jacobian counter terms [BJKMSW '21]

$$
S_{\mathrm{BRST}-\mathrm{CK}}^{\mathrm{YM}}=\int C_{i j} c_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}
$$

- Natural, but non-standard notion of CK duality:
- Infinite dimensional symmetry of the BV action
- Loop amplitude integrands CK dual automatically
- Anomalous - broken by Jacobian counterterms
- Generalised unitarity proof of double copy doesn't straightforwardly apply
- Double copy of BV action is manifestly valid \rightarrow double copy to all loops

Gravity $=$ Gauge \times Gauge

Off-shell field theory approach

- CK duality is property of the Yang-Mills Batalin-Vilkovisky (BV) action, up to Jacobian counter terms [BJKMSW '21]

$$
S_{\mathrm{BRST}-\mathrm{CK}}^{\mathrm{YM}}=\int C_{i j} c_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}
$$

- Natural, but non-standard notion of CK duality:
- Infinite dimensional symmetry of the BV action
- Loop amplitude integrands CK dual automatically
- Anomalous - broken by Jacobian counterterms
- Generalised unitarity proof of double copy doesn't straightforwardly apply
- Double copy of BV action is manifestly valid \rightarrow double copy to all loops
- Perturbative quantum Einstein-Hilbert gravity coupled to a Kalb-Ramond 2-form and dilaton is the square Yang-Mills theory [BJKMsw '20, '21]

Gravity $=$ Gauge \times Gauge

Homotopy algebra of CK duality

- BV quantised Yang-Mills $\rightarrow L_{\infty}$-algebra that factorises:

$$
\begin{array}{cccc}
\text { Bi-adjoint } \phi^{3} \text { theory } & & \text { YM theory } & \\
\mathfrak{c o l} \otimes \mathfrak{c o l} \otimes \mathfrak{s c a l} & \longleftarrow & \mathfrak{c o l} \otimes \mathfrak{k i n} \otimes \mathfrak{s c a l} & \longrightarrow
\end{array} \begin{gathered}
\mathcal{N}=0 \text { supergravity } \\
\mathfrak{k i n} \otimes \mathfrak{k i n} \otimes \mathfrak{s c a l}
\end{gathered}
$$

- CK duality $\leftrightarrow \mathrm{BV}_{\infty}$-algebra $\mathfrak{K i n}=\mathfrak{k i n} \otimes_{\tau} \mathfrak{s c a l}$
- Homotopy relations \leftrightarrow kinematic Jacobi relations
- Only tree relations \rightarrow potentially dramatic computational speed-up

Order of Events

1. Review: BCJ CK Duality and Double-Copy
2. CK Duality Redux
3. BV Lagrangian Syngamy
4. Generalisations
5. Homotopy CK Duality and Double Copy
§1.

BCJ CK Duality and Double-Copy

Amplitudes and cubic diagrams

- Can write n-point L-loop gluon amplitude in terms of only cubic diagrams:

$$
A_{\mathrm{YM}}^{n, L}=\sum_{i \in \text { cubic diag }} \int_{L} \frac{c_{i} n_{i}}{S_{i} d_{i}}
$$

- c_{i} : colour numerator, built from $f^{a b c}$, read off diagram i
$\rightarrow n_{i}$: kinematic numerator, built from $p, \varepsilon \& W_{o n}$ - unique
- d_{i} : propagator, $\prod_{\text {int. lines }} p^{2}$, read off diagram i

$$
\delta=\left(p_{1}+p_{2}\right)^{2} \quad c_{s}=f_{a b}^{x} f_{x c d}
$$

Amplitudes and cubic diagrams

- Can write n-point L-loop gluon amplitude in terms of only cubic diagrams:

$$
A_{Y M}^{n, L}=\sum_{i \in \text { cubic diag }} \int_{L} \frac{c_{i} n_{i}}{S_{i} d_{i}}
$$

Amplitudes and cubic diagrams

- Can be realised in the YM Lagrangian through auxiliary fields:

$$
g^{2}\left[A_{\mu}, A_{\nu}\right]\left[A^{\mu}, A^{\nu}\right] \rightarrow \frac{1}{2} B^{\mu \nu \kappa} \square B_{\mu \nu \kappa}-g\left(\partial_{\mu} A_{\nu}+\frac{1}{\sqrt{2}} \partial^{\kappa} B_{\kappa \mu \nu}\right)\left[A^{\mu}, A^{\nu}\right]
$$

$$
\text { [Bern-Dennen-Huang-Kiermaier '10] }\left(\begin{array}{l}
\text { aux } \\
\text { a }
\end{array} \gg \cdots<+\right.
$$

- Feynman diagrams give 'cubic' amplitudes directly:

$$
\begin{aligned}
& \text { iagrams give 'cubic' amplitudes directly: } \\
& A^{n, L}=\quad \Gamma \quad \int \quad \int_{\varphi} \quad \sum_{\varphi} n_{\alpha} n_{i} \varphi
\end{aligned}
$$

- Example: 4-point s-channel diagram

BCJ colour-kinematic duality conjecture

- There is an organisation of the n-point L-loop gluon amplitude:

$$
A_{\mathrm{YM}}^{n, L}=\sum_{i \in \mathrm{cubic} \text { diag }} \int_{L} \frac{c_{i} n_{i}}{S_{i} d_{i}}
$$

such that

$$
\begin{array}{clc}
c_{i}+c_{j}+c_{k}=0 & \Rightarrow & n_{i}+n_{j}+n_{k}=0 \\
c_{i} \longrightarrow-c_{i} & \Rightarrow & n_{i} \longrightarrow-n_{i}
\end{array}
$$

[Bern-Carrasco-Johansson '08]

BCJ colour-kinematic duality conjecture

- There is an organisation of the n-point L-loop gluon amplitude:

$$
A_{Y M}^{n, L}=\sum_{i \in \text { cubic diag }} \int_{L} \frac{c_{i} n_{i}}{S_{i} d_{i}}
$$

such that

$$
\begin{array}{ccc}
c_{i}+c_{j}+c_{k}=0 & \Rightarrow & n_{i}+n_{j}+n_{k}=0 \\
c_{i} \longrightarrow-c_{i} & \Rightarrow & n_{i} \longrightarrow-n_{i}
\end{array}
$$

[Bern-Carrasco-Johansson '08]

- CK duality established at tree-level
[Stieberger '09, Bjerrum-Bohr-Damgaard-Vanhove '09. . . Mizera '19; Reiterer '19]
- Significant evidence up to 4 loops in various (super)YM theories [Carrasco-Johansson '11; Bern-Davies-Dennen-Huang-Nohle '13; Bern-Davies-Dennen '14...]
- Quickly becomes difficult to check: remains conjectural at the loop level [Bern-Carrasco-Chen-Edison-Johansson-Parra-Martinez-Roiban-Zeng '18]

BCJ double-copy prescription

- Given CK dual amplitude of pure Yang-Mills

$$
\begin{aligned}
A_{\mathrm{YM}}^{n, L} & =\int_{L_{i \in \text { cubic diag }}} \frac{c_{i} n_{i}}{S_{i} d_{i}} \\
S_{\mathrm{YM}} & =\frac{1}{2 g^{2}} \int \operatorname{tr} F \wedge \star F
\end{aligned}
$$

BCJ double-copy prescription

- Given CK dual amplitude of pure Yang-Mills

$$
\begin{aligned}
A_{\mathrm{YM}}^{n, L} & =\int_{L_{i \in \text { cubic diag }}} \frac{c_{i} n_{i}}{S_{i} d_{i}} \\
S_{\mathrm{YM}} & =\frac{1}{2 g^{2}} \int \operatorname{tr} F \wedge \star F
\end{aligned}
$$

- Double-copy:

$$
c_{i} \quad \longrightarrow \quad n_{i}
$$

BCJ double-copy prescription

- Given CK dual amplitude of pure Yang-Mills

$$
\begin{aligned}
A_{\mathrm{YM}}^{n, L} & =\int_{L} \sum_{i \in \text { cubic diag }} \frac{c_{i} n_{i}}{S_{i} d_{i}} \\
S_{\mathrm{YM}} & =\frac{1}{2 g^{2}} \int \operatorname{tr} F \wedge \star F
\end{aligned}
$$

- Double-copy:

$$
\begin{array}{|ccc|}
\hline c_{i} & \longrightarrow & n_{i} \\
\hline
\end{array}
$$

- Gives an amplitude of $\mathcal{N}=0$ supergravity

$$
\begin{gathered}
A_{\mathcal{N}=0}^{n, L}=\sum_{i \in \text { cubic diag }} \int_{L} \frac{n_{i} n_{i}}{S_{i} d_{i}} \\
S_{\mathcal{N}=0}=\frac{1}{2 \kappa^{2}} \int \star R-\frac{1}{d-2} d \varphi \wedge \star d \varphi-\frac{1}{2} \mathrm{e}^{-\frac{4}{d-2} \varphi} d B \wedge \star d B
\end{gathered}
$$

where B is the Kalb-Ramond 2-form, φ is the dilaton
[Bern-Carrasco-Johansson '08, '10; Bern-Dennen-Huang-Kiermaier '10]

Implications and applications

- Conceptually compelling and computationally powerful: $\mathcal{N}=8$ supergravity four-point to 5 loops! (finite)
[Bern-Carrasco-Chen-Edison-Johansson-Parra-Martinez-Roiban-Zeng '18]

Implications and applications

- Conceptually compelling and computationally powerful: $\mathcal{N}=8$ supergravity four-point to 5 loops! (finite)
[Bern-Carrasco-Chen-Edison-Johansson-Parra-Martinez-Roiban-Zeng '18]
- Can be explained by supersymmetry and $E_{7(7)}$ U-duality [Bjornsson-Green '10, Bossard-Howe-Stelle '11; Elvang-Freedman-Kiermaier '11; Bossard-Howe-Stelle-Vanhove '11]
- At 7 loops any would-be cancellations are "not consequences of supersymmetry in any conventional sense" [Bjornsson-Green '10]

Implications and applications

- Conceptually compelling and computationally powerful: $\mathcal{N}=8$ supergravity four-point to 5 loops! (finite)
[Bern-Carrasco-Chen-Edison-Johansson-Parra-Martinez-Roiban-Zeng '18]
- Can be explained by supersymmetry and $E_{7(7)}$ U-duality [Bjornsson-Green '10, Bossard-Howe-Stelle '11; Elvang-Freedman-Kiermaier '11; Bossard-Howe-Stelle-Vanhove '11]
- At 7 loops any would-be cancellations are "not consequences of supersymmetry in any conventional sense" [Bjornsson-Green '10]
- $D=4, \mathcal{N}=5$ supergravity finite to 4 loops, contrary to expectations:

> "Enhanced" cancellations
[Bern-Davies-Dennen '14]

- Such cancellations not seen for $\mathcal{N}=8$ at 5 loops: implications unclear

Implications and applications

- Classical (non)perturbative solutions and gravity wave astronomy
[Monteiro-O'Connell-White '14; Cardoso-Nagy-Nampuri '16;
Luna-Monteiro-Nicholson-Ochirov-O'Connell-Westerberg-White '16;
Berman-Chacón-Luna-White '18; Kosower-Maybee-O'Connell '18;
Bern-Cheung-Roiban-Shen-Solon-Zeng '19; Bern-Luna-Roiban-Shen-Zeng '20;
Chacón-Nagy-White '21...]
- Geometric/world-sheet picture: ambitwistor string theories theories and scattering equations, e.g. non-trivial gluon and spacetime backgrounds
[Cachazo-He-Yuan '13 '14; Mason-Skinner '13; Adamo-Casali-Skinner '13;
Adamo-Casali-Mason-Nekovar '17 '18; Geyer-Monteiro '18; Geyer-Mason '19;
Geyer-Monteiro-Stark-Muchão '21. . .]
- Surprising applications: gauge structure of the conjectured $(4,0)$ phase of M-theory [LB '18] and twin non-Lagrangian S-folds theories [LB-Duff-Marrani '19]

Off-shell BRST-Lagrangian double-copy

Two key ideas:

- Can CK duality and the double-copy be realised at the level of field theory?

Off-shell BRST-Lagrangian double-copy

Two key ideas:

- Can CK duality and the double-copy be realised at the level of field theory?

1. CK duality manifesting actions and kinematic algebras
[Bern-Dennen-Huang-Kiermaier '10; Tolotti-Weinzierl '13; Cheung-Shen '16;
Luna-Monteiro-Nicholson-Ochirov-O'Connell-Westerberg-White '16]
[Monteiro-O'Connell '11, '13; Bjerrum-Bohr-Damgaard-Monteiro-O'Connell '12;
Fu-Krasnov '16; Chen-Johansson-Teng-Wang 19; Campiglia-Nagy '21...]
2. Field theory product of BRST gauge theories and Lagrangian double-copy
[Bern-Dennen-Huang-Kiermaier '10; Anastasiou-LB-Duff-Hughes-Nagy '14; LB '17; Anastasiou-LB-Duff-Nagy-Zoccali '18; LB-Jubb-Makwana-Nagy '20; LB-Nagy '20]

Off-shell BRST-Lagrangian double-copy

Two key ideas:

- Can CK duality and the double-copy be realised at the level of field theory?

1. CK duality manifesting actions and kinematic algebras
[Bern-Dennen-Huang-Kiermaier '10; Tolotti-Weinzierl '13; Cheung-Shen '16;
Luna-Monteiro-Nicholson-Ochirov-O'Connell-Westerberg-White '16]
[Monteiro-O'Connell '11, '13; Bjerrum-Bohr-Damgaard-Monteiro-O'Connell '12;
Fu-Krasnov '16; Chen-Johansson-Teng-Wang 19; Campiglia-Nagy '21...]
2. Field theory product of BRST gauge theories and Lagrangian double-copy
[Bern-Dennen-Huang-Kiermaier '10; Anastasiou-LB-Duff-Hughes-Nagy '14; LB '17; Anastasiou-LB-Duff-Nagy-Zoccali '18; LB-Jubb-Makwana-Nagy '20; LB-Nagy '20]

- Covariant Color-Kinematics Duality: a closed-form, analytic expression for all tree-level BCJ numerators in YM theory! [Cheung-Mangan '21]

Off-shell BRST-Lagrangian double-copy

Two key ideas:

- Can CK duality and the double-copy be realised at the level of field theory?

1. CK duality manifesting actions and kinematic algebras [Bern-Dennen-Huang-Kiermaier '10; Tolotti-Weinzierl '13; Cheung-Shen '16; Luna-Monteiro-Nicholson-Ochirov-O'Connell-Westerberg-White '16] [Monteiro-O'Connell '11, '13; Bjerrum-Bohr-Damgaard-Monteiro-O'Connell '12; Fu-Krasnov '16; Chen-Johansson-Teng-Wang 19; Campiglia-Nagy '21...]
2. Field theory product of BRST gauge theories and Lagrangian double-copy [Bern-Dennen-Huang-Kiermaier '10; Anastasiou-LB-Duff-Hughes-Nagy '14; LB '17; Anastasiou-LB-Duff-Nagy-Zoccali '18; LB-Jubb-Makwana-Nagy '20; LB-Nagy '20]

- Covariant Color-Kinematics Duality: a closed-form, analytic expression for all tree-level BCJ numerators in YM theory! [Cheung-Mangan '21]
- Today: the YM BV action admits a natural form of 'anomalous' CK duality that immediately implies the double copy to all orders

Lighting overview

Step 1. Cubic tree-level off-shell CK duality manifesting Yang-Mills BRST-action:

$$
S_{\mathrm{BRST}-\mathrm{CK}}^{\mathrm{YM}}=\int C_{i j} C_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}
$$

Step 2. BRST-action double-copy:

$$
S_{\mathrm{DC}}=\int C_{i j} C_{\tilde{\imath} \tilde{\jmath}} A^{i \tilde{\imath}} \square A^{i \tilde{\jmath}}+F_{i j k} F_{\tilde{\imath} \tilde{\jmath} \tilde{k}} A^{i \tilde{\imath}} A^{j \tilde{\jmath}} A^{k \tilde{k}}
$$

Step 3. Double-copy BRST operator:

$$
\left(Q_{\mathrm{YM}}, \tilde{Q}_{\mathrm{YM}}\right) \longrightarrow Q_{\mathrm{DC}}=Q_{\text {diffeo }}+Q_{2 \text {-form }}+\text { trivial symmetries }
$$

Step 4. Assuming tree-level physical CK duality, perturbative quantum equivalence:

$$
Q_{\mathrm{DC}}^{2}=Q_{\mathrm{DC}} S_{\mathrm{DC}}=0 \Rightarrow S_{\mathrm{DC}} \cong S_{\mathrm{BRST}}^{\mathcal{N}=0}
$$

Corollary: Loop amplitude (integrands) computed from Feynman diagrams of $S_{\text {BRST-CK }}^{\text {YM }}$ manifest CK duality, up to counterterms needed for unitarity, and double-copy correctly to give amplitudes of $\mathcal{N}=0$ supegravity
§2.

Colour-Kinematics Duality Redux

Colour-Kinematic Duality Redux
Manifest physical tree-level CK duality

- There is a YM action such that the Feynman diagrams yield amplitudes manifesting CK duality for tree-level amplitudes:

$$
S_{\text {on-shell } \mathrm{CK}}^{\mathrm{YM}}=\sum_{n=2}^{\infty} \int \mathcal{L}_{\mathrm{YM}}^{(n)} \sim A \square A+\partial A A A+\frac{\square}{\square} A A A A+\underbrace{f_{c}^{\text {abc } f_{c} f_{e} f_{y}}+\cdots=0}_{\underbrace{\frac{\partial^{3}}{\square^{2}} A A A A A}+\cdots} \begin{gathered}
\text { by Jacobi }
\end{gathered}
$$

Colour-Kinematic Duality Redux

Manifest physical tree-level CK duality

- This can be "strictified" to have only cubic interactions through infinite tower of auxiliaries [BJKMSW '21]

$$
\begin{aligned}
& \begin{aligned}
S_{\text {on-shell } \mathrm{CK}}^{\mathrm{YM}}=\operatorname{tr} \int & d^{D}{ }_{x} \frac{1}{2} A_{\mu} \square A^{\mu}+\frac{1}{2} g \partial_{\mu} A_{\nu}\left[A^{\mu}, A^{\nu}\right] \\
& \frac{1}{2} B^{\mu \nu \kappa} \square B_{\mu \nu \kappa}-g\left(\partial_{\mu} A_{\nu}+\frac{1}{\sqrt{2}} \partial^{\kappa} B_{\kappa \mu \nu}\right)\left[A^{\mu}, A^{\nu}\right] \\
& +\frac{1}{2} B^{\mu \nu \kappa} \square B_{\mu \nu \kappa}-g\left(\partial_{\mu} A_{\nu}+\frac{1}{\sqrt{2}} \partial^{\kappa} B_{\kappa \mu \nu}\right)\left[A^{\mu}, A^{\nu}\right] \\
& +C^{\mu \nu} \square \bar{C}_{\mu \nu}+C^{\mu \nu \kappa} \square \bar{C}_{\mu \nu \kappa}+C^{\mu \nu \kappa \lambda} \square \bar{C}_{\mu \nu \kappa \lambda}+ \\
& +g C^{\mu \nu}\left[A_{\mu}, A_{\nu}\right]+g \partial_{\mu} C^{\mu \nu \kappa}\left[A_{\nu}, A_{\kappa}\right]-\frac{g}{2} \partial_{\mu} C^{\mu \nu \kappa \lambda}\left[\partial_{[\nu} A_{\kappa]}, A_{\lambda}\right] \\
& +g \bar{C}^{\mu \nu}\left(\frac{1}{2}\left[\partial^{\kappa} \bar{C}_{\kappa \lambda \mu}, \partial^{\lambda} A_{\nu}\right]+\left[\partial^{\kappa} \bar{C}_{\kappa \lambda \nu \mu}, A^{\lambda}\right]\right)+\cdots
\end{aligned} \\
& \text { [Bern-Dennen-Huang-Kiermaier '10] }
\end{aligned}
$$

- Purely cubic Feynman diagrams \longrightarrow

$$
A_{n}^{\text {tree }}=\sum_{i} \frac{c_{i} n_{i}}{d_{i}} \quad \text { s.t. } \quad c_{i}+c_{j}+c_{k}=0 \Rightarrow n_{i}+n_{j}+n_{k}=0
$$

Colour-Kinematic Duality Redux

Generalise to off-shell BRST CK duality

- Does not imply loop-level CK duality, e.g. unphysical off-shell modes propagate in the loops
- To lift to loop-level we should include off-shell unphysical/ghost modes in the external states so that we can glue trees into loops:

Colour-Kinematic Duality Redux

Generalise to off-shell BRST CK duality

- Does not imply loop-level CK duality, e.g. unphysical off-shell modes propagate in the loops
- To lift to loop-level we should include off-shell unphysical/ghost modes in the external states so that we can glue trees into loops:

1. Longitudinal gluons - gauge choice
2. Ghosts - BRST Ward identities
3. Off-shell - nonlocal field redefinitions (invisible on-shell)

- 3. \Rightarrow induces Jacobian counterterms that cancel spurious modes

Colour-Kinematic Duality Redux

Tree-level CK duality for longitudinal gluons

- Relax transversality $p_{n} \cdot \varepsilon_{n} \neq 0 \Rightarrow$ tree CK duality fails
- By analogy can compensate with new non-zero vertices [BJKMSW '20]:
- We can add them to the action without changing the physics [BJKMSW '20]

Colour-Kinematic Duality Redux

Tree-level onn-shell CK duality for longitudinal gluons and ghosts

- Using Lagrangian perspective, all CK failures can simultaneously be compensated by terms of the form
$(\partial \cdot A) Y[A]$

Colour-Kinematic Duality Redux

Tree-level onn-shell CK duality for longitudinal gluons and ghosts

- Using Lagrangian perspective, all CK failures can simultaneously be compensated by terms of the form

Gauge-fixing func. $G[A]: \quad \partial \cdot A \quad \mapsto \quad G^{\prime}[A]=\partial \cdot A-2 \xi Y$
Nakanishi-Lautrup $b: \quad b \quad \mapsto \quad b^{\prime} \quad=\quad b+Y$

Colour-Kinematic Duality Redux

Tree-level onn-shell CK duality for longitudinal gluons and ghosts

- Using Lagrangian perspective, all CK failures can simultaneously be compensated by terms of the form

$$
(\partial \cdot A) Y[A]
$$

- Can add through the gauge-fixing functional

Gauge-fixing func. $G[A]: \quad \partial \cdot A \mapsto G^{\prime}[A]=\partial \cdot A-2 \xi Y$
Nakanishi-Lautrup $b: \quad b \quad \mapsto \quad b^{\prime} \quad=\quad b+Y$

- Longitudinal CK duality \Leftrightarrow gauge choice [BJKмsw '20, '21]

Colour-Kinematic Duality Redux

Tree-level CK duality for ghosts

- Use on-mass-shell BRST Ward identities

$$
Q_{\mathrm{YM}}^{\operatorname{lin}} A_{\mathrm{phys}}=0, \quad Q_{\mathrm{YM}}^{\operatorname{lin}} A_{\mathrm{f}}=c, \quad Q_{\mathrm{YM}}^{\operatorname{lin}} b=\bar{c}
$$

- Analogous to global SUSY Ward identities

$$
0=\langle 0|\left[Q_{\mathrm{YM}}^{\operatorname{lin}}, O_{1} \cdots O_{n}\right]|0\rangle
$$

- Transfers CK duality onto ghosts through

$$
\mathcal{L}_{\text {ghost }}^{\mathrm{YM}}=\bar{c} Q_{\mathrm{YM}}\left(\partial^{\mu} A_{\mu}-2 \xi Y\right)
$$

Colour-Kinematic Duality Redux

On-shell tree-level CK manifesting BRST action

- Introduce new auxiliary gluons and ghosts [BJKMSW '20, '21]:

$$
\begin{aligned}
\mathcal{L}_{\text {BRST CK-dual }}^{\text {YT }}= & \frac{1}{2} A_{a \mu} \square A^{\mu a}-\bar{c}_{a} \square c^{a}+\frac{1}{2} b_{a} \square b^{a}+\xi b_{a} \sqrt{\square} \partial_{\mu} A^{\mu a} \\
& -K_{1 a}^{\mu} \square \bar{K}_{\mu}^{1 a}-K_{2 a}^{\mu} \square \bar{K}_{\mu}^{2 a}-g f_{a b c} \bar{c}^{a} \partial^{\mu}\left(A_{\mu}^{b} c^{c}\right) \\
& -\frac{1}{2} B_{a}^{\mu \nu \kappa} \square B_{\mu \nu \kappa}^{a}+g f_{a b c}\left(\partial_{\mu} A_{\nu}^{a}+\frac{1}{\sqrt{2}} \partial^{\kappa} B_{\kappa \mu \nu}^{a}\right) A^{\mu b} A^{\nu c} \\
\boxed{\sigma} \text { ag. aux. fields } & -g f_{a b c}\left\{K_{1}^{a \mu}\left(\partial^{\nu} A_{\mu}^{b}\right) A_{\nu}^{c}+\left[\left(\partial^{\kappa} A_{\kappa}^{a}\right) A^{b \mu}+\bar{c}^{a} \partial^{\mu} c^{b}\right] \bar{K}_{\mu}^{1 c}\right\} \\
& +g f_{a b c}\left\{K_{2}^{a \mu}\left[\left(\partial^{\nu} \partial_{\mu} c^{b}\right) A_{\nu}^{c}+\left(\partial^{\nu} A_{\mu}^{b}\right) \partial_{\nu} c^{c}\right]+\bar{c}^{a} A^{b \mu} \bar{K}_{\mu}^{2 c}\right\}+\cdots \\
& \text { Y ghost aux. fields }
\end{aligned}
$$

- Cubic Feynman diagrams yield CK dual tree amplitudes for physical gluons and unphysical longitudinal modes and ghosts (on-shell)

Colour-Kinematic Duality Redux

Lifting to off-shell CK duality

- Relaxing on-shell to off-shell momenta CK duality violated by terms

$$
p_{i}^{2} F_{i}
$$

for each external momentum p_{i} (unphysical gluons and ghosts)

- Can compensate with terms $\propto F \square \Phi$ with non-local field redefinition

$$
\Phi \mapsto \Phi+F, \quad \Phi \square \Phi \mapsto \Phi \square \Phi+F \square \Phi+\cdots
$$

so that off-shell tree-level BRST CK duality is manifest \rightarrow loop CK duality [BJKMSW '21]

Colour-Kinematic Duality Redux

Lifting to off-shell CK duality

- Relaxing on-shell to off-shell momenta CK duality violated by terms

$$
p_{i}^{2} F_{i}
$$

for each external momentum p_{i} (unphysical gluons and ghosts)

- Can compensate with terms $\propto F \square \Phi$ with non-local field redefinition

$$
\Phi \mapsto \Phi+F, \quad \Phi \square \Phi \mapsto \Phi \square \Phi+F \square \Phi+\cdots
$$

so that off-shell tree-level BRST CK duality is manifest \rightarrow loop CK duality [BJKMSW '21]

- Price to pay: Jacobian determinants \rightarrow counterterms ensuring unitarity
- In this sense, this manifest loop CK duality is anomalous on the physical Hilbert space (but is exact on the complete pre-Hilbert space)

Colour-Kinematic Duality Redux

Perfect off-shell 'BRST-Lagrangian CK duality'

- BV YM action with manifest off-shell CK duality

$$
S_{\mathrm{BV} \text { CK-dual }}^{\mathrm{YM}}=\int C_{i j} C_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}+A_{i a}^{+}(\underbrace{Q_{j}^{i} A^{j a}+Q_{j k}^{i} f_{b c}^{a} A^{j b} A^{k c}}_{Q_{B V} A})
$$

- Rendered cubic with infinite tower of aux. fields

$$
A^{i a}=(A_{\mu}^{a}, b^{a}, \bar{c}^{a}, c^{a}, \underbrace{G_{\mu \nu \rho}^{a}, \bar{K}_{\mu}^{a}, \ldots}_{\text {auxiliaries }})
$$

- $c_{a b}, f^{a b c}$ gauge group Killing form and structure constants
- $C_{i j}, F^{i j k}$ are differential operators that satisfy the same identities as $c_{a b}, f^{a b c}$ as operator equations

$$
\begin{array}{lllr}
c_{a b}=c_{(a b)} & f_{a b c}=f_{[a b c]} & c_{a(b} f_{c) d}^{a}=0 & f_{[a b \mid d} f_{c] e}^{d}=0 \\
C_{i j}=C_{(i j)} & F_{i j k}=F_{[i j k]} & C_{i(j} F_{k)!}^{i}=0 & F_{[j| |} F_{\mid k] m}^{\prime}=0
\end{array}
$$

Colour-Kinematic Duality Redux

Some comments

- Action has manifest CK duality
- The $F_{i j k}$ are the structure constants of a kinematic Lie algebra mirroring the usual colour structure constants $f_{a b c}$. Cf. [Monteiro-O'Connell '11, '13;

Bjerrum-Bohr-Damgaard-Monteiro-O'Connell '12; Fu-Krasnov '16;
Chen-Johansson-Teng-Wang 19; Campiglia-Nagy '21...]

- Corollary: loop amplitude integrands are CK dual automatically
- Anomalous, in a controlled manner, due to Jacobian counterterms that ensure (generalised) unitarity

Colour-Kinematic Duality Redux

Some comments

- Action has manifest CK duality
- The $F_{i j k}$ are the structure constants of a kinematic Lie algebra mirroring the usual colour structure constants $f_{a b c}$. Cf. [Monteiro-O'Connell '11, '13;
Bjerrum-Bohr-Damgaard-Monteiro-O'Connell '12; Fu-Krasnov '16;
Chen-Johansson-Teng-Wang 19; Campiglia-Nagy '21...]
- Corollary: loop amplitude integrands are CK dual automatically
- Anomalous, in a controlled manner, due to Jacobian counterterms that ensure (generalised) unitarity
- Shift in point of view:
- A consistent field theory formulation of CK duality
- Anomaly: generalised unitarity proof of loop double copy doesn't go through, at least not straightforwardly
- Departure from standard articulation of loop integrand CK duality: all desiderata except generalised unitarity
- Latter replaced with off-shell CK duality of BV action (without Jacobian counterterms): alternative proof of double copy
§2.

BV Lagrangian Syngamy

BV Lagrangian Syngamy

Syngamatic reproduction of factorable theories

BV Lagrangian Syngamy

Yang-Mills squared
$-S_{\text {BRST-CK }}^{\mathrm{YM}} \otimes \tilde{S}_{\text {BRST-CK }}^{\mathrm{YM}} \rightarrow \mathcal{N}=0$ supergravity

$$
\begin{array}{ll}
A^{i a}=\left(A_{\mu}{ }^{a}, \text { ghosts, auxiliaries }\right) & S_{\mathrm{CK}}^{Y M}=\int C_{i j} c_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c} \\
A^{i \tilde{z}}=\left(h_{\mu \nu}, B_{\mu \nu}, \varphi, \text { ghosts, auxiliaries }\right) & S_{\mathrm{DC}}^{\mathcal{N}=0}=\int C_{i j} C_{i \tilde{j}} A^{i \tilde{Z}} \square A^{i \tilde{j}}+F_{i j k} F_{\tilde{i} \tilde{k}} A^{i \tilde{z}} A^{i \tilde{j}} A^{k \tilde{k}}
\end{array}
$$

- $G \times \tilde{G}$ bi-adjoint scalar theory,

$$
S_{D C}^{b i-a d j}=c_{a b} \tilde{c}_{\tilde{a} \tilde{b}} \phi^{a \tilde{a}} \square \phi^{a \tilde{b}}+f_{a b c} \tilde{f}_{\tilde{a} \tilde{b} \tilde{c}} \phi^{a \tilde{a}} \phi^{b \tilde{b}} \phi^{c \tilde{c}}
$$

- Cf. scattering equation formalism [Hodges '11; Cachazo-He-Yuan '13 '14]

BV Lagrangian Syngamy

BRST-Lagrangian CK duality \Rightarrow consistent syngamy

- No mention of CK duality - overly general?
- How do we know $S_{\mathrm{DC}}^{\mathcal{N}=0}$ is equivalent to $S_{\mathrm{BRST}}^{\mathcal{N}=0}$?
- Semi-classical equivalence of $S_{\mathrm{DC}}^{\mathcal{N}=0}$ (requires on-shell tree-level CK duality)

$$
\begin{array}{cccc}
F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c} & \rightarrow & F_{i j k} F_{\tilde{\imath} \tilde{j} k} A^{i \tilde{r}} A^{j \tilde{J}} A^{k \tilde{k}} \\
\sum \frac{n c}{d} & \rightarrow & \sum \frac{n \tilde{n}}{d}
\end{array}
$$

- \Rightarrow physical (h, B, φ) tree-level amplitudes of $\mathcal{N}=0$ supergravity
- Cf. [Bern-Dennen-Huang-Kiermaier 1004.0693] for gravitons up to 6 points

BV Lagrangian Syngamy

BRST-Lagrangian CK duality \Rightarrow consistent syngamy

- No mention of CK duality - overly general?
- How do we know $S_{D C}^{\mathcal{N}=0}$ is equivalent to $S_{\mathrm{BRST}}^{\mathcal{N}=0}$?
- Semi-classical equivalence of $S_{\mathrm{DC}}^{\mathcal{N}=0}$ (requires on-shell tree-level CK duality)

$$
\begin{array}{rlcc}
F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c} & \rightarrow & F_{i j k} F_{\tilde{i} \tilde{k}} A^{i \tilde{}} A^{j \tilde{j}} A^{k \tilde{k}} \\
\sum \frac{n c}{d} & \rightarrow & \sum \frac{n \tilde{\pi}}{d}
\end{array}
$$

- \Rightarrow physical (h, B, φ) tree-level amplitudes of $\mathcal{N}=0$ supergravity
- Cf. [Bern-Dennen-Huang-Kiermaier 1004.0693] for gravitons up to 6 points
- Quantum consistency: how do we we know that there exists some BRST Q such that:

$$
Q S_{\mathrm{DC}}=0, \quad Q^{2}=0
$$

BV Lagrangian Syngamy

BRST-Lagrangian CK duality \Rightarrow consistent syngamy

- No mention of CK duality - overly general?
- How do we know $S_{\mathrm{DC}}^{\mathcal{N}=0}$ is equivalent to $S_{\mathrm{BRS}}^{\mathcal{N}=0}$?
- Semi-classical equivalence of $S_{D C}^{\mathcal{N}=0}$ (requires on-shell tree-level CK duality)

$$
\begin{array}{cccc}
F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c} & \rightarrow & F_{i j k} F_{\tilde{\imath} \tilde{\jmath} k} A^{i \tilde{\imath}} A^{j \tilde{\jmath}} A^{k \tilde{k}} \\
\sum \frac{n c}{d} & \rightarrow & \sum \frac{n \tilde{d}}{d}
\end{array}
$$

- \Rightarrow physical (h, B, φ) tree-level amplitudes of $\mathcal{N}=0$ supergravity
- Cf. [Bern-Dennen-Huang-Kiermaier 1004.0693] for gravitons up to 6 points
- Quantum consistency: how do we we know that there exists some BRST Q such that:

$$
Q S_{\mathrm{DC}}=0, \quad Q^{2}=0
$$

Answer: double-copy operator $Q_{\text {DC }}$ (requires off-shell BRST CK duality)

BV Lagrangian Syngamy

Double copy of BRST charge

- Double copy of BV action implies double copy BRST operator Q_{DC}

$$
\begin{aligned}
& S_{B V C K-d u a l}^{Y M}=\int C_{i j} c_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}+A_{i a}^{+}(\underbrace{Q^{i} j^{j a}+Q_{j k}^{i} f_{b c}^{a} A^{j b} A^{k c}}_{Q A \text { and sim. for } \tilde{Q} \tilde{A}}) \\
& Q A^{i a}=Q^{i}{ }_{j} A^{j a}+Q^{i}{ }_{j k} f^{a}{ }_{b c} A^{j b} A^{k c} \quad \tilde{Q} \tilde{A}^{\tilde{a}}=Q^{\tilde{j}}{ }_{j} \tilde{A}^{\tilde{b} \tilde{j}}+\tilde{f}^{\tilde{a}}{ }_{\tilde{b} \tilde{c}} \tilde{Q}^{\tilde{i}}{ }_{j \tilde{k}} \tilde{A}^{\tilde{b} \tilde{j}} \tilde{A}^{\tilde{c} \tilde{k}} \\
& \underbrace{\underbrace{Q^{i} A^{j \tilde{z}}+Q^{i}{ }_{j k} F^{\tilde{i}}{ }_{j \tilde{k}}{ }^{j \tilde{j}} A^{k \tilde{k}}}_{Q_{L}}+\underbrace{Q^{i}{ }_{j} A^{i \tilde{j}}+F^{{ }_{j}{ }_{j k} Q^{\tilde{j}}{ }_{j \tilde{k}} A^{j \tilde{j}} A^{k \tilde{k}}}}_{Q_{R}},}_{Q_{D C}}
\end{aligned}
$$

- Yang-Mills gauge \Rightarrow diffeomorphisms and 2-form gauge symmetries:

$$
Q_{\mathrm{DC}}=Q_{\text {diffeo }}+Q_{2 \text {-form }}+\text { trivial symmetries }
$$

Cf. [Anastasiou-LB-Duff-Hughes-Nagy '14]

BV Lagrangian Syngamy

All order double copy

- Since $F^{i j k}$ satisfy the same identities as $f^{a b c}$

$$
Q_{\mathrm{DC}} S_{\mathrm{DC}}=0, \quad Q_{\mathrm{DC}}^{2}=0
$$

BV Lagrangian Syngamy

All order double copy

- Since $F^{i j k}$ satisfy the same identities as $f^{a b c}$

$$
Q_{\mathrm{DC}} S_{\mathrm{DC}}=0, \quad Q_{\mathrm{DC}}^{2}=0
$$

- Semi-classical equivalence $+Q_{\mathrm{DC}} \Rightarrow$ quantum equivalence
- Einstein is the square of Yang-Mills (at least perturbatively)

BV Lagrangian Syngamy

All order double copy

- Since $F^{i j k}$ satisfy the same identities as $f^{a b c}$

$$
Q_{\mathrm{DC}} S_{\mathrm{DC}}=0, \quad Q_{\mathrm{DC}}^{2}=0
$$

- Semi-classical equivalence $+Q_{\mathrm{DC}} \Rightarrow$ quantum equivalence
- Einstein is the square of Yang-Mills (at least perturbatively)
- Double copy of symmetries generalises, e.g.

$$
\text { global susy } \times \text { gauge } \rightarrow \text { local susy }
$$

- Straightforward supersymmetric completion
§4.

Generalisations

Generalisations

The double copy to all orders

- Given CK duality of the tree-level physical S-matrix we can run our argument:
- Non-linear sigma model [Chen-Du '13] \rightarrow special Galileon
- Fundamental couplings [Johansson-Ochirov '14] \rightarrow plethora of supergravity theories
- Bagger-Lambert-Gustavsson [Bargheer-He-McLoughlin '12; Huang-Johansson '12] \rightarrow $D=3$ maximal supergravity

Super Yang-Mills and Supergravity

BRST-Lagrangian CK duality for super Yang-Mills

- Irreducible super Yang-Mills multiplets are CK duality respecting Cf. [Bjerrum-Bohr-Damgaard-Vanhove '09]
- Susy Ward identities: CK gluons + susy \Rightarrow CK gluini (Caveat: higher order operators can spoil this argument, since there are superamplitudes with vanishing all-gluon component)

Super Yang-Mills and Supergravity

BRST-Lagrangian CK duality for super Yang-Mills

- Irreducible super Yang-Mills multiplets are CK duality respecting Cf. [Bjerrum-Bohr-Damgaard-Vanhove '09]
- Susy Ward identities: CK gluons + susy \Rightarrow CK gluini (Caveat: higher order operators can spoil this argument, since there are superamplitudes with vanishing all-gluon component)
- CK dual BRST-Lagrangian then follows with (essentially) no new ideas

Super Yang-Mills and Supergravity

BRST-Lagrangian double copy

- $(\text { Type I super Yang-Mills })^{2}=$ Type IIA/B supergravity

$$
\begin{aligned}
& A^{i a}=\left(A_{\mu}{ }^{a}, \psi_{\alpha^{a}}{ }^{a}, \text { ghosts, aux }\right) \\
& 4^{\text {gluino }} \\
& A^{i \pi}=(h_{\mu \nu}, B_{\mu \nu}, \phi, \underbrace{\Psi_{\alpha \nu}, \Psi_{\mu \beta},}_{\text {gravitini }}, F_{\alpha \beta}, \text { ghosts, aux })
\end{aligned} \quad \text { R-R field strengths }
$$

- Local NS-R sector susy follows from super Yang-Mills factors

$$
\mathcal{Q}_{\alpha} A_{\mu}{ }^{a}=\delta^{a}{ }_{b} \gamma_{\mu \alpha}{ }^{\beta} \psi_{\beta}{ }^{b}+\cdots \quad \longrightarrow \quad \mathcal{Q}_{\alpha} h_{\mu \nu}=\gamma_{(\mu \alpha}{ }^{\beta} \psi_{\beta \nu)}+\cdots
$$

- Super $\eta, \bar{\eta}$ and Nielsen-Kallosh χ ghosts

$$
\bar{c} \otimes \psi \sim \bar{\eta}, \quad c \otimes \psi \sim \eta, \quad b \otimes \psi \sim \chi
$$

- Similar for R-NS sector

Super Yang-Mills and Supergravity

Ramond-Ramond sector

- Double copy $\psi_{\alpha} \otimes \psi_{\beta}$ gives field strengths $F_{\alpha \beta}$, not potentials:
- Representation theory

$$
\begin{array}{ll}
\text { IIA: } & \overline{16} \otimes 16=1 \oplus 45 \oplus 210 \\
\text { IIB: } & 16 \otimes 16=10 \oplus 120 \oplus 126
\end{array}
$$

- The BRST transformation of the gluino has no linear contribution, $Q_{\mathrm{BRST}} \psi=[c, \psi]$, so $\psi \otimes \psi$ cannot transform as a potential
- R-R background fields couple to worldsheet through field strengths

Super Yang-Mills and Supergravity

Ramond-Ramond sector

- Double copy $\psi_{\alpha} \otimes \psi_{\beta}$ gives field strengths $F_{\alpha \beta}$, not potentials:
- Representation theory

$$
\begin{aligned}
& \text { IIA: } \overline{16} \otimes 16=1 \oplus 45 \oplus 210 \\
& \text { IIB: } 16 \otimes 16=10 \oplus 120 \oplus 126
\end{aligned}
$$

- The BRST transformation of the gluino has no linear contribution, $Q_{\mathrm{BRST}} \psi=[c, \psi]$, so $\psi \otimes \psi$ cannot transform as a potential
- R-R background fields couple to worldsheet through field strengths
- Type IIA/B action can be written in terms of field strengths, e.g.

$$
F_{2} \wedge \star F_{2}+\tilde{F}_{4} \wedge \star F_{4}+B_{2} \wedge \tilde{F}_{4} \wedge \tilde{F}_{4}+B_{2} \wedge B_{2} \wedge F_{2} \wedge \tilde{F}_{4}-\frac{1}{3} B_{2} \wedge B_{2} \wedge B_{2} \wedge F_{2} \wedge F_{2}
$$

Super Yang-Mills and Supergravity
Sen's mechanism from double copy Ramond-Ramond sector

- Double copy R-R field strengths are elementary fields that correctly reproduce scattering amplitudes through their Feynman diagrams

$$
\left.F_{\Delta \beta} \sim \sum_{p=0}^{d} \frac{1}{p!}\left(\gamma^{\mu \ldots \mu_{i}} c\right) F_{F_{\mu} \ldots \mu_{p}}\right\} \rightarrow-\frac{1}{2}\left(F \wedge \star F-\mathrm{d} F \wedge \star \square^{-1} \mathrm{~d} F\right)+\cdots
$$

Aux. (D-P-1)-form B $\} \rightarrow-\frac{1}{2} F \wedge \star F-\xi B \wedge \mathrm{~d} F-\frac{1}{2} B \wedge \star \square B+\cdots$
Undo Feynman gauge $\} \rightarrow-\frac{1}{2} F \wedge \star F-\xi B \wedge \mathrm{~d} F+\frac{1}{2} \mathrm{~d} B \wedge \star \mathrm{~d} B+\cdots$

Super Yang-Mills and Supergravity

Sen's mechanism from double copy Ramond-Ramond sector

- Double copy R-R field strengths are elementary fields that correctly reproduce scattering amplitudes through their Feynman diagrams

$$
\begin{aligned}
\mathcal{L}_{\mathrm{R}-\mathrm{R}}^{\mathrm{DC}} & =\bar{F}^{\alpha \beta} \square^{-1} \not \partial_{\alpha}{ }^{\alpha^{\prime}} \not \partial_{\beta}^{\beta^{\prime}} F_{\alpha^{\prime} \beta^{\prime}}+\cdots \\
& \rightarrow-\frac{1}{2}\left(F \wedge \star F-\mathrm{d} F \wedge \star \square^{-1} \mathrm{~d} F\right)+\cdots \\
& \rightarrow-\frac{1}{2} F \wedge \star F-\xi B \wedge \mathrm{~d} F-\frac{1}{2} B \wedge \star \square B+\cdots \\
& \rightarrow-\frac{1}{2} F \wedge \star F-\xi B \wedge \mathrm{~d} F+\frac{1}{2} \mathrm{~d} B \wedge \star \mathrm{~d} B+\cdots
\end{aligned}
$$

- Sen's mechanism [Sen '15] generalized to arbitrary (as opposed to self-dual) field strengths [BJKMSW '21]
- Sen's mechanism was motivated by IIB string field theory, where the R-R sector is naturally given in terms of bispinors - natural double copy shadow
$\S 5$.

Homotopy CK Duality and Double Copy

Homotopy Algebras and BV Lagrangian Field Theories

- Homotopy algebras: generalise familiar (matrix, Lie...) algebras to include "higher products" satisfying "higher relations" up to homotopies

Homotopy Algebras and BV Lagrangian Field Theories

- Homotopy algebras: generalise familiar (matrix, Lie...) algebras to include "higher products" satisfying "higher relations" up to homotopies
- Lie algebras $\rightarrow L_{\infty}$-algebras, first arose in string field theory:

Vector space	Graded vector space
$\mathfrak{g}=V_{0}$	$\mathfrak{L}=\bigoplus_{n} V_{n}$
Bracket	Higher brackets
$\mu_{2}=[-,-]$	$\mu_{1}=[-], \mu_{2}=[-,-], \mu_{3}=[-,-,-], \ldots$
Relations	Relations
Antisymmetry + Jacobi	Antisymmetry + homotopyJacobi

[Zwiebach '93; Hinich-Schechtman '93]

Homotopy Algebras and BV Lagrangian Field Theories

- Homotopy algebras: generalise familiar (matrix, Lie...) algebras to include "higher products" satisfying "higher relations" up to homotopies
- Lie algebras $\rightarrow L_{\infty}$-algebras, first arose in string field theory:

Vector space	Graded vector space
$\mathfrak{g}=V_{0}$	$\mathfrak{L}=\bigoplus_{n} V_{n}$
Bracket	Higher brackets
$\mu_{2}=[-,-]$	$\mu_{1}=[-], \mu_{2}=[-,-], \mu_{3}=[-,-,-], \ldots$
Relations	Relations
Antisymmetry + Jacobi	Antisymmetry + homotopyJacobi

[Zwiebach '93; Hinich-Schechtman '93]

- Associative algebras $\rightarrow A_{\infty}$-algebras [Stasheff '63]
- Commutative algebras $\rightarrow C_{\infty}$-algebras [Kadeishvili '88]

Homotopy Algebras and BV Lagrangian Field Theories

- Chevalley-Eilenberg formulation of Lie algebra \mathfrak{g} with basis t_{a} :

$$
\begin{gathered}
\mathrm{CE}(\mathfrak{g})=\bar{T}\left(\mathfrak{g}[1]^{*}\right):=\bigoplus_{p=1}^{\infty} \operatorname{Sym}^{p}\left(\mathfrak{g}[1]^{*}\right) \\
Q t^{a}=-\frac{1}{2} f^{a}{ }_{b c} t^{b} t^{c}, \quad Q^{2}=0 \Leftrightarrow \mathrm{Jacobi}
\end{gathered}
$$

Homotopy Algebras and BV Lagrangian Field Theories

- Chevalley-Eilenberg formulation of Lie algebra \mathfrak{g} with basis t_{a} :

$$
\begin{gathered}
\mathrm{CE}(\mathfrak{g})=\bar{T}\left(\mathfrak{g}[1]^{*}\right):=\bigoplus_{p=1}^{\infty} \operatorname{Sym}^{p}\left(\mathfrak{g}[1]^{*}\right) \\
Q t^{a}=-\frac{1}{2} f^{a}{ }_{b c} t^{b} t^{c}, \quad Q^{2}=0 \Leftrightarrow \mathrm{Jacobi}
\end{gathered}
$$

- Chevalley-Eilenberg formulation of L_{∞}-algebra \mathfrak{L} with basis t_{a} :

$$
\begin{gathered}
\operatorname{CE}(\mathfrak{L})=\bar{T}\left(\mathfrak{L}[1]^{*}\right) \\
Q t^{a}=-\sum_{n} \frac{1}{n!} \mu_{n}{ }^{a}{ }_{a_{1} \cdots a_{n}} t^{a_{1}} \cdots t^{a_{n}}, \quad Q^{2}=0 \Leftrightarrow \text { homotopy Jacobi }
\end{gathered}
$$

- Any BV field theory with operator Q_{BV} corresponds to an L_{∞}-algebra in the CE picture, see e.g. [Jurco-Raspollini-Saemann-Wolf '18]

Homotopy Algebras and BV Lagrangian Field Theories

- Yang-Mills theory $\mathfrak{L}^{\mathrm{YM}}$

$$
\begin{array}{ccccccc}
\mathfrak{L}_{0}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{1}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{2}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{3}^{\mathrm{YM}} \\
c & \xrightarrow{d} & A & \xrightarrow{d^{\dagger} d} & A^{+} & \xrightarrow{d^{\dagger}} & c^{+} \\
& & & \xrightarrow{\text { Id }} & \bar{C} & & \\
& & \bar{c}^{+} & \xrightarrow{- \text { Id }} & b^{+} & &
\end{array}
$$

- Homotopy Maurer-Cartan theory \longrightarrow field strengths + gauge trans.
- Cartan-Killing form $\langle-,-\rangle_{\mathfrak{g}} \rightarrow$ cyclic structure $\langle-,-\rangle_{\mathrm{YM}}$ on $\mathfrak{L}^{\mathrm{YM}}$
- BV action $\sim \sum \frac{1}{(i+1)!}\left\langle a, \mu_{i}(a, \ldots, a)\right\rangle$

Homotopy Algebras and BV Lagrangian Field Theories

- Yang-Mills theory $\mathfrak{L}^{\mathrm{YM}}$

$$
\begin{array}{ccccccc}
\mathfrak{L}_{0}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{1}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{2}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{3}^{\mathrm{YM}} \\
c & \xrightarrow{d} & A & \xrightarrow{d^{\dagger} d} & A^{+} & \xrightarrow{d^{\dagger}} & c^{+} \\
& b & \xrightarrow{\text { ld }} & \bar{c} & & \\
& \bar{c}^{+} & \xrightarrow{\text {-ld }} & b^{+} & &
\end{array}
$$

- Homotopy Maurer-Cartan theory \longrightarrow field strengths + gauge trans.
- Cartan-Killing form $\langle-,-\rangle_{\mathfrak{g}} \rightarrow$ cyclic structure $\langle-,-\rangle_{\mathrm{YM}}$ on $\mathfrak{L}^{\mathrm{YM}}$
- BV action $\sim \sum \frac{1}{(i+1)!}\left\langle a, \mu_{i}(a, \ldots, a)\right\rangle$
- L_{∞} quasi-isomorphisms \longrightarrow physical equivalence (field redefinitions etc)
- Strictification: $\mu_{i}=0, i>2 \rightarrow$ cubic theory
- Minimal model: $\mu_{1}=0 \rightarrow$ tree scattering amplitudes

Cf. [Jurčo-Raspollini-Saemann-Wolf '18; Jurčo-Macrelli-Saemann-Wolf '19]

Colour-Kinematic-Scalar Factorisation of Yang-Mills

$-\mathfrak{L}^{\mathrm{YM}}$ factorises into $\mathfrak{c o l o u r} \otimes \mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}$

[BLKMSW '21]

Colour-Kinematic-Scalar Factorisation of Yang-Mills

$-\mathfrak{L}^{\mathrm{YM}}$ factorises into $\mathfrak{c o l o u r} \otimes \mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}$

[BLKMSW '21]

- colour: gauge group Lie algebra

Colour-Kinematic-Scalar Factorisation of Yang-Mills

- $\mathfrak{L}^{\mathrm{YM}}$ factorises into $\mathfrak{c o l o u r} \otimes \mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}$

$$
\mathfrak{L}^{\mathrm{YM}}=\underbrace{\underbrace{\mathfrak{c o l o u r}}_{L_{\infty}} \otimes \underbrace{\mathfrak{k i n e m a t i c s} \otimes_{\tau} \underbrace{\mathfrak{s c a l a r}}_{A_{\infty}}}_{C_{\infty}}}_{L_{\infty}}
$$

[BLKMSW '21]

- colour: gauge group Lie algebra
- kinematics: graded vector space of Poincaré representations of fields

$$
\begin{array}{ccccccc}
\mathbb{R}[-1] & \oplus & \left(\mathbb{R}^{d} \oplus \mathbb{R}\right) & \oplus & \mathbb{R}[1] & \oplus & \text { Auxiliaries } \\
c & & \left(A_{\mu}, b\right) & \bar{c} & & B_{\mu \nu \rho} \cdots
\end{array}
$$

- $\mathfrak{s c a l a r}$: A_{∞}-algebra of a scalar field theory

$$
\langle-,-\rangle_{\mathrm{YM}}=\langle-,-\rangle_{\mathfrak{c o l o u r}}\langle-,-\rangle_{\mathfrak{E i n e m a t i c s}}\langle-,-\rangle_{\mathfrak{s c a l a r}}
$$

Homotopy algebra of CK duality

Michel Reiterer [1912.03110]

- Proof of on-shell tree-level CK duality for physical gluons via $B V_{\infty}^{\square}$-algebra!
- Relies on the existence of a degree -1 unary map h on Zeitlin-Costello BV complex for Yang-Mills (think order formulation with A, F^{+}) satisfying

$$
h^{2}=0, \quad d h+h d=\square \quad \text { (plus some other conditions) }
$$

- h exists and is a second-order derivation up to homotopy \Rightarrow
- $B V_{\infty}^{\square}$-algebra on Zeitlin-Costello BV complex
- On-shell tree-level CK duality for physical gluons

Homotopy algebra of CK duality

Michel Reiterer [1912.03110]

- Proof of on-shell tree-level CK duality for physical gluons via $B V_{\infty}^{\square}$-algebra!
- Relies on the existence of a degree -1 unary map h on Zeitlin-Costello BV complex for Yang-Mills (think order formulation with A, F^{+}) satisfying

$$
h^{2}=0, \quad d h+h d=\square \quad \text { (plus some other conditions) }
$$

- h exists and is a second-order derivation up to homotopy \Rightarrow
- $B V_{\infty}^{\square}$-algebra on Zeitlin-Costello BV complex
- On-shell tree-level CK duality for physical gluons
- Very special: only $D=4$, no loop desiderata (ghosts, gauge-fixing)
- A little mysterious: $B V_{\infty}^{\square}$-algebra generalise famous $B V_{\infty}$-algebras (homotopy $B V$-algebras [Galvez-Carrillo-Tonks-Vallette '09]), where e.g.

$$
\Delta^{2} \square=\left(\mathrm{id}+\sigma_{(123)}+\sigma_{(123)}^{2}\right)(\mathrm{id} \otimes \Delta \square)-\left(\mathrm{id}+\sigma_{(123)}+\sigma_{(123)}^{2}\right)(\mathrm{id} \otimes \mathrm{id} \otimes \square)
$$

Homotopy algebra of CK duality

The homotopy algebra of CK duality [BJKMsw 'to appear 21]

Homotopy algebra of CK duality

The homotopy algebra of CK duality [BJKMsw 'to appear 21]

- BRST-Lagrangian CK duality $\Leftrightarrow B V^{\square}$-algebra, cf. [Getzler '93]

$$
\mathfrak{L}^{\mathrm{YM}}=\mathfrak{g} \otimes \underbrace{\mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}}_{\mathfrak{K i n} \equiv B V \square \text {-algebra }}
$$

- $B V^{\square}$-algebra comes with two products $-\cdot-$ and $[-,-]$ and three unary operators

$$
d^{2}=h^{2}=0, \quad d h+h d=\square
$$

Homotopy algebra of CK duality

The homotopy algebra of CK duality [BJKMsw 'to appear 21]

- BRST-Lagrangian CK duality $\Leftrightarrow B V^{\square}$-algebra, cf. [Getzler '93]

$$
\mathfrak{L}^{\mathrm{YM}}=\mathfrak{g} \otimes \underbrace{\mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}}_{\mathfrak{K i n} \equiv B V \square \text {-algebra }}
$$

- $B V^{\square}$-algebra comes with two products $-\cdot-$ and $[-,-]$ and three unary operators

$$
d^{2}=h^{2}=0, \quad d h+h d=
$$

- The homotopy $B V^{\square}$-algebra depends on the ambient category
- In the usual category of chain complexes d is privileged

Homotopy algebra of CK duality

The homotopy algebra of CK duality [BJKMsw 'to appear 21]

- BRST-Lagrangian CK duality $\Leftrightarrow B V^{\square}$-algebra, cf. [Getzler '93]

$$
\mathfrak{L}^{\mathrm{YM}}=\mathfrak{g} \otimes \underbrace{\mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}}_{\mathfrak{K i n} \equiv B V \square \text {-algebra }}
$$

- $B V^{\square}$-algebra comes with two products $-\cdot-$ and $[-,-]$ and three unary operators

$$
d^{2}=h^{2}=0, \quad d h+h d=
$$

- The homotopy $B V^{\square}$-algebra depends on the ambient category
- In the usual category of chain complexes d is privileged
- Introduce symmetric monoidal category of Hodge complexes (modules over twisted Hopf algebras with central element \square)

$$
d^{2}=h^{2}=0, \quad d h+h d=\square
$$

Coassociativity \Rightarrow the seven-term identity

- In this category, both d and h are a part of the ambient structure

Homotopy algebra of CK duality

The homotopy algebra of CK duality

- Homotopy algebra: $B V_{\infty / H d g}^{\square}$-algebra
- Corresponds to integrating out auxiliary fields
- Homotopy relations of $B V_{\infty / H d g-a l g e b r a ~}^{\square}$ kinematic Jacobi relations

Homotopy algebra of CK duality

The homotopy algebra of CK duality

- Homotopy algebra: $B V_{\infty / H d g}^{\square}$-algebra
- Corresponds to integrating out auxiliary fields
- Homotopy relations of $B V_{\infty / H d g-a l g e b r a ~}^{\square}$ kinematic Jacobi relations
- Computational efficiency:
- Purely tree-level calculations
- One identity at any order (the rest follow axiomatically)

$$
\begin{aligned}
& \sum_{p+q=n+2} n \text {-point tree with two internal (} p \text {-ary and } q \text {-ary) vertices } \\
&=n \text {-point tree with one internal (} n \text {-ary) vertex }
\end{aligned}
$$

- But, work with Feynman diagrams - marry with on-shell methods?

Future work

- AdS background [Zhou '21; Diwakar-Herderschee-Roiban-Teng '21...] \rightarrow Hopf algebra of universal enveloping algebra of AdS isometries
- Bagger-Lambert-Gustavsson CK duality [Bargheer-He-McLoughlin '12; Huang-Johansson '12] $\rightarrow m$-ary $B V^{\square}$ operads
- Matter coupling [Johansson-Ochirov '14] \rightarrow many-sorted $B V^{\square}$ operads
- String theory (modular envelope over) $B V_{\infty}^{L_{0}}$

$$
\{d, h\}=\square \quad \longrightarrow \quad\left\{Q, b_{0}\right\}=L_{0}
$$

Cf. $B V_{\infty}$ structure on TVOA [Galvez-Carrillo-Tonks-Vallette '09] lifting the $B V$-algebra structure on the BRST (co)homology [Lian-Zuckerman '93]

- Counterterms?

Thanks for listening

