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Gravity and gauge theory

I Gravity as a gauge theory:

I Gauge theory of Lorentz, (super) Poincaré or de Sitter symmetries
[Utiyama ’56; Kibble ’61; MacDowell-Mansouri ’77; Chamseddine-West ’77; Stelle-West 79]

I Holographic principle - AdS/CFT correspondence
[’t Hooft ’93; Susskind ’94; Maldacena ’97]

I Here, we appeal to a third and (superficially) independent perspective:

Gravity = Gauge⇥ Gauge

I The theme of gravity as the “square” of Yang-Mills has appeared in a
variety of guises going back to the KLT relations of string theory
[Kawai-Lewellen-Tye ’85] Cf. Field theory [Feynman–Morinigo–Wagner; Papini ’65]

I Bern-Carrasco-Johansson colour-kinematic (CK) duality and double-copy
of (super) Yang-Mills (plus matter) scattering amplitudes
[Bern-Carrasco-Johansson ’08, ’10; Bern-Dennen-Huang-Kiermaier ’10]



Gravity and gauge theory

I Gravity as a gauge theory:

I Gauge theory of Lorentz, (super) Poincaré or de Sitter symmetries
[Utiyama ’56; Kibble ’61; MacDowell-Mansouri ’77; Chamseddine-West ’77; Stelle-West 79]

I Holographic principle - AdS/CFT correspondence
[’t Hooft ’93; Susskind ’94; Maldacena ’97]

I Here, we appeal to a third and (superficially) independent perspective:

Gravity = Gauge⇥ Gauge

I The theme of gravity as the “square” of Yang-Mills has appeared in a
variety of guises going back to the KLT relations of string theory
[Kawai-Lewellen-Tye ’85] Cf. Field theory [Feynman–Morinigo–Wagner; Papini ’65]

I Bern-Carrasco-Johansson colour-kinematic (CK) duality and double-copy
of (super) Yang-Mills (plus matter) scattering amplitudes
[Bern-Carrasco-Johansson ’08, ’10; Bern-Dennen-Huang-Kiermaier ’10]



Gravity = Gauge ⇥ Gauge

Longstanding open questions

I Does CK duality (in some appropriate sense) hold to all orders?

I Does the double copy hold: is Einstein really the square of Yang–Mills?

I Is this restricted to the S-matrix or more general?



Gravity = Gauge ⇥ Gauge

Off-shell field theory approach

I CK duality is property of the Yang–Mills Batalin–Vilkovisky (BV) action,
up to Jacobian counter terms [BJKMSW ’21]

S
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BRST-CK =

Z
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kc

I Natural, but non-standard notion of CK duality:

I Infinite dimensional symmetry of the BV action

I Loop amplitude integrands CK dual automatically

I Anomalous - broken by Jacobian counterterms

I Generalised unitarity proof of double copy doesn’t straightforwardly apply

I Double copy of BV action is manifestly valid ! double copy to all loops

I Perturbative quantum Einstein–Hilbert gravity coupled to a Kalb–Ramond
2-form and dilaton is the square Yang–Mills theory [BJKMSW ’20, ’21]
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Gravity = Gauge ⇥ Gauge

Homotopy algebra of CK duality

I BV quantised Yang-Mills ! L1-algebra that factorises:

Bi-adjoint �3 theory YM theory N = 0 supergravity
col⌦ col⌦ scal  � col⌦ kin⌦ scal �! kin⌦ kin⌦ scal

I CK duality $ BV⇤
1-algebra Kin = kin⌦⌧ scal

I Homotopy relations $ kinematic Jacobi relations

I Only tree relations ! potentially dramatic computational speed-up



Order of Events

1. Review: BCJ CK Duality and Double-Copy

2. CK Duality Redux

3. BV Lagrangian Syngamy

4. Generalisations

5. Homotopy CK Duality and Double Copy



§1.

BCJ CK Duality and Double-Copy



Amplitudes and cubic diagrams

I Can write n-point L-loop gluon amplitude in terms of only cubic diagrams:

A
n,L
YM =

X

i2cubic diag

Z

L
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Sidi

I ci : colour numerator, built from f
abc , read off diagram i

I ni : kinematic numerator, built from p, "

I di : propagator,
Q
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Amplitudes and cubic diagrams

I Can be realised in the YM Lagrangian through auxiliary fields:

g
2[Aµ,A⌫ ][A

µ,A⌫ ] ! 1
2B

µ⌫ ⇤Bµ⌫ � g(@µA⌫ + 1p
2@


Bµ⌫)[A

µ,A⌫ ]

[Bern-Dennen-Huang-Kiermaier ’10]

I Feynman diagrams give ‘cubic’ amplitudes directly:

A
n,L
YM =

X

↵2Feynman diag

Z

L

c↵n↵

S↵d↵
=

X

i2cubic diag

Z

L
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I Example: 4-point s-channel diagram
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BCJ colour-kinematic duality conjecture

I There is an organisation of the n-point L-loop gluon amplitude:

A
n,L
YM =

X

i2cubic diag

Z

L

cini

Sidi

such that
ci + cj + ck = 0 ) ni + nj + nk = 0

ci �! �ci ) ni �! �ni

[Bern-Carrasco-Johansson ’08]

I CK duality established at tree-level
[Stieberger ’09, Bjerrum-Bohr–Damgaard–Vanhove ’09. . . Mizera ’19; Reiterer ’19]

I Significant evidence up to 4 loops in various (super)YM theories
[Carrasco–Johansson ’11; Bern–Davies–Dennen–Huang–Nohle ’13; Bern-Davies-Dennen ’14. . . ]

I Quickly becomes difficult to check: remains conjectural at the loop level
[Bern–Carrasco–Chen–Edison–Johansson–Parra-Martinez–Roiban–Zeng ’18]
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BCJ double-copy prescription

I Given CK dual amplitude of pure Yang-Mills

A
n,L
YM =

Z

L

X

i2cubic diag

cini

Sidi

SYM = 1
2g2

Z
trF ^ ?F

I Double-copy:
ci �! ni

I Gives an amplitude of N = 0 supergravity

A
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X
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Sidi
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dB ^ ?dB

where B is the Kalb-Ramond 2-form, ' is the dilaton
[Bern-Carrasco-Johansson ’08, ’10; Bern-Dennen-Huang-Kiermaier ’10]
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Implications and applications

I Conceptually compelling and computationally powerful: N = 8
supergravity four-point to 5 loops! (finite)
[Bern–Carrasco–Chen–Edison–Johansson–Parra-Martinez–Roiban–Zeng ’18]

I Can be explained by supersymmetry and E7(7) U-duality [Bjornsson–Green ’10,

Bossard–Howe–Stelle ’11; Elvang–Freedman–Kiermaier ’11; Bossard–Howe–Stelle–Vanhove ’11]

I At 7 loops any would-be cancellations are “not consequences of
supersymmetry in any conventional sense” [Bjornsson–Green ’10]

I D = 4,N = 5 supergravity finite to 4 loops, contrary to expectations:

“Enhanced” cancellations
[Bern-Davies-Dennen ’14]

I Such cancellations not seen for N = 8 at 5 loops: implications unclear
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Implications and applications

I Classical (non)perturbative solutions and gravity wave astronomy
[Monteiro–O’Connell–White ’14; Cardoso–Nagy–Nampuri ’16;

Luna–Monteiro–Nicholson–Ochirov–O’Connell–Westerberg–White ’16;

Berman–Chacón–Luna–White ’18; Kosower–Maybee–O’Connell ’18;

Bern–Cheung–Roiban–Shen–Solon–Zeng ’19; Bern–Luna–Roiban–Shen–Zeng ’20;

Chacón-Nagy-White ’21. . . ]

I Geometric/world-sheet picture: ambitwistor string theories theories and
scattering equations, e.g. non-trivial gluon and spacetime backgrounds
[Cachazo–He–Yuan ’13 ’14; Mason–Skinner ’13; Adamo–Casali–Skinner ’13;

Adamo–Casali–Mason–Nekovar ’17 ’18; Geyer–Monteiro ’18; Geyer–Mason ’19;

Geyer-Monteiro-Stark–Muchão ’21. . . ]

I Surprising applications: gauge structure of the conjectured (4, 0) phase of
M-theory [LB ’18] and twin non-Lagrangian S-folds theories [LB-Duff-Marrani ’19]



Off-shell BRST-Lagrangian double-copy

Two key ideas:
I Can CK duality and the double-copy be realised at the level of field theory?

1. CK duality manifesting actions and kinematic algebras
[Bern–Dennen–Huang–Kiermaier ’10; Tolotti–Weinzierl ’13; Cheung–Shen ’16;
Luna–Monteiro–Nicholson–Ochirov–O’Connell–Westerberg–White ’16]
[Monteiro–O’Connell ’11, ’13; Bjerrum–Bohr–Damgaard–Monteiro–O’Connell ’12;
Fu–Krasnov ’16; Chen–Johansson–Teng–Wang 19; Campiglia-Nagy ’21. . . ]

2. Field theory product of BRST gauge theories and Lagrangian double-copy
[Bern–Dennen–Huang–Kiermaier ’10; Anastasiou–LB-Duff–Hughes–Nagy ’14; LB ’17;
Anastasiou–LB–Duff-Nagy–Zoccali ’18; LB–Jubb–Makwana–Nagy ’20; LB-Nagy ’20]

I Covariant Color-Kinematics Duality: a closed-form, analytic expression for
all tree-level BCJ numerators in YM theory! [Cheung-Mangan ’21]

I Today: the YM BV action admits a natural form of ‘anomalous’ CK
duality that immediately implies the double copy to all orders
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Lighting overview

Step 1. Cubic tree-level off-shell CK duality manifesting Yang-Mills BRST-action:

S
YM
BRST-CK =

Z
CijcabA

ia⇤A
ja + Fijk fabcA

ia
A

jb
A

kc

Step 2. BRST-action double-copy:

SDC =

Z
CijCı̃|̃A

i ı̃⇤A
j |̃ + FijkFı̃|̃k̃A

i ı̃
A

j |̃
A

kk̃

Step 3. Double-copy BRST operator:

(QYM, Q̃YM) �! QDC = Qdiffeo + Q2-form + trivial symmetries

Step 4. Assuming tree-level physical CK duality, perturbative quantum equivalence:

QDC
2 = QDCSDC = 0 ) SDC ⇠= S

N=0
BRST

Corollary: Loop amplitude (integrands) computed from Feynman diagrams of
S

YM
BRST-CK manifest CK duality, up to counterterms needed for unitarity,

and double-copy correctly to give amplitudes of N = 0 supegravity



§2.

Colour-Kinematics Duality Redux



Colour-Kinematic Duality Redux

Manifest physical tree-level CK duality
I There is a YM action such that the Feynman diagrams yield amplitudes

manifesting CK duality for tree-level amplitudes:

S
YM
on-shell CK =

1X

n=2

Z
L(n)

YM ⇠ A⇤A+ @AAA+
⇤
⇤AAAA+

@3

⇤2AAAAA+ · · ·

[Bern–Dennen–Huang–Kiermaier 1004.0693; Tolotti–Weinzierl 1306.2975]
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Colour-Kinematic Duality Redux

Manifest physical tree-level CK duality
I This can be “strictified” to have only cubic interactions through infinite

tower of auxiliaries [BJKMSW ’21]

S
YM
on-shell CK = tr

Z
d
D
x

1
2Aµ ⇤A

µ + 1
2g@µA⌫ [A

µ,A⌫ ]

1
2B

µ⌫ ⇤Bµ⌫ � g(@µA⌫ + 1p
2@


Bµ⌫)[A

µ,A⌫ ]

+ 1
2B

µ⌫ ⇤Bµ⌫ � g(@µA⌫ + 1p
2@


Bµ⌫)[A

µ,A⌫ ]

+ C
µ⌫ ⇤ C̄µ⌫ + C

µ⌫ ⇤ C̄µ⌫ + C
µ⌫� ⇤ C̄µ⌫� +

+ gC
µ⌫ [Aµ,A⌫ ] + g@µC

µ⌫[A⌫ ,A]� g
2@µC

µ⌫�[@[⌫A],A�]

+ gC̄
µ⌫� 1

2 [@

C̄�µ, @

�
A⌫ ] + [@

C̄�⌫µ,A
�]
�
+ · · ·

[Bern–Dennen–Huang–Kiermaier ’10]

I Purely cubic Feynman diagrams �!

A
tree
n =

X

i

cini

di
s.t. ci + cj + ck = 0) ni + nj + nk = 0

µ
4point aux field

5point aux fields



Colour-Kinematic Duality Redux

Generalise to off-shell BRST CK duality
I Does not imply loop-level CK duality, e.g. unphysical off-shell modes

propagate in the loops

I To lift to loop-level we should include off-shell unphysical/ghost modes in
the external states so that we can glue trees into loops:

1. Longitudinal gluons - gauge choice

2. Ghosts - BRST Ward identities

3. Off-shell - nonlocal field redefinitions (invisible on-shell)

I 3. ) induces Jacobian counterterms that cancel spurious modes
[BJKMSW ’21]
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Colour-Kinematic Duality Redux

Tree-level CK duality for longitudinal gluons
I Relax transversality pn · "n 6= 0 ) tree CK duality fails

I By analogy can compensate with new non-zero vertices [BJKMSW ’20]:

I We can add them to the action without changing the physics [BJKMSW ’20]



Colour-Kinematic Duality Redux

Tree-level onn-shell CK duality for longitudinal gluons and ghosts
I Using Lagrangian perspective, all CK failures can simultaneously be

compensated by terms of the form

(@ · A)Y [A]

I Can add through the gauge-fixing functional

Gauge-fixing func. G [A]: @ · A 7! G
0[A] = @ · A� 2⇠Y

Nakanishi-Lautrup b: b 7! b
0 = b + Y

I Longitudinal CK duality , gauge choice [BJKMSW ’20, ’21]
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Nakanishi-Lautrup b: b 7! b
0 = b + Y

I Longitudinal CK duality , gauge choice [BJKMSW ’20, ’21]



Colour-Kinematic Duality Redux

Tree-level CK duality for ghosts
I Use on-mass-shell BRST Ward identities

Q
lin
YMAphys = 0, Q

lin
YMAf = c, Q

lin
YMb = c̄

I Analogous to global SUSY Ward identities

0 = h0|[Q lin
YM,O1 · · ·On]|0i

I Transfers CK duality onto ghosts through

LYM
ghost = c̄QYM(@µ

Aµ � 2⇠Y )

At C

a

Ab E



Colour-Kinematic Duality Redux

On-shell tree-level CK manifesting BRST action
I Introduce new auxiliary gluons and ghosts [BJKMSW ’20, ’21]:

LYM
BRST CK-dual = 1

2Aaµ⇤A
µa � c̄a⇤c

a + 1
2ba⇤b

a + ⇠ ba
p
⇤ @µAµa

� K
µ
1a⇤K̄

1a
µ � K

µ
2a⇤K̄

2a
µ � gfabc c̄

a@µ(Ab
µc

c)

� 1
2B

µ⌫
a ⇤B

a
µ⌫ + gfabc

⇣
@µA

a
⌫ + 1p

2@

B

a
µ⌫

⌘
A

µb
A

⌫c

� gfabc

n
K

aµ
1 (@⌫

A
b
µ)A

c
⌫ + [(@

A
a
)A

bµ + c̄
a@µ

c
b]K̄ 1c

µ

o

+ gfabc

n
K

aµ
2

h
(@⌫@µc

b)Ac
⌫ + (@⌫

A
b
µ)@⌫c

c
i
+ c̄

a
A

bµ
K̄

2c
µ

o
+ · · ·

I Cubic Feynman diagrams yield CK dual tree amplitudes for physical gluons
and unphysical longitudinal modes and ghosts (on-shell)

long aux fields

ghost aux fields



Colour-Kinematic Duality Redux

Lifting to off-shell CK duality
I Relaxing on-shell to off-shell momenta CK duality violated by terms

p
2
i Fi

for each external momentum pi (unphysical gluons and ghosts)

I Can compensate with terms / F⇤� with non-local field redefinition

� 7! �+ F , �⇤� 7! �⇤�+ F⇤�+ · · ·

so that off-shell tree-level BRST CK duality is manifest ! loop CK duality
[BJKMSW ’21]

I Price to pay: Jacobian determinants ! counterterms ensuring unitarity

I In this sense, this manifest loop CK duality is anomalous on the physical
Hilbert space (but is exact on the complete pre-Hilbert space)
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Colour-Kinematic Duality Redux

Perfect off-shell ‘BRST-Lagrangian CK duality’
I BV YM action with manifest off-shell CK duality

S
YM
BV CK-dual =

Z
CijcabA

ia⇤A
ja+Fijk fabcA

ia
A

jb
A

kc+A
+
ia

⇣
Q

i
jA

ja + Q
i
jk f

a
bcA

jb
A

kc
⌘

I Rendered cubic with infinite tower of aux. fields

A
ia = (Aµ

a, ba, c̄a, ca,Gµ⌫⇢
a, K̄µ

a, . . .| {z }
auxiliaries

)

I cab, f
abc gauge group Killing form and structure constants

I Cij ,F
ijk are differential operators that satisfy the same identities as

cab, f
abc as operator equations

cab = c(ab) fabc = f[abc] ca(bf
a
c)d = 0 f[ab|d f

d
c]e = 0

Cij = C(ij) Fijk = F[ijk] Ci(jF
i
k)l = 0 F[ij|lF

l
|k]m = 0

Antifields

QBvA



Colour-Kinematic Duality Redux

Some comments
I Action has manifest CK duality

I The Fijk are the structure constants of a kinematic Lie algebra mirroring
the usual colour structure constants fabc . Cf. [Monteiro–O’Connell ’11, ’13;

Bjerrum–Bohr–Damgaard–Monteiro–O’Connell ’12; Fu–Krasnov ’16;

Chen–Johansson–Teng–Wang 19; Campiglia-Nagy ’21. . . ]

I Corollary: loop amplitude integrands are CK dual automatically

I Anomalous, in a controlled manner, due to Jacobian counterterms that
ensure (generalised) unitarity

I Shift in point of view:

I A consistent field theory formulation of CK duality

I Anomaly: generalised unitarity proof of loop double copy doesn’t go
through, at least not straightforwardly

I Departure from standard articulation of loop integrand CK duality: all
desiderata except generalised unitarity

I Latter replaced with off-shell CK duality of BV action (without Jacobian
counterterms): alternative proof of double copy
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BV Lagrangian Syngamy



BV Lagrangian Syngamy

Syngamatic reproduction of factorable theories

Parent theories Factorisation Daughter theories

Cij C̃ı̃|̃�
i ı̃⇤�j |̃ + Fijk F̃ı̃|̃k̃

�i ı̃�j |̃�kk̃

cabCij�
ai⇤�aj + fabc Fijk�

ai�bj�ck

c̃
ãb̃

Cij�
ãi⇤�ãj + f̃

ãb̃c̃
Fijk�

ãi�b̃j�c̃k

cIJ�
I ⇤�J + fIJK�I�J�K

c̃
Ĩ J̃

�̃Ĩ ⇤ �̃J̃ + f̃
Ĩ J̃K̃

�̃Ĩ �̃J̃ �̃K̃

cab C̃ij�
aı̃⇤�a|̃ + fabc F̃ı̃|̃k̃

�aı̃�b|̃�ck̃

c̃
ãb̃

C̃ı̃|̃�
ãı̃⇤�̃ã|̃ + f̃

ãb̃c̃
F̃
ı̃|̃k̃

�̃ãı̃�̃b̃|̃�̃c̃ k̃

cab c̃ãb̃
�aã⇤�ab̃ + fabc f̃ãb̃c̃

�aã�bb̃�cc̃

Fusion

pkg

syngamy

la
Factorise
meiosis a

Zerothcopy I



BV Lagrangian Syngamy

Yang–Mills squared
I S

YM
BRST-CK ⌦ S̃

YM
BRST-CK ! N = 0 supergravity

Aia = (Aµ
a, ghosts, auxiliaries) SYM

CK =
R
Cij cabAia⇤Aja + Fijk fabcAiaAjbAkc

Ai ı̃ = (hµ⌫ ,Bµ⌫ ,', ghosts, auxiliaries) SN=0
DC =

R
CijCı̃|̃Ai ı̃⇤Aj |̃ + FijkFı̃|̃k̃A

i ı̃Aj |̃Akk̃

I G ⇥ G̃ bi-adjoint scalar theory,

S
bi-adj
DC = cab c̃ãb̃�

aã⇤�ab̃ + fabc f̃ãb̃c̃�
aã�bb̃�cc̃

I Cf. scattering equation formalism [Hodges ’11; Cachazo–He–Yuan ’13 ’14]



BV Lagrangian Syngamy

BRST-Lagrangian CK duality ) consistent syngamy
I No mention of CK duality - overly general?

I How do we know S
N=0
DC is equivalent to S

N=0
BRST?

I Semi-classical equivalence of SN=0
DC (requires on-shell tree-level CK duality)

Fijk fabcA
ia
A

jb
A

kc ! FijkFı̃|̃k̃A
i ı̃
A

j |̃
A

kk̃

P nc
d !

P nñ
d

I ) physical (h,B,') tree-level amplitudes of N = 0 supergravity

I Cf. [Bern-Dennen-Huang-Kiermaier 1004.0693] for gravitons up to 6 points

I Quantum consistency: how do we we know that there exists some BRST
Q such that:

QSDC = 0, Q
2 = 0

Answer: double-copy operator QDC (requires off-shell BRST CK duality)
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BV Lagrangian Syngamy

Double copy of BRST charge
I Double copy of BV action implies double copy BRST operator QDC

S
YM
BV CK-dual =

Z
CijcabA

ia⇤A
ja+Fijk fabcA

ia
A

jb
A

kc+A
+
ia

⇣
Q

i
jA

ja + Q
i
jk f

a
bcA

jb
A

kc
⌘

QA
ia = Q

i
jA

ja + Q
i
jk f

a
bcA

jb
A

kc
Q̃Ã

ãi = Q
ı̃
|̃Ã

b̃|̃ + f̃
ã
b̃c̃Q̃

ı̃
|̃k̃ Ã

b̃|̃
Ã

c̃ k̃

Q
i
jA

j ı̃ + Q
i
jkF

ı̃
|̃k̃A

j |̃
A

kk̃

| {z }
QL

+Q
ı̃
|̃A

i |̃ + F
i
jkQ

ı̃
|̃k̃A

j |̃
A

kk̃

| {z }
QR| {z }

QDC

I Yang-Mills gauge ) diffeomorphisms and 2-form gauge symmetries:

QDC = Qdiffeo + Q2-form + trivial symmetries

Cf. [Anastasiou-LB-Duff-Hughes-Nagy ’14]

AA andsdmfor AN

I I



BV Lagrangian Syngamy

All order double copy
I Since F

ijk satisfy the same identities as f
abc

QDCSDC = 0, Q
2
DC = 0

I Semi-classical equivalence + QDC ) quantum equivalence

I Einstein is the square of Yang–Mills (at least perturbatively)

I Double copy of symmetries generalises, e.g.

global susy ⇥ gauge ! local susy

I Straightforward supersymmetric completion
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BV Lagrangian Syngamy
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Generalisations



Generalisations

The double copy to all orders
I Given CK duality of the tree-level physical S-matrix we can run our

argument:

I Non-linear sigma model [Chen-Du ‘13] ! special Galileon

I Fundamental couplings [Johansson-Ochirov ‘14] ! plethora of supergravity
theories

I Bagger–Lambert–Gustavsson [Bargheer-He-McLoughlin ’12; Huang-Johansson ’12]!
D = 3 maximal supergravity



Super Yang–Mills and Supergravity

BRST-Lagrangian CK duality for super Yang–Mills
I Irreducible super Yang–Mills multiplets are CK duality respecting

Cf. [Bjerrum-Bohr–Damgaard–Vanhove ‘09]

I Susy Ward identities: CK gluons + susy ) CK gluini
(Caveat: higher order operators can spoil this argument, since there are
superamplitudes with vanishing all-gluon component)

I CK dual BRST-Lagrangian then follows with (essentially) no new ideas
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Super Yang–Mills and Supergravity

BRST-Lagrangian double copy
I (Type I super Yang–Mills)2 = Type IIA/B supergravity

A
ia = (Aµ

a, ↵
a, ghosts, aux)

A
i |̃ = (hµ⌫ ,Bµ⌫ ,�, ↵⌫ , µ� ,F↵� , ghosts, aux)

I Local NS-R sector susy follows from super Yang–Mills factors

Q↵Aµ
a = �ab�µ↵

� �
b + · · · �! Q↵hµ⌫ = �(µ↵

� �⌫) + · · ·

I Super ⌘, ⌘̄ and Nielsen–Kallosh � ghosts

c̄ ⌦  ⇠ ⌘̄ , c ⌦  ⇠ ⌘ , b ⌦  ⇠ �

I Similar for R–NS sector

glaino ft
R R fieldstrengths

gravitini



Super Yang–Mills and Supergravity

Ramond–Ramond sector
I Double copy  ↵ ⌦  � gives field strengths F↵� , not potentials:

I Representation theory

IIA: 16 ⌦ 16 = 1 � 45 � 210
IIB: 16 ⌦ 16 = 10 � 120 � 126

I The BRST transformation of the gluino has no linear contribution,
QBRST = [c, ], so  ⌦  cannot transform as a potential

I R-R background fields couple to worldsheet through field strengths

I Type IIA/B action can be written in terms of field strengths, e.g.

F2^?F2+F̃4^?F4+B2^F̃4^F̃4+B2^B2^F2^F̃4� 1
3B2^B2^B2^F2^F2
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Super Yang–Mills and Supergravity

Sen’s mechanism from double copy Ramond–Ramond sector
I Double copy R–R field strengths are elementary fields that correctly

reproduce scattering amplitudes through their Feynman diagrams

LDC
R–R = F

↵� ⇤�1 /@↵
↵0
/@�

�0
F↵0�0 + · · ·

! � 1
2

�
F ^ ?F � dF ^ ?⇤�1dF

�
+ · · ·

! � 1
2F ^ ?F � ⇠B ^ dF � 1

2B ^ ?⇤B + · · ·

! � 1
2F ^ ?F � ⇠B ^ dF + 1

2dB ^ ?dB + · · ·

I Sen’s mechanism [Sen ‘15] generalized to arbitrary (as opposed to self-dual)
field strengths [BJKMSW ‘21]

I Sen’s mechanism was motivated by IIB string field theory, where the R–R
sector is naturally given in terms of bispinors - natural double copy shadow

directfromdoublecopy

Fap It Crm cEmup

Aux D pDformB

UndoFeynmangauge



Super Yang–Mills and Supergravity

Sen’s mechanism from double copy Ramond–Ramond sector
I Double copy R–R field strengths are elementary fields that correctly

reproduce scattering amplitudes through their Feynman diagrams

LDC
R–R = F

↵� ⇤�1 /@↵
↵0
/@�

�0
F↵0�0 + · · ·

! � 1
2

�
F ^ ?F � dF ^ ?⇤�1dF

�
+ · · ·

! � 1
2F ^ ?F � ⇠B ^ dF � 1

2B ^ ?⇤B + · · ·

! � 1
2F ^ ?F � ⇠B ^ dF + 1

2dB ^ ?dB + · · ·

I Sen’s mechanism [Sen ‘15] generalized to arbitrary (as opposed to self-dual)
field strengths [BJKMSW ‘21]

I Sen’s mechanism was motivated by IIB string field theory, where the R–R
sector is naturally given in terms of bispinors - natural double copy shadow



§5.

Homotopy CK Duality and Double Copy



Homotopy Algebras and BV Lagrangian Field Theories

I Homotopy algebras: generalise familiar (matrix, Lie. . . ) algebras to
include “higher products” satisfying “higher relations” up to homotopies

I Lie algebras ! L1-algebras, first arose in string field theory:

Vector space Graded vector space

g = V0 L =
L

n Vn

Bracket Higher brackets

µ2 = [�,�] µ1 = [�], µ2 = [�,�], µ3 = [�,�,�], . . .
Relations Relations

Antisymmetry + Jacobi Antisymmetry + homotopyJacobi

[Zwiebach ’93; Hinich–Schechtman ’93]

I Associative algebras ! A1-algebras [Stasheff ’63]

I Commutative algebras ! C1-algebras [Kadeishvili ’88]
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Homotopy Algebras and BV Lagrangian Field Theories

I Chevalley–Eilenberg formulation of Lie algebra g with basis ta:

CE(g) = T̄ (g[1]⇤) :=
1M

p=1

Symp (g[1]⇤)

Qt
a = � 1

2 f
a
bct

b
t
c , Q

2 = 0, Jacobi

I Chevalley–Eilenberg formulation of L1-algebra L with basis ta:

CE(L) = T̄ (L[1]⇤)

Qt
a = �

X

n

1
n!µn

a
a1···an t

a1 · · · tan , Q
2 = 0, homotopy Jacobi

I Any BV field theory with operator QBV corresponds to an L1-algebra in
the CE picture, see e.g. [Jurco-Raspollini-Saemann-Wolf ’18]
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Homotopy Algebras and BV Lagrangian Field Theories

I Yang-Mills theory LYM

LYM
0 � LYM

1 � LYM
2 � LYM

3

c
d�! A

d†d�! A
+ d†�! c

+

b
Id�! c̄

c̄
+ �Id�! b

+

I Homotopy Maurer-Cartan theory �! field strengths + gauge trans.

I Cartan-Killing form h�,�ig ! cyclic structure h�,�iYM on LYM

I BV action ⇠
P 1

(i+1)! ha, µi (a, . . . , a)i

I L1 quasi-isomorphisms �! physical equivalence (field redefinitions etc)

I Strictification: µi = 0, i > 2 ! cubic theory

I Minimal model: µ1 = 0 ! tree scattering amplitudes
Cf. [Jurčo-Raspollini-Saemann-Wolf ‘18; Jurčo-Macrelli-Saemann-Wolf ‘19]
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Colour-Kinematic-Scalar Factorisation of Yang-Mills

I LYM factorises into colour⌦ kinematics⌦⌧ scalar

LYM = colour| {z }
L1

⌦ kinematics⌦⌧ scalar| {z }
A1| {z }

C1| {z }
L1

[BLKMSW ’21]

I colour: gauge group Lie algebra

I kinematics: graded vector space of Poincaré representations of fields

R[�1] �
�
Rd �R

�
� R[1] � Auxiliaries

c (Aµ, b) c̄ Bµ⌫⇢ · · ·

I scalar: A1-algebra of a scalar field theory

h�,�iYM = h�,�icolourh�,�ikinematicsh�,�iscalar
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R[�1] �
�
Rd �R

�
� R[1] � Auxiliaries

c (Aµ, b) c̄ Bµ⌫⇢ · · ·

I scalar: A1-algebra of a scalar field theory

h�,�iYM = h�,�icolourh�,�ikinematicsh�,�iscalar
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Homotopy algebra of CK duality

Michel Reiterer [1912.03110]

I Proof of on-shell tree-level CK duality for physical gluons via BV
⇤
1-algebra!

I Relies on the existence of a degree -1 unary map h on Zeitlin-Costello BV
complex for Yang–Mills (think order formulation with A,F+) satisfying

h
2 = 0, dh + hd = ⇤ (plus some other conditions)

I h exists and is a second-order derivation up to homotopy )
I BV⇤

1-algebra on Zeitlin-Costello BV complex

I On-shell tree-level CK duality for physical gluons

I Very special: only D = 4, no loop desiderata (ghosts, gauge-fixing)

I A little mysterious: BV
⇤
1-algebra generalise famous BV1-algebras

(homotopy BV -algebras [Galvez-Carrillo–Tonks–Vallette ‘09]), where e.g.

�2⇤ = (id+ �(123) + �2
(123))(id⌦�⇤)� (id+ �(123) + �2

(123))(id⌦ id⌦⇤)
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Homotopy algebra of CK duality

The homotopy algebra of CK duality [BJKMSW ’to appear 21]

I BRST-Lagrangian CK duality , BV
⇤-algebra, cf. [Getzler ‘93]

LYM = g⌦ kinematics⌦⌧ scalar| {z }
Kin ⌘ BV⇤-algebra

I BV⇤-algebra comes with two products � ·� and [�,�] and three unary
operators

d2 = h2 = 0, dh + hd = ⇤

I The homotopy BV⇤-algebra depends on the ambient category

I In the usual category of chain complexes d is privileged

I Introduce symmetric monoidal category of Hodge complexes (modules over
twisted Hopf algebras with central element ⇤)

d2 = h2 = 0, dh + hd = ⇤
Coassociativity ) the seven-term identity

I In this category, both d and h are a part of the ambient structure
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Homotopy algebra of CK duality

The homotopy algebra of CK duality
I Homotopy algebra: BV

⇤
1/Hdg-algebra

I Corresponds to integrating out auxiliary fields

I Homotopy relations of BV⇤
1/Hdg-algebra $ kinematic Jacobi relations

I Computational efficiency:

I Purely tree-level calculations

I One identity at any order (the rest follow axiomatically)
X

p+q=n+2
n-point tree with two internal (p-ary and q-ary) vertices

= n-point tree with one internal (n-ary) vertex

I But, work with Feynman diagrams - marry with on-shell methods?
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Future work

I AdS background [Zhou ‘21; Diwakar-Herderschee-Roiban-Teng ‘21 . . . ] ! Hopf
algebra of universal enveloping algebra of AdS isometries

I Bagger-Lambert-Gustavsson CK duality [Bargheer-He-McLoughlin ’12;

Huang-Johansson ’12] ! m-ary BV
⇤ operads

I Matter coupling [Johansson-Ochirov ’14] ! many-sorted BV
⇤ operads

I String theory (modular envelope over) BV
L0
1

{d , h} = ⇤ �! {Q, b0} = L0

Cf. BV1 structure on TVOA [Galvez-Carrillo–Tonks–Vallette ‘09] lifting the
BV -algebra structure on the BRST (co)homology [Lian-Zuckerman ‘93]

I Counterterms?

Thanks for listening


