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The double copy

• Double copy = the idea that gravity can be expressed as a “product” (to be
defined later) of two Yang-Mills theories.

• Inspired by the Kawai-Lewellen-Tye (KLT) relations of string theory, has
experienced a revival through the Bern-Carrasco-Johannson (BCJ) duality
and corresponding double copy for ampitudes.

• Appeal comes from possible simplifications arising by translating problems
in gravity to simpler counterparts in gauge theory .

• Extended in many directions
• scattering amplitudes
• classical solutions
• precision gravity
• symmetries
• Lagrangian constructions
• supergravity
• non-gravitational theories
• effective theories
• ...

• A number of different formulations .... is there a unique double copy ?
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Why symmetries ?

• Important in off-shell constructions in the double copy (e.g. Lagrangian
constructions, building gravity solutions with control over gauge choices
etc.)

• Double copy for symmetries well understood at linear order [Anastasiou, Borsten,
Duff, Hughes, Jubb, Makwana, SN, Zoccali].

• One can go beyond linear level and construct Lagrangians perturbatively to
higher orders using techniques from the amplitudes double copy [Bern, Dennen,
Huang, Kiermaier, SN, Borsten, Jurco, Kim, Macrelli, Saemann, Wolf, Ferrero, Francia], but we
need field redefinitions to map to the standard GR description because we
lack a direct relation to symmetries.
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Why asymptotic symmetries ?

• Unlike standard diffeomorphisms and gauge transformations, do not vanish
at boundary of space-time (null infinity).

• Crucial in the study of soft theorems.
• Potentially linked to experiment via memory effect.
• Double copy at null infinity:

• Classical solutions [Adamo, Kol, Godazgar, Monteiro, Peinador Veiga, Pope].
• Celestial holography [Casali, Puhm, Pasterski, Donnay, Sharma, Kalyanapuram...]
• Amplitudes in the soft limit
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Self-dual sector

• Simplification: start with the self-dual sector, where we have a simple
description of the ”kinematic algebra” [Monteiro, O’Connell]

• Kinematic algebra = additional structure in Yang-Mills theory which
facilitates double copy constructions.

• Self-duality conditions:
• Yang-Mills

F̃µν :=
1
2
ε ρσ
µν Fρσ = iFµν .

• Gravity
R̃ σ
µνρ :=

1
2
ε ηλ
µν R σ

ηλρ
= iR σ

µνρ
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Notation
• Light-cone: U = X0−X3

√
2

, V = X0+X3
√

2
, Z = X1+iX2

√
2

, Z̄ = X1−iX2
√

2
.

• In light-cone gauge, we can write the YM field as

AU = 0, AV = ∂Z̄ Φ, AZ = ∂U Φ, AZ̄ = 0

and similarly for the graviton, but it helps to take a more covariant
approach. Define

x i := (U, Z̄), yα := (V ,Z).

Metric:
ds2 = 2ηiαdx i dyα = −2dUdV + 2dZdZ̄ .

• Introduce the tensors

Ωij dx i dx j = dUdZ̄ − dZ̄dU, Παβdyαdyβ = dVdZ − dZdV

They are left/right inverses of each other.
• We can write the self-dual YM and gravity fields as

Aα = Π i
α∂i Φ, hαβ = Π i

αΠ j
β
∂i∂jφ
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Light-cone fields
• We can write the self-dual YM and gravity fields as

Aα = Π i
α∂i Φ, hαβ = Π i

αΠ j
β
∂i∂jφ

Note this is fully non-perturbative .
• The scalar fields satisfy the equations (following from the SD conditions):

�Φ = −iΠij [∂i Φ, ∂j Φ], �φ =
1
2

Πij Πkl∂i∂kφ∂j∂lφ

Introduce the Poisson bracket

{f , g} := Πij∂i f ∂j g

corresponding to area-preserving diffeomorphisms (kinematic algebra) of
x i := (U, Z̄), and rewrite

�Φ = −i{[Φ,Φ]}, �φ =
1
2
{{φ, φ}}

Double copy prescrition for the e.o.m. [Monteiro, O’Connell]

Φ→ φ, −i[ , ]→
1
2
{ , }
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Symmetries [Campiglia ,SN ’21]

• Remember x i := (U, Z̄), yα := (V ,Z).
• We are seeking residual symmetries preserving

Aα = Π i
α∂i Φ, hαβ = Π i

αΠ j
β
∂i∂jφ

and the e.o.m. for Φ and φ.
• Yang-Mills transfomation:

δΛAµ = ∂µΛ + i[Λ,Aµ].

We want to preserve Ai = 0, so we get

Λ = Λ(y)

and finally we can read off the transformation of the scalar Φ

δΦ = x i Ω α
i ∂αΛ + i[Λ,Φ], Λ = Λ(y)
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Symmetries - 1st Family

• Gravity

gµν = ηµν + hµν , hµν = Π ρ
µ Π σ

ν ∂ρ∂σφ (nonperturbative)

Transformation
δξhµν = Lξgµν = Lξηµν + Lξhµν

We want to preserve hiµ = 0 ⇒ two families of diffeomorphisms.
• 1st family has parameters

ξi = 0, ξα = bα(y)

and finally we can read off the transformation of the scalar Φ

δξφ = Ω α
i Ω β

j x i x j∂αbβ + ηiαbα∂iφ.
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1st Family of Symmetries - Double copy
• The transformation rules for the scalars{

δΦ = x i Ω α
i ∂αΛ + i[Λ,Φ], YM

δξφ = Ω α
i Ω β

j x i x j∂αbβ + ηiαbα∂iφ, gravity

• To make the double copy manifest, we define

λ ≡ 2Ω α
i x i bα

which can be thought of as a ”Hamiltonian” w.r.t. the Poisson bracket,
and then {

δΦ = x i Ω α
i ∂αΛ + i[Λ,Φ], YM

δξφ = 1
2 x i Ω α

i ∂αλ− 1
2{λ, φ}, gravity

Then the double copy is

Φ→ φ, −i[ , ]→
1
2
{ , }, Λ→ λ

together with a factor r = 1
2 for the first term. This is the first

non-perturbative double copy result for (a subset of) symmetries.
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1st Family of Symmetries - Double copy
• The factor r = deg(Λ)+1

deg(λ)+1 , where deg(a) counts the order of x i in a
dissapears in the replacement rules for

δAα = Π i
α∂iδΦ → δξhαβ = Π i

αΠ j
β
∂i∂jδξφ,

• If we want δξφ to preserve the e.o.m. for φ, we have to restrict

ξα = bα(y) = ∂αb(y) ⇒ λ = 2x i Ω α
i ∂αb

• It is convenient to define the operator S ≡ x i Ω α
i ∂α , and then

δΛΦ = S(Λ) + i[Λ,Φ]
δλφ = 1

2 S(λ)− 1
2{λ, φ}, with λ = 2S(b)

and we can write the double copy rules as

Φ→ φ, −i[ , ]→
1
2
{ , }, Λ→ λ, S(Λ)→ rS(λ)
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1st Family - Asymptotic Symmetries
• Work in Bondi-flat coordinates, which are related to light-cone coordinates

via
U = rzz̄ + u, V = r , Z = rz, Z̄ = r z̄,

in which the Minkowski line element takes the form

ds2 = −2dudr + 2r2dzdz̄.

• At null infinity, the YM and metric fields are captured by

Az (r , u, z, z̄) r→∞= Az (u, z, z̄) + · · ·

hzz (r , u, z, z̄) r→∞= rCzz (u, z, z̄) + · · ·

• Assume a standard fall-off for scalars

φ(r , u, z, z̄) r→∞=
φI(u, z, z̄)

r
+ · · · , Φ(r , u, z, z̄) r→∞=

ΦI(u, z, z̄)
r

+ · · ·

• Then, in the self-dual sector

Az = ∂uΦI , Az̄ = 0 YM
Czz = ∂2

uφI , Cz̄ z̄ = 0 gravity
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1st Family - Asymptotic Symmetries
• For YM:

Az = ∂uΦI , Az̄ = 0

• A subset of our gauge transformations will give the asymptotic symmetries
preserving the YM self-dual sector at null infinity:

Λ(y) = Λ(V ,Z) → Λ(V/Z) = Λ(z) ≡ Λ0(z)

where the subscript denotes the order in r . Then

δAz = ∂z Λ0 + i[Λ0,Az ], δAz̄ = 0, as needed

• The operator S ≡ x i Ω α
i ∂α acts on a function of the form rk Fk (u, z, z̄) as

S(rnFn) = rnS0(Fn) + rn−1S−1(Fn)

where
S0 = −z̄u∂u + nz̄ − z̄2∂z̄ , S−1 = u∂z .

so finally
δΛΦI = S−1(Λ0) + i[Λ0,ΦI ].
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1st Family - Asymptotic Double Copy
• On the gravity side, the (”Hamiltonian” of the) symmetry parameter is

λ = rλ1 + λ0, with λ1 = −2z̄ f (z), λ0 = −2u∂z f (z).

The Poisson bracket in Bondi coordinates is

{a, b} = r−1{a, b}−1, with {a, b}−1 = ∂z̄ a∂ub − ∂ua∂z̄ b.

The double copy copy structure appears again{
δΛΦI = S−1(Λ0) + i[Λ0,ΦI ] YM
δφI = 1

2 S−1(λ0)− 1
2{λ1, φI}−1 gravity

The transformation of the gravity scalar can be written as

δφI = −u2∂2
z f (z) + f (z)∂uφI

and remembering that Czz = ∂2
uφI :

δCzz = −2∂2
z f + f ∂uCzz supertranslation!

• Holomorphic large gauge transformations in YM double copy to
holomorphic supertranslations in gravity.
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Symmetries - 2nd Family
• Start on the gravity side (in the bulk). The 2nd family of symmetries

preserving hµν = Π ρ
µ Π σ

ν ∂ρ∂σφ and the e.o.m. for φ has diffeomorphism
parameters

ξi = ηiαΩ β
j x j∂α∂βc, ξα = −Ωαβ∂βc, c = c(y)

• The scalar field transforms as

δcφ =
1
3

Ω α
i Ω β

j Ω γ
k x i x j xk∂α∂β∂γc + ξi∂iφ+ ξα∂αφ

• In analogy with the 1st Family, we define a ”Hamiltonian”:

λ̃ = Ω α
i Ω β

j x i x j∂α∂βc

so that:
δφ =

1
3

Ω α
i x i∂αλ̃− 1

2{λ̃, φ} − Ωαβ∂αφ∂βc.

• What YM transformation double copies to this under

Φ→ φ, −i[ , ]→
1
2
{ , }, Λ→ λ, S(Λ)→ rS(λ) ?
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2nd Family- perturbation theory
• Write the gravity scalar as

φ = φ(0) + φ(1) + · · · ,

and similarly for YM.
δφ(0) =

1
3

Ω α
i x i∂αλ̃

• Under the double copy rules Φ→ φ, Λ→ λ, S(Λ)→ rS(λ), this comes
from the linearised YM transformation:

δ(0)Φ =
1
2

Ω α
i x i∂αΛ̃, with Λ̃ = Ω α

i x i∂αB(y)

• To go to higher orders, we can make use of the perturbative expansion of
the e.o.m. to write

�δΦ(1) = −2iΠij [∂i Φ(0), ∂jδΦ(0)]

to get
δΦ(1) = −i[Φ(0), Λ̃] + 2i 1

�η
iα[∂αΦ(0), ∂i Λ̃].

• This is perturbative and non-local, but the gravity transformation was
non-perturbative and local !
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2nd Family- perturbation theory
• When we rewrite the gravity transformation in terms of λ̃, it becomes

perturbative and non-local

δφ(1) = 1
2{φ

(0), λ̃} − �−1ηiα{∂αφ(0), ∂i λ̃}

and then we see that{
δΦ(1) = −i[Φ(0), Λ̃] + 2i 1

�η
iα[∂αΦ(0), ∂i Λ̃], YM

δφ(1) = 1
2{φ

(0), λ̃} − 1
�η

iα{∂αφ(0), ∂i λ̃}, gravity

are related by the same double copy rules as the first family

Φ→ φ, −i[ , ]→
1
2
{ , }, Λ̃→ λ̃, S(Λ̃)→ rS(λ̃)

• One can see recursively that these rules work at all orders in perturbation
theory.

• We related a perturbative, non-local transformation on the YM side, to a
non-perturbative, local transformation on the gravity side.

• The gravity transformation is a subset of the usual diffeomorphisms, but
the YM transformation is not a subset of gauge transformations - it is a
symmetry that appears exclusively in the self-dual sector.
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2nd Family - Asymptotics

Taking the limit to null infinity, we have two types of transformations arising from
the 2nd Family
• Fist :

δ(0)ΦI =
1
2

S0(Λ̃−1) = −uz̄∂z Λ0(z)− i z̄[Λ0,ΦI ],

double copies to a supertranslation with parameter f (z, z̄) = z̄g(z)

δCzz = −2∂2
z (z̄g(z)) + z̄g(z)∂uCzz

• Second:

∂uδ
(1)ΦI = −i z̄∂u[Λ0,ΦI ] + i∂z [Λ1,ΦI ]− i[∂uΦI , S−1(Λ1)]

double copies to a holomorphic superrotation

δφI = −
u3

6
∂3

z Y (z) + (Y (z)∂z +
u
2
∂z Y (z)∂u +

1
2
∂z Y (z))φI
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An infinite tower of Double Copies
• The self-dual sectors of gravity and YM are integrable, so they possess an

infinite tower of symmetries.
• Remember the self-dual equations

�Φ = −iΠij [∂i Φ, ∂j Φ]

�φ =
1
2

Πij Πkl∂i∂kφ∂j∂lφ

• Let δΦ and δφ be symmetries of the SDYM and SDE equations
respectively:

�δΦ = −2iΠij [∂i Φ, ∂jδΦ]
�δφ = Πij Πkl∂i∂kφ∂j∂lδφ

• One can then obtain new symmetries δ̃Φ and δ̃φ, defined implicitly by the
condition

∂i δ̃Φ = Ω α
i ∂αδΦ− i[∂i Φ, δΦ]

∂i δ̃φ = Ω α
i ∂αδφ+

1
2
{∂iφ, δφ}
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An infinite tower of Double Copies

• The self-dual sectors of gravity and YM are integrable, so they possess an
infinite tower of symmetries.

δ1Φ DC−−→ δ1φ
↓ ↓
δ2Φ DC−−→ δ2φ
↓ ↓
...

...
δnΦ DC−−→ δnφ

...
...

• At any level n, we have the double copy relations

Φ→ φ, −i[ , ]→ 1
2{ , }, Λn → λn, S → rS, r =

deg(Λn) + 1
deg(λn) + 1

.

• Proof by recursion.
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The spinorial formalism
• GR typically uses the language of tensors and four-vectors.
• Alternative formulation in terms of two-component spinors πA ≡ (π0, π1),

and their higher-rank generalisations. Spinor indices raised and lowered with

πA = εABπ
B , πB = πAε

AB .

• Any multi-rank spinor can be decomposed into a sum of terms, each of
which involves symmetric spinors, multiplying Levi-Civita symbols.

• Any symmetric spinor factorises into a symmetrised product of spinors e.g.

SAB...C = S(AB...C) ⇒ SAB...C = α(AβB . . . γC).

with αA, ... called pricipal spinors.
• Any tensorial quantity can be translated into the spinorial language using

σ0
AA′ =

1
√

2

(
1 0
0 1

)
, σ1

AA′ =
1
√

2

(
0 1
1 0

)
,

σ2
AA′ =

1
√

2

(
0 −i
i 0

)
, σ3

AA′ =
1
√

2

(
1 0
0 −1

)
.
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The spinorial formalism
• For a 4-vector this gives

VασαAA′ =
1
√

2

(
V0 + V3 V1 − iV2
V1 + iV2 V0 − V3

)
,

where the determinant of the matrix on the right-hand side is

det
(

VασαAA′

)
=

1
2
(

(V0)2 − (V1)2 − (V2)2 − (V3)2
)
.

This is proportional to the norm of the 4-vector, such that the determinant
vanishes if Vα is null.

• Then the matrix must factorise i.e.

VαVα = 0 ⇒ VασαAA′ = πAπA′ , (1)

where πA′ = (πA)∗ given that the matrix in eq. (26) is clearly Hermitian.
• Conversely, given any spinor πA, we may construct a matrix MAA′ = πAπA′ ,

which in turn corresponds to a null 4-vector in spacetime. In particular,
each of the so-called principal spinors appearing in the decomposition of a
general symmetric tensor can be associated with a principal null direction in
spacetime.
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The spinorial formalism - gravity

• The Riemann tensor Rαβγδ can translate this into the spinor language as

Rαβγδ → RAA′BB′CC′DD′ = ΨABCDεA′B′εC′D′ + Ψ̄A′B′C′D′εABεCD

+ ΦABC′D′εA′B′εCD + Φ̄A′B′CDεABεC′D′

+ 2Λ(εAC εBDεA′B′εC′D′ + εABεCDεA′D′εB′C′ ),

• For vacuum spacetimes, we are left with the Weyl tensor: Cαβγδ . We have
the spinorial identification

Cαβγδ → ΨABCDεA′B′εC′D′ + Ψ̄A′B′C′D′εABεCD .

where, ΨABCD and Ψ̄A′B′C′D′ are the anti-self-dual and self-dual parts of
the Weyl tensor respectively.

• The dynamics of the Weyl tensor is constrained by the Bianchi identity for
the Riemann tensor, which leads to:

∇AA′
ΨABCD = 0, ∇AA′

Ψ̄A′B′C′D′ = 0.

• ΨABCD is usually referred to as the Weyl spinor.
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The spinorial formalism - various spins

• Electromagnetism:

Fαβ → FAA′BB′ = φABεA′B′ + φ̄A′B′εAB ,

where the symmetric spinors φAB and φ̄A′B′ are the anti-self-dual and
self-dual parts.

• The Maxwell equations then imply

∇AA′
φAB = 0, ∇AA′

φ̄A′B′ = 0.

• General spinorial equations:

∇AA′
φAB...C = 0, ∇AA′

φ̄A′B′...C′ = 0 (2)

where φAB...C is assumed symmetric, with n indices. These are known as
the massless free field equations.

• The spin of the field is given by the number of spinor indices divided by two,
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The spinorial formalism - classifying solutions

• An immediate use of the spinorial language is that it allows us to classify
different types of solutions in electromagnetism and gravity in terms of the
degeneracy of the spinors.

• Electromagnetism
φAB = α(AβB),

and there are then two different “types” of field strength spinor:
• (i) those with distinct null directions (αA 6∝ βA);
• (ii) those with a degenerate null direction, so that αA ∝ βA.
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The spinorial formalism - classifying solutions

• For the Weyl tensor there are more possibilities. In general we have

ΨABCD = α(AβBγCδD)

then we can classify solutions as
Weyl type Petrov label
{1, 1, 1, 1} I
{2, 1, 1} II
{3, 1} III
{4} N
{2, 2} D
{−} O

30 / 41



Different
approaches to
gravity from
Yang-Mills

squared

Silvia Nagy

Set-up

Symmetries

Classical
Solutions and
Twistors

Conclusions

Weyl Double Copy

• Given an electromagnetic field strength spinor φAB , one may construct a
Weyl spinor according to the rule [Luna, Monteiro, Nicholson, O’Connell]

ΨABCD =
1
S
φ(ABφCD)

where S is a scalar function.
• This procedure was shown to hold for arbitrary type D and N vacuum

spacetimes.
• Can we generalise away from these ?
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Twistors
• Define twistor space as the set of solutions of the twistor equation

∇(A
A′ ΩB) = 0

whose general solution in Minkowksi space is

ΩA = ωA − ixAA′
πA′ .

• Twistors:
Zα =

(
ωA, πA′

)
=
(
ω0, ω1, π0′ , π1′

)
.

• The “location” of a twistor in Minkowski space is defined to be the region
in which its associated spinor field ΩA vanishes. This implies the incidence
relation

ωA = ixAA′
πA′

invariant under simultaneous rescalings

ωA → λωA, πA′ → λπA′ , λ ∈ C,

so twistor space is projective. A point xAA′ in position space defines a
complex projective line in twistor space, which can be thought of as a
Riemann sphere.
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Twistors - the Penrose transform

• Correspondence between solutions of the massless free field equations and
twistor space:

φA′B′...C′ (x) =
1

2πi

∮
Γ
πE ′ dπE ′

πA′πB′ . . . πC′ [ρx f (Zα)],

where the symbol ρx denotes that we must restrict to the line in projective
twistor space corresponding to the spacetime point xAA′ . The contour Γ for
this integral is defined on the related Riemann sphere.

• The integrand (including the measure) must be homogeneous of degree
zero under rescalings πA′ → λπA′ (or Zα → λZα). This in turn implies
that the function f (Zα) must have degree (−n− 2), where n is the number
of indices appearing on the left-hand side.

• We can deal with exact solutions which linearise the e.o.m., or with general
but linearised solutions:

∂A′
D φA′B′···C′ = 0 (3)

• Works in arbitrary conformally flat spacetime.
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Twistors - the Penrose transform

• There are some tricks for formulating representative twistor functions for
spacetime fields possessing certain properties.

• Note that the factorisation property of symmetric spinors means that if a
given n-index spinor has a k-fold principal spinor ξA′ , it will vanish if
contracted with (n − k + 1) factors of ξA′ , but not if only (n − k) factors
are contracted. See

φA′B′...F ′ = ξ(A′ξB′ . . . ξC′︸ ︷︷ ︸
k factors

αD′βE ′ . . . γF ′)︸ ︷︷ ︸
(n−k) factors

• Contracting the Penrose Transform with m factors of ηA′ gives

ηA′
ηB′

. . . ηC′︸ ︷︷ ︸
m factors

φA′B′...C′D′...F ′︸ ︷︷ ︸
n indices

(x) = 1
2πi

∮
Γ
πE ′ dπE ′

[πη]mπC′ . . . πF ′ [ρx f (Zα)]

we see that the field φA′B′...F ′ has at least a (n −m + 1)-fold principal
spinor ηA′ , if the twistor function f (Zα) has a single mth-order pole as
πA′ → ηA′ , enclosed by Γ.
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Twistorial Double Copy[White’20, Chackon, SN,White’21]

• Remember the general (mixed) type D Weyl double copy may be written as

φA′B′C′D′ =
1
φ
φ

(1)
(A′B′φ

(2)
C′D′).

• Consider two twistor functions f (1,2)
EM (Zα) of homogeneity −4, and a further

twistor function f (Zα) of homogeneity −2.
• These will necessarily correspond to electromagnetic spinors φ(1,2)

A′B′ and a
scalar field φ in spacetime. One may then form a product

fgrav.(Zα) =
f (1)
EM(Zα) f (2)

EM(Zα)
f (Zα)

,

such that the function on the left-hand side necessarily has homogeneity
−6, and thus potentially corresponds to a spacetime field solving the spin-2
massless free field equation i.e. to a self-dual gravity solution.

• For a suitable choice of twistor functions, this spacetime relationship is
precisely the type D Weyl double copy.
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Twistorial Double Copy

• Define a family of twistor functions

fm(Zα) =
1

m!
[

QαβZαZβ
]−m

,

for some constant Qαβ . This will produce a type D Weyl tensor (for
m = 3), that is related to an electromagnetic field strength (m = 2) and
scalar field (m = 1).

• One can show that this is indeed true by carrying out the Penrose
transform in each case.

• Opens the door to a formulation on curver backgrounds.
• Allows us to go beyond Type D/N.
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Twistorial Double Copy- More general
solutions

• Consider the homogeneity −4 functions related to two different
electromagnetic spinors

f (0,2)
EM =

1
(AαZα)(BβZβ)3 =

1
[πA][πB]3 , AA′

= ixAA′
AA + AA′

f (1,1)
EM =

1
(AαZα)2(BβZβ)2 =

1
[πA]2[πB]2 ,

as well as the homogeneity −2 function

f (0,0) =
1

(AαZα)(BβZβ)
=

1
[πA][πB]

.

Then we can construct the twistor representative for Type II solutions

f (II)
grav. =

1
f (0,0) f (1,1)

EM

(
−

[CB]
[AB]

f (0,2)
EM +

[CA]
[AB]

f (1,1)
EM

)
.

which in space-time becomes

Ψ(II)
A′B′C′D′ =

1
φ

[
3

[CA]
[AB]

φ
(0,2)
(A′B′φ

(1,1)
C′D′) − 4

[CB]
[AB]

φ
(1,1)
(A′B′φ

(1,1)
C′D′)

]
,
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Twistorial Double Copy- More general
solutions

• One can also construct Type I solutions.
• We have generalised the Weyl Double copy beyond Type D/N - it is now a

sum of products.
• The twistor language reduces the problem to finding combinations with the

correct pole structure - this are then guaranteeed to satisfy the e.o.m.
when we go to spacetime by performing the Penrose transform!
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Various double copies

• Different formulations
• (1) self-dual fields and symmetries
• (2) exact solutions, twistorial formulation
• (3) scattering amplitudes (BCJ rules)
• (4) linearised approximation (convolutions)

• (1)-(2) perturbation around self-dual sector
• (1)-(3) replacement rules
• (1)-(4) checked explicitly on the overlap
• (2)-(3) checked at linear level, from 3-point amplitude with probe particle
• (2)-(4) to do
• (3)-(4) product in momentum space → convolution in position space
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Thank You !
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