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Young diagrams : a collection of boxes arranged in a particular manner, characterised by an
integer k (total number of boxes) and its partitions {ni}

A typical Young diagram
in English notation

(left-justified rows with
non-increasing length)

k =
∑
i ni

Young diagrams provide a convenient diagrammatic way to describe the irreducible
representations of symmetric groups, general linear groups, special unitary groups. The
questions about asymptotic behaviour of representations can be translated to questions about
asymptotics of Young diagrams.

The asymptotic theory of representations is helpful in the investigation of high rank groups and
infinite dimensional groups, which are pertinent to physics.



Growth of Young diagrams

All diagrams at level k + 1 can be obtained by
adding one box to each diagram at level k in all
possible allowed ways.

Yk: Set of all Young diagrams with k boxes
λk: Young diagram at level k

Plancherel Growth Process :

Ptransition(λk, λk+1) =
1

k + 1

dimλk+1

dimλk

when λk+1 is obtained from λk by addition
of a single box, and zero, otherwise. This
is a Markovian growth process.

The probability associated to a Young dia-
gram at level k is given by the Plancherel
measure

P(λk) =
(dimλk)2

k!



Limit shape theorem : Young diagrams following Plancherel growth process converge to a
universal diagram in the large k limit when scaled appropriately. The boundary becomes smooth
under scaling, and takes a particular form, called the limit shape. [Vershik and Kerov, 1977] [Logan and Shepp, 1977]

lim
k→∞

v̂k(u) ≡ Ω(u) =

{
2
π (u sin−1 u2 +

√
4− u2) if |u| ≤ 2

|u| if |u| > 2.

Kerov introduced a differential model to capture the growth of Young diagrams.

He associated a ‘time’ parameter with Young diagrams in the continuum limit and showed that
the Young diagrams equipped with Plancherel measure follow a first order partial differential
equation termed as the automodel equation

∂tv̂(u, t) =
1

2t
(v̂(u, t)− u∂uv̂(u, t)), v̂(u, t) =

√
t v̂(u/

√
t) for t > 0

The limit shape is a unique solution of the automodel equation in far future with ∅ as initial
condition in far past.



Unitary matrix models and Young diagrams

The classical solutions of UMMs can be described in terms of asymptotic (large number of
boxes) Young diagrams.

Z =

∫
dU eS(U), U : N ×N unitary matrix

Single plaquette model:

S(U) = N

Q∑
n=1

βn
n

(
TrUn + TrU†n

)
, or S(U) = N

Q∑
n=1

an
n

(
TrUnTrU†n

)
Using the Frobenius formula∏

n

(TrUn)kn =
∑
R

χR(C(~k))TrR[U ]

a UMM can be analysed in terms of representations of the unitary group. Further, the sum
over representations of U(N) can be written as a sum over different Young diagrams

∑
R

→
∑
k

∑
{ni}

δ

(
k −

∑
i

ni

)
, n1 ≥ ..... ≥ nN

χR(C(k̃)) : character of the conjugacy class C(~k) of the permutation group Sk, k =
∑
n nkn



Large-N

We introduce new variables hi = ni − i+N such that h1 > .... > hN .

In the large-N limit, we define continuous variables

h(x) =
hi
N
, k = N2k′ where x =

i

N
, x ∈ [0, 1]

The partition function takes the form of a path integral with an effective action

Z =

∫
[Dh(x)]e−N

2Seff [h(x)]

Regarding N2 as ~−1, N →∞ is equivalent to doing a semi-classical approximation (~→ 0).
In that limit, the partition function is dominated by saddle-points of the effective action.

To characterize different dominant diagrams, we introduce a Young diagram density function

u(h) = −∂x
∂h

Since h(x) is monotonically decreasing function of x, u(h) ≤ 1.



UMM for Plancherel growth

Define a Young lattice

Y =

∞⋃
k=0

Yk

Yk can be thought of as a canonical ensemble of Young diagrams with the same macroscopic
variable k. One can then write a grand canonical partition function for the Young lattice

QY =

∞∑
k=0

zkZYk , z > 0 with ZYk =
∑
λk

P(λk)δ(k − |λk|)

QY =

∞∑
k=0

zk
∑
λk

(dimλk)2

k!
δ(k − |λk|) =

1

1− z
, z > 0

We regularise by introducing a large positive integer N and constraining the Young diagrams in
lattice Y to not have more than N rows. The regularised partition function is exactly same as
the partition function (a close cousin of Gross-Witten-Wadia model)

Zc =

∫
[dU ] eaTrUTrU†

with z identified with a. The large-N (large k) solutions of this model are well-known.



Symmetric solution of GWW: The large N solution of the saddle-point equation must be
invariant under transposition, since any two Young diagrams related to each other by
transposition have the same probability P(λk).

u(h) =

{
1 h ∈ [0, p)

1
π cos−1

[
h−1
2ξ

]
h ∈ (p, q]

with p = 1− 2ξ, q = 1 + 2ξ

Since p ≥ 0, this solution is valid for 0 ≤ ξ ≤ 1/2. The limiting value, ξ = 1/2 corresponds to
the limit shape,

Pλk = 1 +O
(

1

L

)
The Young diagram density at the limiting value ξ = 1

2 satisfies the automodel equation with

k
′

playing the role of t:

∂k′u(h, k′) +
h− 1

2k′
∂hu(h, k′) = 0

This gives an alternate proof of limit shape theorem of Vershik-Kerov and Logan-Shepp.



q-deformed Plancherel growth

0 < q < 1 is a deformation parameter

(I) [S. Kerov, ’93, E. Strahov, ’07]

Pq(λk) = (1− q)kqb(λk) dimλk

∏
1≤i<j≤N [hi − hj ]∏N

i=1[hi]!

where b(λ) =

l(λ)∑
i=1

(i− 1)λi,

The square bracket represents the q-analogue of a positive integer defined as

[x] = 1− qx

Follows from representation theory of Iwahori-Hecke algebras.

(II) [B. Eynard, ’08]

Pq(λk) =

(
dimqλk
k!

)2

= k!(1− q)2kq2b(λk)
∏

1≤i<j≤N [hi − hj ]2∏N
i=1([hi]!)2

Appears in topological string theory partition function on certain Calabi-Yau threefolds
and Gromov-Witten invariants of P1.



Grand canonical partition function :

Zq =

∞∑
k=0

∑
λk

tkPq(λk)δ(k − |λk|), t > 0

In order to go to the continuum limit, we first re-define the parameter q = e−gs , and then take
the double scaling limit N →∞ , gs → 0 such that λ = Ngs is finite.

q-automodel diagrams :

ũ(h) =
1

π
cos−1

[1 + λ2ξ2 − e−λ(h−1)

2λξ

]
, where ξ2 = tk′

-4 -2 0 2 4
u

1

2

3

4
v

supported between a = 1− 2
λ log (1 + λξ) and b = 1− 2

λ log (1− λξ). This solution is valid for

ξ ≤ 1
λ (eλ/2 − 1). The limiting value of ξ gives the q-limit shape.

q-automodel equation :

∂ξũ(h, ξ, λ) +

[
(1− λ2ξ2)eλ(h−1) − 1

]
λξ

∂hũ(h, ξ, λ) = 0



UMM for q-deformed Plancherel growth

One can diagonalise the matrices, U → {eiθ1 , ..., eiθi , ...eiθN }, and describe a UMM in terms of
eigenvalues. The large-N solutions are given in terms of the eigenvalue density

ρ(θ) =
1

N

∑
i

δ(θ − θi)

The eigenvalue density and Young diagram density are related to each other [Dutta and Gopakumar, 2008],

[Dutta and Dutta, 2016, 2017, Chattopadhyay, Dutta and Dutta, 2017]

πu(h) = θ

h2 − 2S(θ)h+ S2(θ)− π2ρ2(θ) = 0, where S(θ) =
1

2
+
∑
n

βn cosnθ

From the u(h) and above relations, one can find that for q-deformed growth process

S(θ) =
1

2
+

∞∑
n=1

ξnλn−1

n
cosnθ

Therefore, the matrix model that describes q-deformed Plancherel growth process is given by

Z =

∫
dU e

∑∞
n=1

βn
n (TrUn+TrU†n), with βn =

ξnλn−1

n



The phase space

The solutions h±(θ) of

h2 − 2S(θ)h+ S2(θ)− π2ρ2(θ) = 0

describe the boundary of a two-dimensional phase space spanned by (h, θ).
Define a phase space distribution function

ω(h, θ) = Θ

(
(h− h−(θ))(h+(θ)− h)

2

)
,

such that ω(h, θ) = 1 for h−(θ) < h < h+(θ) and zero otherwise.

u(h) =
1

2π

∫
dθ ω(h, θ), ρ(θ) =

1

2π

∫
dh ω(h, θ)

The distribution function ω(h, θ) is similar to Thomas-Fermi distribution at zero temperature

∆(p, q) = Θ(µ− h(p, q))

Comparing the two, one can find the single particle Hamiltonian density:

h(h, θ) =
h2

2
− S(θ)h+

g(θ)

2
+ µ, where g(θ) = h+(θ)h−(θ)



Phase space for automodel class:

h+(θ) = 1 + 2ξ cos θ, h−(θ) = 0



Hilbert space description : fluctuations of the limit shape

In terms of variables h̄(θ) = h(θ)− S(θ), the boundary evolution equations following from
h(h, θ) are given by (double-copy of dispersionless KdV equation )

˙̄h±(t, θ) = h̄±(t, θ)h̄′±(t, θ)

We introduce Poisson brackets

{h̄±(t, θ), h̄±(t, θ′)} = ±π~δ′(θ − θ′) and {h̄+(t, θ), h̄−(t, θ′)} = 0

such that the evolution equation follows from

˙̄h±(t, θ) = {h̄±(t, θ), Hh} where Hh =
1

2π~

∫
dh

∫
dθ ω(h, θ) h(h, θ)

We quantize the system by promoting Poisson brackets to commutation relations and study
fluctuations about the classical solutions. The modes of fluctuations satisfy Kac-Moody
algebra.

[am, an] =
1

2
mδm+n, [bm, bn] =

1

2
mδm+n, and [am, bn] = 0.

We can construct a Hilbert space over a one parameter family of vacua, which are eigenstates
of the zero modes of fluctuations.



an|s〉 = 0, bn|s〉 = 0 for n > 0

a0|s〉 = −b0|s〉 = π0|s〉 = s|s〉

We define a mapping between states and phase space geometries,

|ψ〉 → 〈ψ|h̄+(θ)|ψ〉

The ground state corresponds to a constant shift over the classical value :
〈s|h̄+|s〉 = 1

2 + s~ with zero dispersion.

An excited state |~k〉 =
∏∞
n=1(a†n)kn |s〉 corresponds to O(~) ripples (quantum excitations)

over the classical surface : The expectation value of h̄+ is same that in the ground state
with a non-zero dispersion.

Coherent states correspond to classical deformations

|τ+〉 = exp

( ∞∑
n=1

2τ+n a
†
n

n~

)
|s〉

ωτ+(θ) =
〈τ+|h̄+|τ+〉
〈τ+|τ+〉

=
1

2
+ s~ + 2

∑
n>0

τ+n cosnθ



The q-automodel diagrams correspond to coherent states

|τ+q 〉 = exp

( ∞∑
n=1

τ+n a
†
n

n~

)
|s〉, where τ+n =

ξnλn−1

n

λ→ 0 corresponds to the automodel class.

Excitations over coherent states correspond to O(~) fluctuations of the limit shape. In
particular,

exp

(
a†1ξ

~
+
∑
n>1

2αna
†
n√

n

)
|0〉 corresponds to

1

2
+ ξ cos θ + 2~

∑
n>1

√
nαn cosnθ

which is essentially the result of [Ivanov and Olshanki, 2003] about fluctuations of the limit
shape corresponding to the Plancherel growth process.

lim
k→∞

ν̂k(u) ∼ Ω(u) +
2√
k

∆(u), ∆(u) = ∆(2 cos θ) =
1

π

∞∑
n=2

αn√
n

sin(nθ)

where αn are independent Gaussian random variables with mean 0 and variance 1.



Summary

The growth processes of Young diagrams can be studied through UMMs. The Plancherel
growth process can be described as the evolution of symmetric (no-gap) phase of GWW model
while a q-deformed Plancherel growth process can be described by a single plaquette model
with parameters of matrix model depending on the deformation parameter q.

One can try to explore the holographic dual of the UMM describing the q-deformed
Plancherel growth.

The dispersionless KdV equation describes the boundary evolution of phase space
geometries of UMMs. How does the dispersive term effect the evolution?



Thank You !



Saddle-point equations

GWW :

−
∫
u(h′)dh′

h− h′
= ln

(
h

ξ

)
, where ξ2 = z

k

N2
= zk′

q-deformation I :

−
∫ hU

hL

dh′u(h′)

[
coth

λ(h− h′)
2

+
2

λ(h− h′)

]
= 1 +

2

λ
ln
h(1− e−λh)

tλk′

q-deformation II :

−
∫ hU

hL

dh′u(h′)
e−λh

e−λh − e−λh′ = − 1

λ
log

[
1− e−λh

λξ

]

w =
1− e−λh

λ

−
∫ wU

wL

dw′
u(w′)

w − w′
=

1

(1− λw)
log

w

ξ


