Different approaches to gravity from Yang-Mills squared

Silvia Nagy

Different approaches to gravity from Yang-Mills squared

Silvia Nagy
Queen Mary, University of London
based on work in collaboration with M. Campiglia, E. Chacón, and C. White

December 2, 2021

Different approaches to gravity from Yang-Mills squared

Silvia Nagy

Set-up

Symmetries
Classical Solutions and Twistors

Conclusions

(1) Set-up

(2) Symmetries

(3) Classical Solutions and Twistors

(4) Conclusions

Different

```
Set-up
```

Symmetries
Classical
Solutions and
Twistors
Conclusions

Table of Contents

(1) Set-up
(2) Symmetries
(3) Classical Solutions and Twistors
(4) Conclusions

The double copy

squared

- Double copy $=$ the idea that gravity can be expressed as a "product" (to be defined later) of two Yang-Mills theories.
- Inspired by the Kawai-Lewellen-Tye (KLT) relations of string theory, has experienced a revival through the Bern-Carrasco-Johannson (BCJ) duality and corresponding double copy for ampitudes.
- Appeal comes from possible simplifications arising by translating problems in gravity to simpler counterparts in gauge theory.
- Extended in many directions
- scattering amplitudes
- classical solutions
- precision gravity
- symmetries
- Lagrangian constructions
- supergravity
- non-gravitational theories
- effective theories
- ...
- A number of different formulations is there a unique double copy ?

Different

```
Set-up
```

Symmetries
Classical

Table of Contents

(1) Set-up
(2) Symmetries
(3) Classical Solutions and Twistors
(4) Conclusions

Why symmetries ?

Silvia Nagy

- Important in off-shell constructions in the double copy (e.g. Lagrangian constructions, building gravity solutions with control over gauge choices etc.)
- Double copy for symmetries well understood at linear order [Anastasiou, Borsten, Duff, Hughes, Jubb, Makwana, SN, Zoccalij.
- One can go beyond linear level and construct Lagrangians perturbatively to higher orders using techniques from the amplitudes double copy [Bern, Dennen, Huang, Kiermaier, SN, Borsten, Jurco, Kim, Macrelli, Saemann, Wolf, Ferrero, Francia], but we need field redefinitions to map to the standard GR description because we lack a direct relation to symmetries.

Why asymptotic symmetries ?

Silvia Nagy

Set-up
Symmetries

- Unlike standard diffeomorphisms and gauge transformations, do not vanish at boundary of space-time (null infinity).
- Crucial in the study of soft theorems.
- Potentially linked to experiment via memory effect.
- Double copy at null infinity:
- Classical solutions [Adamo, Kol, Godazgar, Monteiro, Peinador Veiga, Pope].
- Celestial holography [Casali, Puhm, Pasterski, Donnay, Sharma, Kalyanapuram...]
- Amplitudes in the soft limit

Self-dual sector

- Simplification: start with the self-dual sector, where we have a simple description of the "kinematic algebra" [Monteiro, O'Connell]
- Kinematic algebra = additional structure in Yang-Mills theory which facilitates double copy constructions.
- Self-duality conditions:
- Yang-Mills

$$
\tilde{F}_{\mu \nu}:=\frac{1}{2} \epsilon_{\mu \nu}^{\rho \sigma} F_{\rho \sigma}=i F_{\mu \nu} .
$$

- Gravity

$$
\tilde{R}_{\mu \nu \rho}{ }^{\sigma}:=\frac{1}{2} \epsilon_{\mu \nu}^{\eta \lambda} R_{\eta \lambda \rho}{ }^{\sigma}=i R_{\mu \nu \rho}{ }^{\sigma}
$$

Notation

- Light-cone: $U=\frac{x^{0}-X^{3}}{\sqrt{2}}, V=\frac{X^{0}+X^{3}}{\sqrt{2}}, Z=\frac{X^{1}+i X^{2}}{\sqrt{2}}, \bar{Z}=\frac{X^{1}-i X^{2}}{\sqrt{2}}$.
- In light-cone gauge, we can write the YM field as

$$
A_{U}=0, \quad A_{V}=\partial_{\bar{Z}} \Phi, \quad A_{Z}=\partial_{U} \Phi, \quad A_{\bar{Z}}=0
$$

and similarly for the graviton, but it helps to take a more covariant approach. Define

$$
x^{i}:=(U, \bar{Z}), \quad y^{\alpha}:=(V, Z) .
$$

Metric:

$$
d s^{2}=2 \eta_{i \alpha} d x^{i} d y^{\alpha}=-2 d U d V+2 d Z d \bar{Z}
$$

- Introduce the tensors

$$
\Omega_{i j} d x^{i} d x^{j}=d U d \bar{Z}-d \bar{Z} d U, \quad \Pi_{\alpha \beta} d y^{\alpha} d y^{\beta}=d V d Z-d Z d V
$$

They are left/right inverses of each other.

- We can write the self-dual YM and gravity fields as

$$
\mathcal{A}_{\alpha}=\Pi_{\alpha}{ }^{i} \partial_{i} \Phi, \quad h_{\alpha \beta}=\Pi_{\alpha}^{i} \Pi_{\beta}^{j} \partial_{i} \partial_{j} \phi
$$

- We can write the self-dual YM and gravity fields as

$$
\mathcal{A}_{\alpha}=\Pi_{\alpha}^{i} \partial_{i} \Phi, \quad h_{\alpha \beta}=\Pi_{\alpha}^{i} \Pi_{\beta}^{j} \partial_{i} \partial_{j} \phi
$$

Note this is fully non-perturbative .

- The scalar fields satisfy the equations (following from the SD conditions):

$$
\square \Phi=-i \Pi^{i j}\left[\partial_{i} \Phi, \partial_{j} \Phi\right], \quad \square \phi=\frac{1}{2} \Pi^{i j} \Pi^{k l} \partial_{i} \partial_{k} \phi \partial_{j} \partial_{l} \phi
$$

Introduce the Poisson bracket

$$
\{f, g\}:=\Pi^{i j} \partial_{i} f \partial_{j} g
$$

corresponding to area-preserving diffeomorphisms (kinematic algebra) of $x^{i}:=(U, \bar{Z})$, and rewrite

$$
\square \Phi=-i\{[\Phi, \Phi]\}, \quad \square \phi=\frac{1}{2}\{\{\phi, \phi\}\}
$$

Double copy prescrition for the e.o.m. [Monteiro, O'Connell]

$$
\Phi \rightarrow \phi, \quad-i[,] \rightarrow \frac{1}{2}\{,\}
$$

Symmetries [Campiglia ,SN '21]

squared

Silvia Nagy

- Remember $x^{i}:=(U, \bar{Z}), \quad y^{\alpha}:=(V, Z)$.
- We are seeking residual symmetries preserving

$$
\mathcal{A}_{\alpha}=\Pi_{\alpha}{ }^{i} \partial_{i} \Phi, \quad h_{\alpha \beta}=\Pi_{\alpha}^{i} \Pi_{\beta}^{j} \partial_{i} \partial_{j} \phi
$$

and the e.o.m. for Φ and ϕ.

- Yang-Mills transfomation:

$$
\delta_{\Lambda} \mathcal{A}_{\mu}=\partial_{\mu} \Lambda+i\left[\Lambda, \mathcal{A}_{\mu}\right] .
$$

We want to preserve $\mathcal{A}_{i}=0$, so we get

$$
\Lambda=\Lambda(y)
$$

and finally we can read off the transformation of the scalar Φ

$$
\delta \Phi=x^{i} \Omega_{i}^{\alpha} \partial_{\alpha} \Lambda+i[\Lambda, \Phi], \quad \Lambda=\Lambda(y)
$$

Symmetries - 1st Family

- Gravity

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}, \quad h_{\mu \nu}=\Pi_{\mu}^{\rho} \Pi_{\nu}^{\sigma} \partial_{\rho} \partial_{\sigma} \phi \quad \text { (nonperturbative) }
$$

Transformation

$$
\delta_{\xi} h_{\mu \nu}=\mathcal{L}_{\xi} g_{\mu \nu}=\mathcal{L}_{\xi} \eta_{\mu \nu}+\mathcal{L}_{\xi} h_{\mu \nu}
$$

We want to preserve $h_{i \mu}=0 \Rightarrow$ two families of diffeomorphisms.

- 1st family has parameters

$$
\xi_{i}=0, \quad \xi_{\alpha}=b_{\alpha}(y)
$$

and finally we can read off the transformation of the scalar Φ

$$
\delta_{\xi} \phi=\Omega_{i}^{\alpha} \Omega_{j}^{\beta} x^{i} x^{j} \partial_{\alpha} b_{\beta}+\eta^{i \alpha} b_{\alpha} \partial_{i} \phi .
$$ approaches to gravity from Yang-Mills squared

1st Family of Symmetries - Double copy

- The transformation rules for the scalars

$$
\left\{\begin{aligned}
\delta \Phi & = & x^{i} \Omega_{i}^{\alpha} \partial_{\alpha} \Lambda+i[\Lambda, \Phi], & \mathrm{YM} \\
\delta_{\xi} \phi & = & \Omega_{i}^{\alpha} \Omega_{j}^{\beta} x^{i} x^{j} \partial_{\alpha} b_{\beta}+\eta^{i \alpha} b_{\alpha} \partial_{i} \phi, & \text { gravity }
\end{aligned}\right.
$$

- To make the double copy manifest, we define

$$
\lambda \equiv 2 \Omega_{i}^{\alpha} x^{i} b_{\alpha}
$$

which can be thought of as a "Hamiltonian" w.r.t. the Poisson bracket, and then

$$
\left\{\begin{array}{llc}
\delta \Phi & = & x^{i} \Omega_{i}^{\alpha} \partial_{\alpha} \Lambda+i[\Lambda, \Phi],
\end{array} \quad\right. \text { YM }
$$

Then the double copy is

$$
\Phi \rightarrow \phi, \quad-i[,] \rightarrow \frac{1}{2}\{,\}, \quad \Lambda \rightarrow \lambda
$$

together with a factor $\mathfrak{r}=\frac{1}{2}$ for the first term. This is the first non-perturbative double copy result for (a subset of) symmetries. approaches to gravity from

1st Family of Symmetries - Double copy

- The factor $\mathfrak{r}=\frac{\operatorname{deg}(\Lambda)+1}{\operatorname{deg}(\lambda)+1}$, where $\operatorname{deg}(a)$ counts the order of x^{i} in a dissapears in the replacement rules for

$$
\delta \mathcal{A}_{\alpha}=\Pi_{\alpha}^{i} \partial_{i} \delta \Phi \quad \rightarrow \quad \delta_{\xi} h_{\alpha \beta}=\Pi_{\alpha}^{i} \Pi_{\beta}^{j} \partial_{i} \partial_{j} \delta_{\xi} \phi
$$

- If we want $\delta_{\xi} \phi$ to preserve the e.o.m. for ϕ, we have to restrict

$$
\xi_{\alpha}=b_{\alpha}(y)=\partial_{\alpha} b(y) \quad \Rightarrow \quad \lambda=2 x^{i} \Omega_{i}^{\alpha} \partial_{\alpha} b
$$

- It is convenient to define the operator $S \equiv x^{i} \Omega_{i}{ }^{\alpha} \partial_{\alpha}$, and then

$$
\begin{aligned}
\delta_{\Lambda} \Phi & =S(\Lambda)+i[\Lambda, \Phi] \\
\delta_{\lambda} \phi & =\frac{1}{2} S(\lambda)-\frac{1}{2}\{\lambda, \phi\}, \quad \text { with } \quad \lambda=2 S(b)
\end{aligned}
$$

and we can write the double copy rules as

$$
\Phi \rightarrow \phi, \quad-i[,] \rightarrow \frac{1}{2}\{,\}, \quad \Lambda \rightarrow \lambda, \quad S(\Lambda) \rightarrow \mathfrak{r} S(\lambda)
$$

Different approaches to gravity from Yang-Mills squared

1st Family - Asymptotic Symmetries

- Work in Bondi-flat coordinates, which are related to light-cone coordinates via

$$
U=r z \bar{z}+u, \quad V=r, \quad Z=r z, \quad \bar{Z}=r \bar{z}
$$

in which the Minkowski line element takes the form

$$
d s^{2}=-2 d u d r+2 r^{2} d z d \bar{z}
$$

- At null infinity, the YM and metric fields are captured by

$$
\begin{array}{lll}
\mathcal{A}_{z}(r, u, z, \bar{z}) & \stackrel{r \rightarrow \infty}{=} & A_{z}(u, z, \bar{z})+\cdots \\
h_{z z}(r, u, z, \bar{z}) & \stackrel{r \rightarrow \infty}{=} & r C_{z z}(u, z, \bar{z})+\cdots
\end{array}
$$

- Assume a standard fall-off for scalars

$$
\phi(r, u, z, \bar{z}) \stackrel{r \rightarrow \infty}{=} \frac{\phi_{\mathcal{I}}(u, z, \bar{z})}{r}+\cdots, \quad \Phi(r, u, z, \bar{z}) \stackrel{r \rightarrow \infty}{=} \frac{\Phi_{\mathcal{I}}(u, z, \bar{z})}{r}+\cdots
$$

- Then, in the self-dual sector

$$
\begin{array}{rlrrr}
A_{z} & =\partial_{u} \Phi_{\mathcal{I}}, \quad A_{\bar{z}}=0 & \mathrm{YM} \\
C_{z z} & =\partial_{u}^{2} \phi_{\mathcal{I}}, \quad C_{\bar{z} \bar{z}}=0 & \text { gravity }
\end{array}
$$

Different approaches to gravity from Yang-Mills squared

Silvia Nagy

1st Family - Asymptotic Symmetries

- For YM:

$$
A_{z}=\partial_{u} \Phi_{\mathcal{I}}, \quad A_{\bar{z}}=0
$$

- A subset of our gauge transformations will give the asymptotic symmetries preserving the YM self-dual sector at null infinity:

$$
\Lambda(y)=\Lambda(V, Z) \rightarrow \Lambda(V / Z)=\Lambda(z) \equiv \Lambda_{0}(z)
$$

where the subscript denotes the order in r. Then

$$
\delta A_{z}=\partial_{z} \Lambda_{0}+i\left[\Lambda_{0}, A_{z}\right], \quad \delta A_{\bar{z}}=0, \quad \text { as needed }
$$

- The operator $S \equiv x^{i} \Omega_{i}{ }^{\alpha} \partial_{\alpha}$ acts on a function of the form $r^{k} F_{k}(u, z, \bar{z})$ as

$$
S\left(r^{n} F_{n}\right)=r^{n} S_{0}\left(F_{n}\right)+r^{n-1} S_{-1}\left(F_{n}\right)
$$

where

$$
S_{0}=-\bar{z} u \partial_{u}+n \bar{z}-\bar{z}^{2} \partial_{\bar{z}}, \quad S_{-1}=u \partial_{z} .
$$

so finally

$$
\delta_{\Lambda} \Phi_{\mathcal{I}}=S_{-1}\left(\Lambda_{0}\right)+i\left[\Lambda_{0}, \Phi_{\mathcal{I}}\right] .
$$ approaches to

1st Family - Asymptotic Double Copy

- On the gravity side, the ("Hamiltonian" of the) symmetry parameter is

$$
\lambda=r \lambda_{1}+\lambda_{0}, \quad \text { with } \quad \lambda_{1}=-2 \bar{z} f(z), \quad \lambda_{0}=-2 u \partial_{z} f(z)
$$

The Poisson bracket in Bondi coordinates is

$$
\{a, b\}=r^{-1}\{a, b\}_{-1}, \quad \text { with } \quad\{a, b\}_{-1}=\partial_{\bar{z}} a \partial_{u} b-\partial_{u} a \partial_{\bar{z}} b
$$

The double copy copy structure appears again

$$
\left\{\begin{array}{clcc}
\delta_{\Lambda} \Phi_{\mathcal{I}} & = & S_{-1}\left(\Lambda_{0}\right)+i\left[\Lambda_{0}, \Phi_{\mathcal{I}}\right] & \text { YM } \\
\delta \phi_{\mathcal{I}} & = & \frac{1}{2} S_{-1}\left(\lambda_{0}\right)-\frac{1}{2}\left\{\lambda_{1}, \phi_{\mathcal{I}}\right\}_{-1} & \text { gravity }
\end{array}\right.
$$

The transformation of the gravity scalar can be written as

$$
\delta \phi_{\mathcal{I}}=-u^{2} \partial_{z}^{2} f(z)+f(z) \partial_{u} \phi_{\mathcal{I}}
$$

and remembering that $C_{z z}=\partial_{u}^{2} \phi_{\mathcal{I}}$:

$$
\delta C_{z z}=-2 \partial_{z}^{2} f+f \partial_{u} C_{z z} \quad \text { supertranslation! }
$$

- Holomorphic large gauge transformations in YM double copy to holomorphic supertranslations in gravity.

Symmetries - 2nd Family

- Start on the gravity side (in the bulk). The 2nd family of symmetries preserving $h_{\mu \nu}=\Pi_{\mu}^{\rho} \Pi_{\nu}{ }^{\sigma} \partial_{\rho} \partial_{\sigma} \phi$ and the e.o.m. for ϕ has diffeomorphism parameters

$$
\xi^{i}=\eta^{i \alpha} \Omega_{j}^{\beta} x^{j} \partial_{\alpha} \partial_{\beta} c, \quad \xi^{\alpha}=-\Omega^{\alpha \beta} \partial_{\beta} c, \quad c=c(y)
$$

- The scalar field transforms as

$$
\delta_{c} \phi=\frac{1}{3} \Omega_{i}^{\alpha} \Omega_{j}^{\beta} \Omega_{k}^{\gamma} x^{i} x^{j} x^{k} \partial_{\alpha} \partial_{\beta} \partial_{\gamma} c+\xi^{i} \partial_{i} \phi+\xi^{\alpha} \partial_{\alpha} \phi
$$

- In analogy with the 1st Family, we define a "Hamiltonian":

$$
\tilde{\lambda}=\Omega_{i}^{\alpha} \Omega_{j}^{\beta} x^{i} x^{j} \partial_{\alpha} \partial_{\beta} c
$$

so that:

$$
\delta \phi=\frac{1}{3} \Omega_{i}^{\alpha} x^{i} \partial_{\alpha} \tilde{\lambda}-\frac{1}{2}\{\tilde{\lambda}, \phi\}-\Omega^{\alpha \beta} \partial_{\alpha} \phi \partial_{\beta} c .
$$

- What YM transformation double copies to this under

$$
\Phi \rightarrow \phi, \quad-i[,] \rightarrow \frac{1}{2}\{,\}, \quad \Lambda \rightarrow \lambda, \quad S(\Lambda) \rightarrow \mathfrak{r} S(\lambda) \quad ?
$$

- Write the gravity scalar as

$$
\phi=\phi^{(0)}+\phi^{(1)}+\cdots
$$

and similarly for YM .

$$
\delta \phi^{(0)}=\frac{1}{3} \Omega_{i}^{\alpha} x^{i} \partial_{\alpha} \tilde{\lambda}
$$

- Under the double copy rules $\Phi \rightarrow \phi, \Lambda \rightarrow \lambda, S(\Lambda) \rightarrow \mathfrak{r S}(\lambda)$, this comes from the linearised YM transformation:

$$
\delta^{(0)} \Phi=\frac{1}{2} \Omega_{i}^{\alpha} x^{i} \partial_{\alpha} \tilde{\Lambda}, \quad \text { with } \quad \tilde{\Lambda}=\Omega_{i}^{\alpha} x^{i} \partial_{\alpha} B(y)
$$

- To go to higher orders, we can make use of the perturbative expansion of the e.o.m. to write

$$
\square \delta \Phi^{(1)}=-2 i \Pi^{i j}\left[\partial_{i} \Phi^{(0)}, \partial_{j} \delta \Phi^{(0)}\right]
$$

to get

$$
\delta \Phi^{(1)}=-i\left[\phi^{(0)}, \tilde{\Lambda}\right]+2 i \frac{1}{\square} \eta^{i \alpha}\left[\partial_{\alpha} \Phi^{(0)}, \partial_{i} \tilde{\Lambda}\right] .
$$

- This is perturbative and non-local, but the gravity transformation was non-perturbative and local !

2nd Family- perturbation theory

- When we rewrite the gravity transformation in terms of $\tilde{\lambda}$, it becomes perturbative and non-local

$$
\delta \phi^{(1)}=\frac{1}{2}\left\{\phi^{(0)}, \tilde{\lambda}\right\}-\square^{-1} \eta^{i \alpha}\left\{\partial_{\alpha} \phi^{(0)}, \partial_{i} \tilde{\lambda}\right\}
$$

and then we see that

$$
\left\{\begin{array}{lll}
\delta \Phi^{(1)} & =-i\left[\phi^{(0)}, \tilde{\Lambda}\right]+2 i \frac{1}{\square} \eta^{i \alpha}\left[\partial_{\alpha} \Phi^{(0)}, \partial_{i} \tilde{\Lambda}\right], & \text { YM } \\
\delta \phi^{(1)} & =\frac{1}{2}\left\{\phi^{(0)}, \tilde{\lambda}\right\}-\frac{1}{\square} \eta^{i \alpha}\left\{\partial_{\alpha} \phi^{(0)}, \partial_{i} \tilde{\lambda}\right\}, & \text { gravity }
\end{array}\right.
$$

are related by the same double copy rules as the first family

$$
\Phi \rightarrow \phi, \quad-i[,] \rightarrow \frac{1}{2}\{,\}, \quad \tilde{\Lambda} \rightarrow \tilde{\lambda}, \quad S(\tilde{\Lambda}) \rightarrow \mathfrak{r} S(\tilde{\lambda})
$$

- One can see recursively that these rules work at all orders in perturbation theory.
- We related a perturbative, non-local transformation on the YM side, to a non-perturbative, local transformation on the gravity side.
- The gravity transformation is a subset of the usual diffeomorphisms, but the YM transformation is not a subset of gauge transformations - it is a symmetry that appears exclusively in the self-dual sector. approaches to

2nd Family - Asymptotics

Taking the limit to null infinity, we have two types of transformations arising from the 2nd Family

- Fist :

$$
\delta^{(0)} \Phi_{\mathcal{I}}=\frac{1}{2} S_{0}\left(\tilde{\Lambda}_{-1}\right)=-u \bar{z} \partial_{z} \Lambda_{0}(z)-i \bar{z}\left[\Lambda_{0}, \Phi_{\mathcal{I}}\right]
$$

double copies to a supertranslation with parameter $f(z, \bar{z})=\bar{z} g(z)$

$$
\delta C_{z z}=-2 \partial_{z}^{2}(\bar{z} g(z))+\bar{z} g(z) \partial_{u} C_{z z}
$$

- Second:

$$
\partial_{u} \delta^{(1)} \Phi_{\mathcal{I}}=-i \bar{z} \partial_{u}\left[\Lambda_{0}, \Phi_{\mathcal{I}}\right]+i \partial_{z}\left[\Lambda_{1}, \Phi_{\mathcal{I}}\right]-i\left[\partial_{u} \Phi_{\mathcal{I}}, S_{-1}\left(\Lambda_{1}\right)\right]
$$

double copies to a holomorphic superrotation

$$
\delta \phi_{\mathcal{I}}=-\frac{u^{3}}{6} \partial_{z}^{3} Y(z)+\left(Y(z) \partial_{z}+\frac{u}{2} \partial_{z} Y(z) \partial_{u}+\frac{1}{2} \partial_{z} Y(z)\right) \phi_{\mathcal{I}}
$$

An infinite tower of Double Copies

- The self-dual sectors of gravity and YM are integrable, so they possess an infinite tower of symmetries.
- Remember the self-dual equations

$$
\begin{aligned}
\square \Phi & =-i \Pi^{i j}\left[\partial_{i} \Phi, \partial_{j} \Phi\right] \\
\square \phi & =\frac{1}{2} \Pi^{i j} \Pi^{k l} \partial_{i} \partial_{k} \phi \partial_{j} \partial_{l} \phi
\end{aligned}
$$

- Let $\delta \Phi$ and $\delta \phi$ be symmetries of the SDYM and SDE equations respectively:

$$
\begin{aligned}
\square \delta \Phi & =-2 i \Pi^{i j}\left[\partial_{i} \Phi, \partial_{j} \delta \Phi\right] \\
\square \delta \phi & =\Pi^{i j} \Pi^{k l} \partial_{i} \partial_{k} \phi \partial_{j} \partial_{l} \delta \phi
\end{aligned}
$$

- One can then obtain new symmetries $\tilde{\delta} \Phi$ and $\tilde{\delta} \phi$, defined implicitly by the condition

$$
\begin{aligned}
\partial_{i} \tilde{\delta} \Phi & =\Omega_{i}^{\alpha} \partial_{\alpha} \delta \Phi-i\left[\partial_{i} \Phi, \delta \Phi\right] \\
\partial_{i} \tilde{\delta} \phi & =\Omega_{i}^{\alpha} \partial_{\alpha} \delta \phi+\frac{1}{2}\left\{\partial_{i} \phi, \delta \phi\right\}
\end{aligned}
$$

Different approaches to gravity from Yang-Mills squared

Silvia Nagy

Set-up

Symmetries

An infinite tower of Double Copies

- The self-dual sectors of gravity and YM are integrable, so they possess an infinite tower of symmetries.

- At any level n, we have the double copy relations

$$
\Phi \rightarrow \phi, \quad-i[,] \rightarrow \frac{1}{2}\{,\}, \quad \Lambda_{n} \rightarrow \lambda_{n}, \quad S \rightarrow \mathfrak{r} S, \quad \mathfrak{r}=\frac{\operatorname{deg}\left(\Lambda_{n}\right)+1}{\operatorname{deg}\left(\lambda_{n}\right)+1} .
$$

- Proof by recursion.

Different approaches to gravity from Yang-Mills squared

Silvia Nagy

```
Set-up
```

Symmetries

Classical Solutions and Twistors

Table of Contents

(1) Set-up
(2) Symmetries
(3) Classical Solutions and Twistors
(4) Conclusions

The spinorial formalism

- GR typically uses the language of tensors and four-vectors.
- Alternative formulation in terms of two-component spinors $\pi^{A} \equiv\left(\pi^{0}, \pi^{1}\right)$, and their higher-rank generalisations. Spinor indices raised and lowered with

$$
\pi_{A}=\epsilon_{A B} \pi^{B}, \quad \pi^{B}=\pi_{A} \epsilon^{A B} .
$$

- Any multi-rank spinor can be decomposed into a sum of terms, each of which involves symmetric spinors, multiplying Levi-Civita symbols.
- Any symmetric spinor factorises into a symmetrised product of spinors e.g.

$$
S_{A B \ldots C}=S_{(A B \ldots C)} \Rightarrow S_{A B \ldots C}=\alpha_{(A} \beta_{B} \ldots \gamma_{C)} .
$$

with α_{A}, \ldots called pricipal spinors.

- Any tensorial quantity can be translated into the spinorial language using

$$
\begin{aligned}
& \sigma_{A A^{\prime}}^{0}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma_{A A^{\prime}}^{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \\
& \sigma_{A A^{\prime}}^{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{A A^{\prime}}^{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{aligned}
$$

The spinorial formalism

- For a 4 -vector this gives

$$
V_{\alpha} \sigma_{A A^{\prime}}^{\alpha}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
V_{0}+V_{3} & V_{1}-i V_{2} \\
V_{1}+i V_{2} & V_{0}-V_{3}
\end{array}\right)
$$

where the determinant of the matrix on the right-hand side is

$$
\operatorname{det}\left(V_{\alpha} \sigma_{A A^{\prime}}^{\alpha}\right)=\frac{1}{2}\left(\left(V_{0}\right)^{2}-\left(V_{1}\right)^{2}-\left(V_{2}\right)^{2}-\left(V_{3}\right)^{2}\right) .
$$

This is proportional to the norm of the 4 -vector, such that the determinant vanishes if V_{α} is null.

- Then the matrix must factorise i.e.

$$
\begin{equation*}
V_{\alpha} V^{\alpha}=0 \quad \Rightarrow \quad V_{\alpha} \sigma_{A A^{\prime}}^{\alpha}=\pi_{A} \pi_{A^{\prime}} \tag{1}
\end{equation*}
$$

where $\pi_{A^{\prime}}=\left(\pi_{A}\right)^{*}$ given that the matrix in eq. (26) is clearly Hermitian.

- Conversely, given any spinor π_{A}, we may construct a matrix $M_{A A^{\prime}}=\pi_{A} \pi_{A^{\prime}}$, which in turn corresponds to a null 4 -vector in spacetime. In particular, each of the so-called principal spinors appearing in the decomposition of a general symmetric tensor can be associated with a principal null direction in spacetime.

The spinorial formalism - gravity

- The Riemann tensor $R_{\alpha \beta \gamma \delta}$ can translate this into the spinor language as

$$
\begin{aligned}
R_{\alpha \beta \gamma \delta} \rightarrow R_{A A^{\prime} B B^{\prime} C C^{\prime} D D^{\prime}} & =\Psi_{A B C D} \epsilon_{A^{\prime} B^{\prime}} \epsilon_{C^{\prime} D^{\prime}}+\bar{\Psi}_{A^{\prime} B^{\prime} C^{\prime} D^{\prime}} \epsilon_{A B} \epsilon_{C D} \\
& +\Phi_{A B C^{\prime} D^{\prime} \epsilon_{A^{\prime} B^{\prime}} \epsilon_{C D}}+\bar{\Phi}_{A^{\prime} B^{\prime} C D} \epsilon_{A B} \epsilon_{C^{\prime} D^{\prime}} \\
& +2 \Lambda\left(\epsilon_{A C} \epsilon_{B D} \epsilon_{A^{\prime} B^{\prime}} \epsilon_{C^{\prime} D^{\prime}}+\epsilon_{A B} \epsilon_{C D} \epsilon_{A^{\prime} D^{\prime}} \epsilon_{B^{\prime} C^{\prime}}\right)
\end{aligned}
$$

- For vacuum spacetimes, we are left with the Weyl tensor: $C_{\alpha \beta \gamma \delta}$. We have the spinorial identification

$$
C_{\alpha \beta \gamma \delta} \rightarrow \Psi_{A B C D} \epsilon_{A^{\prime} B^{\prime}} \epsilon_{C^{\prime} D^{\prime}}+\bar{\Psi}_{A^{\prime} B^{\prime} C^{\prime} D^{\prime} \epsilon_{A B} \epsilon C D}
$$

where, $\Psi_{A B C D}$ and $\bar{\Psi}_{A^{\prime} B^{\prime} C^{\prime} D^{\prime}}$ are the anti-self-dual and self-dual parts of the Weyl tensor respectively.

- The dynamics of the Weyl tensor is constrained by the Bianchi identity for the Riemann tensor, which leads to:

$$
\nabla^{A A^{\prime}} \Psi_{A B C D}=0, \quad \nabla^{A A^{\prime}} \bar{\Psi}_{A^{\prime} B^{\prime} C^{\prime} D^{\prime}}=0
$$

- $\Psi_{A B C D}$ is usually referred to as the Weyl spinor.

The spinorial formalism - various spins

- Electromagnetism:

$$
F_{\alpha \beta} \rightarrow F_{A A^{\prime} B B^{\prime}}=\phi_{A B} \epsilon_{A^{\prime} B^{\prime}}+\bar{\phi}_{A^{\prime} B^{\prime}} \epsilon_{A B}
$$

where the symmetric spinors $\phi_{A B}$ and $\bar{\phi}_{A^{\prime} B^{\prime}}$ are the anti-self-dual and self-dual parts.

- The Maxwell equations then imply

$$
\nabla^{A A^{\prime}} \phi_{A B}=0, \quad \nabla^{A A^{\prime}} \bar{\phi}_{A^{\prime} B^{\prime}}=0 .
$$

- General spinorial equations:

$$
\begin{equation*}
\nabla^{A A^{\prime}} \phi_{A B \ldots C}=0, \quad \nabla^{A A^{\prime}} \bar{\phi}_{A^{\prime} B^{\prime} \ldots C^{\prime}}=0 \tag{2}
\end{equation*}
$$

where $\phi_{A B \ldots C}$ is assumed symmetric, with n indices. These are known as the massless free field equations.

- The spin of the field is given by the number of spinor indices divided by two,

Different approaches to gravity from Yang-Mills squared

Silvia Nagy

Set-up

Symmetries
Classical Solutions and Twistors

The spinorial formalism - classifying solutions

- An immediate use of the spinorial language is that it allows us to classify different types of solutions in electromagnetism and gravity in terms of the degeneracy of the spinors.
- Electromagnetism

$$
\phi_{A B}=\alpha_{(A} \beta_{B)},
$$

and there are then two different "types" of field strength spinor:

- (i) those with distinct null directions $\left(\alpha_{A} \not \propto \beta_{A}\right)$;
- (ii) those with a degenerate null direction, so that $\alpha_{A} \propto \beta_{A}$.

Different approaches to gravity from Yang-Mills squared

Silvia Nagy

Set-up

Symmetries
Classical Solutions and Twistors

The spinorial formalism - classifying solutions

- For the Weyl tensor there are more possibilities. In general we have

$$
\Psi_{A B C D}=\alpha_{(A} \beta_{B} \gamma_{C} \delta_{D)}
$$

then we can classify solutions as

Weyl type	Petrov label
$\{1,1,1,1\}$	I
$\{2,1,1\}$	II
$\{3,1\}$	III
$\{4\}$	N
$\{2,2\}$	D
$\{-\}$	O

Different approaches to gravity from Yang-Mills squared

Silvia Nagy

Set-up

Symmetries
Classical Solutions and Twistors

Weyl Double Copy

- Given an electromagnetic field strength spinor $\phi_{A B}$, one may construct a Weyl spinor according to the rule [Luna, Monteiro, Nicholson, O'Connell]

$$
\Psi_{A B C D}=\frac{1}{S} \phi_{(A B} \phi_{C D)}
$$

where S is a scalar function.

- This procedure was shown to hold for arbitrary type D and N vacuum spacetimes.
- Can we generalise away from these ?

Twistors

- Define twistor space as the set of solutions of the twistor equation

$$
\nabla_{A^{\prime}}^{(A} \Omega^{B)}=0
$$

whose general solution in Minkowksi space is

$$
\Omega^{A}=\omega^{A}-i x^{A A^{\prime}} \pi_{A^{\prime}}
$$

- Twistors:

$$
Z^{\alpha}=\left(\omega^{A}, \pi_{A^{\prime}}\right)=\left(\omega^{0}, \omega^{1}, \pi_{0^{\prime}}, \pi_{1^{\prime}}\right)
$$

- The "location" of a twistor in Minkowski space is defined to be the region in which its associated spinor field Ω^{A} vanishes. This implies the incidence relation

$$
\omega^{A}=i x^{A A^{\prime}} \pi_{A^{\prime}}
$$

invariant under simultaneous rescalings

$$
\omega^{A} \rightarrow \lambda \omega^{A}, \quad \pi_{A^{\prime}} \rightarrow \lambda \pi_{A^{\prime}}, \quad \lambda \in \mathbb{C}
$$

so twistor space is projective. A point $x^{A A^{\prime}}$ in position space defines a complex projective line in twistor space, which can be thought of as a Riemann sphere. approaches to gravity from

Twistors - the Penrose transform

- Correspondence between solutions of the massless free field equations and twistor space:

$$
\phi_{A^{\prime} B^{\prime} \ldots C^{\prime}}(x)=\frac{1}{2 \pi i} \oint_{\Gamma} \pi_{E^{\prime}} d \pi^{E^{\prime}} \pi_{A^{\prime}} \pi_{B^{\prime}} \ldots \pi_{C^{\prime}}\left[\rho_{x} f\left(Z^{\alpha}\right)\right]
$$

where the symbol ρ_{x} denotes that we must restrict to the line in projective twistor space corresponding to the spacetime point $x^{A A^{\prime}}$. The contour Γ for this integral is defined on the related Riemann sphere.

- The integrand (including the measure) must be homogeneous of degree zero under rescalings $\pi_{A^{\prime}} \rightarrow \lambda \pi_{A^{\prime}}$ (or $Z^{\alpha} \rightarrow \lambda Z^{\alpha}$). This in turn implies that the function $f\left(Z^{\alpha}\right)$ must have degree $(-n-2)$, where n is the number of indices appearing on the left-hand side.
- We can deal with exact solutions which linearise the e.o.m., or with general but linearised solutions:

$$
\begin{equation*}
\partial_{D}^{A^{\prime}} \phi_{A^{\prime} B^{\prime} \cdots C^{\prime}}=0 \tag{3}
\end{equation*}
$$

- Works in arbitrary conformally flat spacetime.

Twistors - the Penrose transform

- There are some tricks for formulating representative twistor functions for spacetime fields possessing certain properties.
- Note that the factorisation property of symmetric spinors means that if a given n-index spinor has a k-fold principal spinor $\xi_{A^{\prime}}$, it will vanish if contracted with $(n-k+1)$ factors of $\xi_{A^{\prime}}$, but not if only $(n-k)$ factors are contracted. See

$$
\phi_{A^{\prime} B^{\prime} \ldots F^{\prime}}=\underbrace{\xi_{\left(A^{\prime}\right.} \xi_{B^{\prime}} \ldots \xi_{C^{\prime}}}_{k \text { factors }} \underbrace{\alpha_{D^{\prime}} \beta_{E^{\prime}} \ldots \gamma_{\left.F^{\prime}\right)}}_{(n-k) \text { factors }}
$$

- Contracting the Penrose Transform with m factors of $\eta^{A^{\prime}}$ gives
$\underbrace{\eta^{A^{\prime}} \eta^{B^{\prime}} \ldots \eta^{C^{\prime}}}_{m \text { factors }} \underbrace{\phi_{A^{\prime} B^{\prime} \ldots C^{\prime} D^{\prime} \ldots F^{\prime}}}_{n \text { indices }}(x)=\frac{1}{2 \pi i} \oint_{\Gamma} \pi_{E^{\prime}} d \pi^{E^{\prime}}[\pi \eta]^{m} \pi_{C^{\prime}} \ldots \pi_{F^{\prime}}\left[\rho_{x} f\left(Z^{\alpha}\right)\right]$
we see that the field $\phi_{A^{\prime} B^{\prime} \ldots F^{\prime}}$ has at least a $(n-m+1)$-fold principal spinor $\eta_{A^{\prime}}$, if the twistor function $f\left(Z^{\alpha}\right)$ has a single $m^{\text {th }}$-order pole as $\pi_{A^{\prime}} \rightarrow \eta_{A^{\prime}}$, enclosed by Γ. approaches to gravity from Yang-Mills squared

Twistorial Double Copy[White'20, Chackon, SN,White'21]

- Remember the general (mixed) type D Weyl double copy may be written as

$$
\phi_{A^{\prime} B^{\prime} C^{\prime} D^{\prime}}=\frac{1}{\phi} \phi_{\left(A^{\prime} B^{\prime}\right.}^{(1)} \phi_{\left.C^{\prime} D^{\prime}\right)}^{(2)} .
$$

- Consider two twistor functions $f_{\mathrm{EM}}^{(1,2)}\left(Z^{\alpha}\right)$ of homogeneity -4 , and a further twistor function $f\left(Z^{\alpha}\right)$ of homogeneity -2 .
- These will necessarily correspond to electromagnetic spinors $\phi_{A^{\prime} B^{\prime}}^{(1,2)}$ and a scalar field ϕ in spacetime. One may then form a product

$$
f_{\text {grav. }}\left(Z^{\alpha}\right)=\frac{f_{\mathrm{EM}}^{(1)}\left(Z^{\alpha}\right) f_{\mathrm{EM}}^{(2)}\left(Z^{\alpha}\right)}{f\left(Z^{\alpha}\right)}
$$

such that the function on the left-hand side necessarily has homogeneity -6 , and thus potentially corresponds to a spacetime field solving the spin-2 massless free field equation i.e. to a self-dual gravity solution.

- For a suitable choice of twistor functions, this spacetime relationship is precisely the type D Weyl double copy.

Twistorial Double Copy

Silvia Nagy

Set-up

Symmetries

- Define a family of twistor functions

$$
f_{m}\left(Z^{\alpha}\right)=\frac{1}{m!}\left[Q_{\alpha \beta} Z^{\alpha} Z^{\beta}\right]^{-m}
$$

for some constant $Q_{\alpha \beta}$. This will produce a type D Weyl tensor (for $m=3$), that is related to an electromagnetic field strength ($m=2$) and scalar field ($m=1$).

- One can show that this is indeed true by carrying out the Penrose transform in each case.
- Opens the door to a formulation on curver backgrounds.
- Allows us to go beyond Type D/N. approaches to gravity from Yang-Mills squared

Silvia Nagy

Set-up
Symmetries

Twistorial Double Copy- More general

solutions

- Consider the homogeneity -4 functions related to two different electromagnetic spinors

$$
\begin{aligned}
f_{\mathrm{EM}}^{(0,2)} & =\frac{1}{\left(A_{\alpha} Z^{\alpha}\right)\left(B_{\beta} Z^{\beta}\right)^{3}}=\frac{1}{[\pi \mathcal{A}][\pi \mathcal{B}]^{3}}, \quad \mathcal{A}^{A^{\prime}}=i x^{A A^{\prime}} A_{A}+A^{A^{\prime}} \\
f_{\mathrm{EM}}^{(1,1)} & =\frac{1}{\left(A_{\alpha} Z^{\alpha}\right)^{2}\left(B_{\beta} Z^{\beta}\right)^{2}}=\frac{1}{[\pi \mathcal{A}]^{2}[\pi \mathcal{B}]^{2}},
\end{aligned}
$$

as well as the homogeneity -2 function

$$
f^{(0,0)}=\frac{1}{\left(A_{\alpha} Z^{\alpha}\right)\left(B_{\beta} Z^{\beta}\right)}=\frac{1}{[\pi \mathcal{A}][\pi \mathcal{B}]}
$$

Then we can construct the twistor representative for Type II solutions

$$
f_{\text {grav. }}^{(\mathrm{II})}=\frac{1}{f^{(0,0)}} f_{\mathrm{EM}}^{(1,1)}\left(-\frac{[\mathcal{C B}]}{[\mathcal{A B}]} f_{\mathrm{EM}}^{(0,2)}+\frac{[\mathcal{C A}]}{[\mathcal{A B}]} f_{\mathrm{EM}}^{(1,1)}\right)
$$

which in space-time becomes

$$
\psi_{A^{\prime} B^{\prime} C^{\prime} D^{\prime}}^{(\mathrm{II})}=\frac{1}{\phi}\left[3 \frac{[\mathcal{C A}]}{[\mathcal{A B}]} \phi_{\left(A^{\prime} B^{\prime}\right.}^{(0,2)} \phi_{\left.C^{\prime} D^{\prime}\right)}^{(1,1)}-4 \frac{[\mathcal{C B}]}{[\mathcal{A B}]} \phi_{\left(A^{\prime} B^{\prime}\right.}^{(1,1)} \phi_{\left.C^{\prime} D^{\prime}\right)}^{(1,1)}\right],
$$

Different approaches to gravity from Yang-Mills squared

Silvia Nagy

Set-up

Symmetries

Twistorial Double Copy- More general

solutions

- One can also construct Type I solutions.
- We have generalised the Weyl Double copy beyond Type D / N - it is now a sum of products.
- The twistor language reduces the problem to finding combinations with the correct pole structure - this are then guaranteeed to satisfy the e.o.m. when we go to spacetime by performing the Penrose transform!

Different

```
Set-up
```

Symmetries
Classical
Solutions and
Twistors

Conclusions

Table of Contents

(1) Set-up
(2) Symmetries
(3) Classical Solutions and Twistors

(4) Conclusions

Various double copies

squared

Silvia Nagy

Set-up

- Different formulations
- (1) self-dual fields and symmetries
- (2) exact solutions, twistorial formulation
- (3) scattering amplitudes (BCJ rules)
- (4) linearised approximation (convolutions)
- (1)-(2) perturbation around self-dual sector
- (1)-(3) replacement rules
- (1)-(4) checked explicitly on the overlap
- (2)-(3) checked at linear level, from 3-point amplitude with probe particle
- (2)-(4) to do
- (3)-(4) product in momentum space \rightarrow convolution in position space

```
    Different
approaches to
gravity from
    Yang-Mills
    squared
    Silvia Nagy
Set-up
Symmetries
Classical
Solutions and
Twistors
```

Conclusions

Thank You!

