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Introduction

@ There are some models that have a high amount of symmetry;

@ and consequently they have many conserved charges:

{Q1, Q2, Qs, ... }
e Usually:
o Q1 = P,
o Q2 =H,
o Qg —...
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@ Such quantum models have

[Qma @n] =0

where
Qo = HL.

@ the high amount of symmetry make these models so constrained

that they can ”usually” be completely solved;

@ They are known as Integrable models.
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They have applications in condensed matter: in magnetism and
superconductivity

@ Heisenberg spin chain;
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They have applications in condensed matter: in magnetism and
superconductivity

@ Heisenberg spin chain;

e Potts model;

e Hubbard model,;
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and more recently applications in AdS/CFT
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and more recently applications in AdS/CFT

e AdS5; — Hubbard-like model;

o AdS3 — XXZ-like model;

o AdS; — XYZ-like model.

Ana L. Retore 6 /54



@ When I say that these models can be solved what I mean is that
Integrable models have many very effective techniques that were
developed specifically to deal with them such as

o Coordinate Bethe ansatz (CBA);

o (Nested) Algebraic Bethe ansatz (ABA);
o Thermodynamic Bethe ansatz (TBA);

o Q-operators;

e Quantum spectral Curve;

e With all these techniques we can in most of the cases solve these
models.
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@ Due to the existence of so many conserved charges there are some
features of these models that are completely fixed;
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@ Due to the existence of so many conserved charges there are some
features of these models that are completely fixed;

@ Let us consider the scattering of three particles in 2D:

e No particle production;

o The set of initial and final momenta is the same {p;} = {ps};
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@ Due to the existence of so many conserved charges there are some
features of these models that are completely fixed;

@ Let us consider the scattering of three particles in 2D:

e No particle production;
o The set of initial and final momenta is the same {p;} = {ps};

o 3 — 3-particles scattering = {2 — 2}-particles scattering
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This is called Yang-Baxter equation (YBE);
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Ria(u, v) Ri3(u, w) Rog(v, w) = Roz(v, w)Riz(u, w)Ry2(u, v)

This is called Yang-Baxter equation (YBE);

u, v and w can be interpreted as rapidities of the particles.
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So, the main object to define a quantum integrable model is the
R-matrix

R(u,v)

where

R: VRV -=2VRV
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e For example, it appears often in 1D systems called spin chains;
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e For example, it appears often in 1D systems called spin chains;
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compute all the charges
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e For example, it appears often in 1D systems called spin chains;

e Usually, each R-matrix defines an integrable model and allows to

compute all the charges

Qi

/ Q

. 2
e Qs

@ We are interested in R-matrices with the regularity property:

R(u,u) = P, where Pia(v1 ® v3) =12 Qv
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@ And for such systems

H = PR(Uan)‘v—m'
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@ And for such systems

H = PR(U/U)‘U—W'

e It will be also important make the distinction between

difference form R-matrix:

R(u,v) =R(u — v)
= H does NOT depend on the spectral parameter

Examples: XXX, XXZ, XYZ, Sine/Sinh-Gordon...
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@ And for such systems

H = PR(U/U)‘U—W'

e It will be also important make the distinction between

difference form R-matrix:

R(u,v) =R(u — v)
= H does NOT depend on the spectral parameter

Examples: XXX, XXZ, XYZ, Sine/Sinh-Gordon...
non-difference form R-matrix:

R(u,v) #R(u — v)
= H depend on the spectral parameter

Example: Hubbard-model



How about Yang-Baxter equation?
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e YBE is very difficult to solve in general,
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Ria(u, v) Ri3(u, w) Rog(v, w) = Raz(v, w)Riz(u, w)Ri2(u, v)

e YBE is very difficult to solve in general,

e Imagine you just assume the simplest general case: you start with
an R-matrix 4 x 4, so 16 unknown functions;

@ You substitute it on YBE, you have a system with cubic
polynomial functional equations, each function depending on two
variables, and YBE depending on three variables;
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How about Yang-Baxter equation?

Ria(u, v) Ri3(u, w) Rog(v, w) = Raz(v, w)Riz(u, w)Ri2(u, v)

e YBE is very difficult to solve in general,

e Imagine you just assume the simplest general case: you start with
an R-matrix 4 x 4, so 16 unknown functions;

@ You substitute it on YBE, you have a system with cubic
polynomial functional equations, each function depending on two
variables, and YBE depending on three variables;

So, this is not how people usually do!
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There are methods people usually use to find solutions of YBE:
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There are methods people usually use to find solutions of YBE:

The algebraic method: (Drinfeld, Faddeev, Kulish, Reshetikin,...)

e you assume some symmetry for the R-matrix (Yangian symmetry,
for example)

@ use baxterization of Temperley-Lieb;
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There are methods people usually use to find solutions of YBE:

The algebraic method: (Drinfeld, Faddeev, Kulish, Reshetikin,...)

e you assume some symmetry for the R-matrix (Yangian symmetry,
for example)

@ use baxterization of Temperley-Lieb;
Solving YBE ”directly” (Vieira, Lima-Santos, ...)

e you derivate YBE with respect to one of the variables and solve
the differential equations;
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Solving the Yang-Baxter equation:

Ria(u, v) Ri3(u, w) Ras(v, w) = Roz(v, w)Ry3(u, w)Ri2(u,v)
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Solving the Yang-Baxter equation:

Ria(u, v) Ri3(u, w) Ras(v, w) = Roz(v, w)Ry3(u, w)Ri2(u,v)

(De Leeuw, Pribytok, Ryan, 2019)
(De Leeuw, Paletta, Pribytok, A.R., Ryan, 2020)

@ The idea is to start with an ansatz Hamiltonian:

H=> Hii1=Qs
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Solving the Yang-Baxter equation:

Ria(u, v) Ri3(u, w) Ras(v, w) = Roz(v, w)Ry3(u, w)Ri2(u,v)

(De Leeuw, Pribytok, Ryan, 2019)
(De Leeuw, Paletta, Pribytok, A.R., Ryan, 2020)

@ The idea is to start with an ansatz Hamiltonian:

H=> Hii1=Qs

For example:
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e If a model is integrable we know that it has to satisfy

[Qi(6),Q;(8)] =0, 4,j=1,..
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e If a model is integrable we know that it has to satisfy
[Qi(0),Q;(6)] =0, 4,j=1,..

@ So, a good start is to require

[Q2(0),Q3(0)] =0
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e If a model is integrable we know that it has to satisfy
Q:(0),Q;(0)] =0, 4,5=1,...
@ So, a good start is to require

[Q2(0),Q3(0)] =0

But how do we compute (3 if we don’t know the R-matrix?
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e If a model is integrable we know that it has to satisfy
Q:(0),Q;(0)] =0, 4,5=1,...
@ So, a good start is to require

[Q2(0),Q3(0)] =0

But how do we compute (3 if we don’t know the R-matrix?

e For that we use the so called Boost operator (see Tetelman, 1982,
Loebbert, 2016, Grabowski and Mathieu, 1994):

B [QQ] = 0Oy + Z an,n—l—l(@);

n=—oo
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e The advantage of this object is that we can use it to construct
higher charges in a recursive way:

QT+1 ~ [B [QQ] 7@7“] 3 r>1
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e The advantage of this object is that we can use it to construct
higher charges in a recursive way:

QT+1 ~ [B [QQ] 7@7“] 3 r>1

@ So, Q3 is given by

Q3(0) = [B Q2] , Q2]

- dH
Q3(0) = Z Hi1,i, Hiiv1) + 7
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@ So, having Q3 in terms of the Hamiltonian density we can solve
Nnow

[Q2(0),Q3(0)] =0
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@ So, having Q3 in terms of the Hamiltonian density we can solve
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Nnow
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@ So, having Q3 in terms of the Hamiltonian density we can solve
Nnow

[Q2(0),Q3(0)] =0

e We obtain a set of ODEs in the variables h;(#) that can be solved.

e With this we have several potentially integrable Hamiltonians.

But how to guarantee that all the other charges commute?

[Q2(0),Q3(0)] = 0 = [Q3(0), Qa(0)] = ...
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e To guarantee that all the charges commute, we do need to find the
R-matrix R(u) for each of the potentially integrable Hamiltonians
found in the previous step;
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e To guarantee that all the charges commute, we do need to find the
R-matrix R(u) for each of the potentially integrable Hamiltonians
found in the previous step;

e We will now solve YBE having the following boundary conditions:

Regularity condition: R(u,u) =P
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e To guarantee that all the charges commute, we do need to find the
R-matrix R(u) for each of the potentially integrable Hamiltonians
found in the previous step;

e We will now solve YBE having the following boundary conditions:

Regularity condition: R(u,u) =P
Hamiltonian:
H—p dR(u,v)
du V=U

Ana L. Retore 19 /54



e In order to solve YBE we apply the derivative wrt u and send
v — U;
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e In order to solve YBE we apply the derivative wrt u and send
v — U;

e This generates the so called Sutherland equation:

[R13R23, H12(u)] = Ri3R23 — Ri3Ro3
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e In order to solve YBE we apply the derivative wrt u and send
v — U;

e This generates the so called Sutherland equation:

[R13R23, H12(u)] = Ri3R23 — Ri3Ro3

@ which we solve using the boundary conditions:

dR(u,v)

R =P, H=P
(U7U) ’ du 'U:uj
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e In order to solve YBE we apply the derivative wrt u and send
v — U;

e This generates the so called Sutherland equation:

[R13R23, H12(u)] = Ri3R23 — Ri3Ro3

@ which we solve using the boundary conditions:

dR(u,v)

R =P, H=P
(U7U) ’ du 'U:uj

e So, for each H, we solve the set of PDEs which depend on r;(u,v);
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e In order to solve YBE we apply the derivative wrt u and send
v — U;

e This generates the so called Sutherland equation:

[R13R23, H12(u)] = Ri3R23 — Ri3Ro3

@ which we solve using the boundary conditions:

dR(u,v)

R =P, H=P
(U7U) ’ du 'U:uj

e So, for each H, we solve the set of PDEs which depend on r;(u,v);

@ The last step is to check that R(u,v) satisfies YBE.
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Summarizing...

Boost

general op-

H ——= |
L [2.,2:]=0

Solve

R-matrix {YBE Intel_glg_ll;able
with BC

with boundary conditions:
H(u) = P dRéZ’”) _and R(uu)=P.
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Integrable models with su(2) @ su(2) symmetry

e dim[V]=4, so each two sites Hamiltonian will be 16 x 16;
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Integrable models with su(2) @ su(2) symmetry

e dim[V]=4, so each two sites Hamiltonian will be 16 x 16;
e Fully understand such systems is out of our ability;

e It has 256 components, so solving [Qs, Q3] = 0 for so many
coefficients is not feasible at the moment;

Ana L. Retore 22 /54



Integrable models with su(2) @ su(2) symmetry

e dim[V]=4, so each two sites Hamiltonian will be 16 x 16;
e Fully understand such systems is out of our ability;

e It has 256 components, so solving [Qs, Q3] = 0 for so many
coefficients is not feasible at the moment;

@ So, we assumed su(2) ® su(2) symmetry;
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Two sets of vectors: {|¢p1),|p2)} and {|i1), [¥2)}

o é1) = |0)

o ¢2) = clc][0) l
o )=o) 1
o [1h2) = ] 0) |

where {c;r,cj} = 0i;

L2 -1 L 1 2 3




e With this symmetry our two-sites Hamiltonian has the form

H|batds) = Aldpads) + Bldpda) + Ceare™ [athp)
H|batbs) = Gldatbs) + H|sda)

H‘¢a¢b> — K’¢a¢b> + L’¢b¢a>

H|tbathg) = Dlvaths) + Elgtha) + Fe™easldats)




e With this symmetry our two-sites Hamiltonian has the form

H|batds) = Aldpads) + Bldpda) + Ceare™ [athp)
H|batbs) = Gldatbs) + H|sda)

H‘wa¢b> — K’¢a¢b> + L’¢b¢a>

H|tbathg) = Dlvaths) + Elgtha) + Fe™easldats)

e Using this H and applying the method we found :
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e With this symmetry our two-sites Hamiltonian has the form

H|batds) = Aldpads) + Bldpda) + Ceare™ [athp)
H|batbs) = Gldatbs) + H|sda)

H‘wa¢b> — K’¢a¢b> + L’¢b¢a>

H|tbathg) = Dlvaths) + Elgtha) + Fe™easldats)

e Using this H and applying the method we found :

@ 12 independent solutions
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The 12 solutions are:
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Models 8, 9 and 10

@ Models 8, 9 and 10 are the most interesting ones!
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@ They are new and have very interesting physical features;
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Models 8, 9 and 10

@ Models 8, 9 and 10 are the most interesting ones!

@ They are new and have very interesting physical features;

@ They have G=H = K = L = 0;
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Why is relevant that G = H =K =L =07

Remember the form of the Hamiltonian

H|batds) = Aldpads) + Bldpda) + Ceape™ [athp)
H|paths) = Gldatbs) + Hhada)

H|vady) = K|pads) + L|dptPa)
H|vatrs) = Dlhatos) + Eltgtha) + Feeas|dads)

G = H = K = L =0 means that electrons can not move in the spin
chain by themselves, they only move when in pairs.
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H|pad) = Alpads) + Blopda) + Ceape® [Paths)
H‘¢a’¢5> =0
H‘¢a¢b> =0

)

= Dltpatbs) + Eltbgioa) + Fe®eapldads)

HI%W




H|batds) = Aldatp) + Bldpda) + Ceape® [thathp)
H|parps) =0

H|Yadp) =0

H|tbathg) = Dlvaths) + Elpgtha) + Fe™easldats)

Let us think in L=5 (number of sites):

H = Hio + Hos + Hag + Has + Hsy
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H|batds) = Aldatp) + Bldpda) + Ceape® [thathp)
H|parps) =0

H|Yadp) =0

H|tbathg) = Dlvaths) + Elpgtha) + Fe™easldats)

Let us think in L=5 (number of sites):

H = Hia + Haz + Haa + Has + Hs1
Let us look the state

P11 D1 P2 H1)

H|p1 11 ¢1 92 p1) = (A + B)|d1 91 1 Y2 ¢1)

i.e. Electrons did not move!
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H|batds) = Aldpads) + Bldpda) + Ceape® [0athp)
H|papg) = 0

H‘wa¢b> =0

H|tbathg) = Dlvatbs) + Elgtha) + Fe™easldats)

Let us think in L=5 (number of sites):

H = Hi2 + Hasz + Hza + Has + Hs1
Let us look the state

|d1 D11 Y2 H1)

H|¢1 d1 9192 1) =7

Now they move!
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Spectrum:

e For 4 sites for example:

Model 8: {1,1,1,1,14, 14, 224};
Model 9: {1,15,16, 30, 194};
Model 10: {1,1,1,1,1,1,6,6,8,8,14, 16, 16, 32,44, 100}
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Spectrum:

e For 4 sites for example:

Model 8: {1,1,1,1,14, 14, 224};
Model 9: {1,15,16, 30, 194};
Model 10: {1,1,1,1,1,1,6,6,8,8,14, 16, 16, 32,44, 100}

@ So the three models despite their similarities have a very different
spectrum;
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Spectrum:

e For 4 sites for example:

Model 8: {1,1,1,1,14, 14, 224};
Model 9: {1,15,16, 30, 194};
Model 10: {1,1,1,1,1,1,6,6,8,8,14, 16, 16, 32,44, 100}

@ So the three models despite their similarities have a very different
spectrum;

@ And also probably have some extra symmetries we still do not
understand;
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Model 8

ry = —r; = —tan(u p) re =110 = 1
ro=1—mr : rg = e® r;
re =147 rg = —e " ? 1
Model 9
=T rg = —e® 1y
7‘2:7’6:1—7'1, ” ——€_¢7“1
r7T =T10 =
r1 = 2+ v/3coth (\/gpu + log (2 — \/§>)
Model 10
3pu 3pu
eTl—él 9 € —4 300
T =T10 = G_Z(Spu) € 2¢7“9 =1rg = —%€T+¢ 1
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Generalized Hubbard model

@ The 1D Hubbard model is integrable (E.H. Lieb & F.Y Wu, 1968
and B.Sriram Shastry, 1988);
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Generalized Hubbard model

@ The 1D Hubbard model is integrable (E.H. Lieb & F.Y Wu, 1968
and B.Sriram Shastry, 1988);

e We found that only the kinetic part of Hubbard is also integrable:

Kgup = Z (Cl,lca,Q + CL,QCon)
T
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Generalized Hubbard model

@ The 1D Hubbard model is integrable (E.H. Lieb & F.Y Wu, 1968
and B.Sriram Shastry, 1988);

e We found that only the kinetic part of Hubbard is also integrable:

Kgup = Z (Cl,lca,Q + CL,QCon)
T

@ So we decided to see which terms we could add and still keep
integrability;
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Generalized Hubbard model

@ The 1D Hubbard model is integrable (E.H. Lieb & F.Y Wu, 1968
and B.Sriram Shastry, 1988);

e We found that only the kinetic part of Hubbard is also integrable:

Kgup = Z (Cl,lca,Q + CL,QCCK,:l)
T

@ So we decided to see which terms we could add and still keep
integrability;

e but we would like to study only models we could interpret as
electrons moving on a one-dimensional lattice;
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Generalized Hubbard model

@ The 1D Hubbard model is integrable (E.H. Lieb & F.Y Wu, 1968
and B.Sriram Shastry, 1988);

e We found that only the kinetic part of Hubbard is also integrable:

Kgup = Z (Cl,lca,Q + CL,QCCK,:l)
T

@ So we decided to see which terms we could add and still keep
integrability;

e but we would like to study only models we could interpret as
electrons moving on a one-dimensional lattice;

@ So we only included terms which preserve fermion number;
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We added three types of terms:

@ K pair: moves one pair of electrons from one site to the next;
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e Kjyjp: flips spins in neighbor sites;
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We added three types of terms:

@ K pair: moves one pair of electrons from one site to the next;

Kpair = Arch €] eraep + Aze] yef periep i,

e Kjyjp: flips spins in neighbor sites;

Kiip = A3C$,1CL2C¢,1CT,2 + A4CL1C$,2CT,1C¢,2
T A5C$,1C$,2C¢,1C¢,2 + A6C1,1CL2CT,1CT,2-

e V: potential term
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We added three types of terms:

@ K pair: moves one pair of electrons from one site to the next;

Kpair = Arch €] eraep + Aze] yef periep i,

e Kjyjp: flips spins in neighbor sites;
Kfip = Ascl ] yepic + Asc] el epiey s

T A5C$,1C$,2C¢,1C¢,2 + A6C1,1C1,2CT,1CT,2-

e V: potential term

The density Hamiltonian whose integrability we investigate is
H = KHub + Kpaz’r + Kflip + ‘/7

It has 22 free parameters
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If we consider a non-trivial K, and also a potential part we found
that

H = Kuu +a (C$,1CL2C¢,1CT,2 + Cl,lc;zcﬁlcw

el el pepiepn + CLlCLzCT,l%z)
+(2a = b)(ng,1 +nyy) +0(ng2 + 1y )
—a(ny1+ny)(np2 +n0p2).
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If we consider a non-trivial K ¢, and also a potential part we found
that

H = Kuu +a (C$,1CL2C¢,1CT,2 + Ci,lc%zcﬁlcw

el el pepiepn + 01,161,2%1%2)
+(2a = b)(ng,1 +nyy) +0(ng2 + 1y )
—a(ny1+ny)(np2 +n0p2).

e It does not conserve spin orientation, so it is XYZ deformation of
the Hubbard model;
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If we consider a non-trivial K ¢, and also a potential part we found
that

H = Kuu +a (C$,1CL2C¢,1CT,2 + Ci,lc%zcﬁlcw

el el pepiepn + 01,161,2%1%2)
+(2a = b)(ng,1 +nyy) +0(ng2 + 1y )
—a(ny1+ny)(np2 +n0p2).

e It does not conserve spin orientation, so it is XYZ deformation of
the Hubbard model;

@ Bethe ansatz does not work;
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If we consider a non-trivial K ¢, and also a potential part we found
that

H = Kuu +a (C$,1CL2C¢,1CT,2 + CL1C¥,2CT,1C¢,2

+ef el e + CI,1CI,2CT,1CT,2)
+(2a = b)(np 1 +ny 1) +b(ng 2 + 1y o)
—a(ny1+ny)(np2 +n0p2).

e It does not conserve spin orientation, so it is XYZ deformation of
the Hubbard model;

@ Bethe ansatz does not work;

e It has two free parameters, so it may have a phase diagram;

Ana L. Retore 35 /54



AdSs 3 deformations

o It is known that in addition to AdSsxS®, lower dimensional
versions of AdS like:

AdS3 x S? x T4 (Borsato, Ohlsson Sax,
Sfondrini, B. Stefanski, 2014)

AdS3 x S x §% x S! (Borsato, Ohlsson Sax,
Sfondrini, B. Stefanski, 2015)

AdS, x S? x TY (Hoare, Pittelli, Torrielli, 2014).

are also integrable.
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AdSs 3 deformations

o The R-matrix for AdSs x S x T#, for example, was obtained by
assuming that
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AdSs 3 deformations

o The R-matrix for AdSs x S x T#, for example, was obtained by
assuming that

o the off-shell symmetries obtained for the nonlinear Sigma model,;
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AdSs 3 deformations

o The R-matrix for AdSs x S x T#, for example, was obtained by
assuming that

o the off-shell symmetries obtained for the nonlinear Sigma model;and

e the symmetries responsible for the integrability of the classical field
theory
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AdSs 3 deformations

o The R-matrix for AdSs x S x T#, for example, was obtained by
assuming that

o the off-shell symmetries obtained for the nonlinear Sigma model;and

e the symmetries responsible for the integrability of the classical field
theory

both remain at quantum level;
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AdSs 3 deformations

o The R-matrix for AdSs x S x T#, for example, was obtained by
assuming that

o the off-shell symmetries obtained for the nonlinear Sigma model;and

e the symmetries responsible for the integrability of the classical field
theory

both remain at quantum level;

e This was enough to fix the S-matrix up to the dressing factor;
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AdSs 3 deformations

e Focusing on the su(1]|1)2, sector, one can write the S-matrix as

5 SLL  &RL
S = ( SLR SRR)
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AdSs 3 deformations

e Focusing on the su(1]|1)2, sector, one can write the S-matrix as
5 GLL  &RL
S = (SYLR S‘RR)

@ it satisfies the Yang-Baxter equation;
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AdSs 3 deformations

e Focusing on the su(1]|1)2, sector, one can write the S-matrix as
5 GLL  &RL
S = ( LR SRR)

@ it satisfies the Yang-Baxter equation;

@ each of these blocks are an embedding of a 4 x 4 R-matrix;
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AdSs 3 deformations

e Focusing on the su(1]|1)2, sector, one can write the S-matrix as
5 GLL  &RL
S = ( LR SRR)

@ it satisfies the Yang-Baxter equation;

@ each of these blocks are an embedding of a 4 x 4 R-matrix;

@ the blocks with same chirality come from regular R-matrices while
the opposite-chirality ones come from non-regular R-matrices;
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AdSs 3 deformations

o For AdS; x S? x M* the diagonal blocks are regular 6-vertex
regular R-matrices, i.e.

r1(u,v) 0 0 0
B 0 ro(u,v) rg(u,v) 0 B
R(u,v) 0 rs(u,v)  r3(u,v) 0 o Rlu,u) =P,
0 0 0 ra(u,v)
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AdSs 3 deformations

o For AdS; x S? x M* the diagonal blocks are regular 6-vertex
regular R-matrices, i.e.

r1(u, v) 0 0 0
B 0 ro(u,v) rg(u,v) 0 B
R(’LL, U) - 0 s (u’ ’U) Tg(u, ’U) 0 ) R(ua ’LL) - P7
0 0 0 rq(u, v)

which means that only scatterings like

0P = ¢
Vi = Yy
QY = dY+Yo
Vo = Yo+ o1

are allowed. Spin is conserved.
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AdSs 3 deformations

e While for massive AdSy x S? x T% the RR and LL blocks are
described by an 4 x 4 8-vertex regular R-matrix:

r1(u, v) (0 ) (0 ) rs(u, v)
B 0 ro(u,v) 7r¢(u,v 0 .
R(u,v) = 0 rs(u,v)  r3(u,v) 0 , Rlw,u) =P
r7(u, v) 0 0 rq(u, v)
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AdSs 3 deformations

e While for massive AdSy x S? x T% the RR and LL blocks are
described by an 4 x 4 8-vertex regular R-matrix:

r1(u,v) 0 0 rs(u,v)

0 ro(u,v) rg(u,v) 0 B

0 rs(u,v)  r3(u,v) 0 - Bluw) =P
r7(u,v) 0 0 rq(u,v)

R(u,v) =

which means that only scatterings like

PP = O+ P,
Yo = PP+ oo,
¢h = oY+ Yo,
Vo = Yo+ o1

are allowed.
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AdSs 3 deformations

Goal: Find the most general integrable deformations of AdSg
and AdS, R-matrices.
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AdS, x §? x T*
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We found 4 independent solutions:
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We found 4 independent solutions:

Two of 6 vertex form;

and

Two of 8 vertex form

But in only one of the 6-vertex and one of the 8-vertex, AdSz 3 known
R-matrices could be embedded.
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We found 4 independent solutions:

Two of 6 vertex form;

and

Two of 8 vertex form

But in only one of the 6-vertex and one of the 8-vertex, AdSz 3 known
R-matrices could be embedded.

We called them 6-vertex B and 8-vertex B
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1 (
py = 12(p) — (@) X(p)Y (p)
ha(q) — hi(q) X(q)Y (q)’
Yp)
" Y(9)
LX)
° X(q)

We will assume R%(u,v) and R**(u,v) as two independent copies of
6-vertex B.




0-vertex B - AdS;

e It was possible to keep the LL and RR blocks completely
independent of each other;
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e It was possible to keep the LL and RR blocks completely
independent of each other;

e So, the result is a deformation of both AdS3xS3xT* and
AdS3xS3xS3 xSt
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0-vertex B - AdSs

e It was possible to keep the LL and RR blocks completely
independent of each other;

e So, the result is a deformation of both AdS3xS3xT* and
AdS3xS3xS3 xSt

e It actually corresponds to a deformation of the g-deformation
introduced by Ben Hoare in 2015;

Ana L. Retore 45 / 54



0-vertex B - AdSs

e It was possible to keep the LL and RR blocks completely
independent of each other;

e So, the result is a deformation of both AdS3xS3xT* and
AdS3xS3xS3 xSt

e It actually corresponds to a deformation of the g-deformation
introduced by Ben Hoare in 2015;

e It is what we are calling a functional deformation, because instead
of as]j_-:i 1 (u) we have general functions hféL(u)
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0-vertex B - AdS;

e By making the following identifications

i) = -2, W) = Bag (9),
R :U]—;(p) L 4
hy (p) = — 5 hy (p) = Bz} (p),

where (3 is an arbitrary constant
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0-vertex B - AdSs

e By making the following identifications

i) = -2, W) = By (o),
CE+
W) = -, WS () = Bt (p),

Lo Loy 1 V1(p) !
X*(p) = (D) Y:p BpUL®)VL(p)WL(p) zf (p) — 27 (p)
R, Lahlp) om0 pYr(P) i (P)
Y =5 N T T Ve W) 7)o b ()

we recover the two parametric g-deformation;
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0-vertex B - AdS;

e But let us keep these functions hﬁ’;(u) general;
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0-vertex B - AdS;

e But let us keep these functions hﬁ’;(u) general;

@ In such case we can interpret as the mass now depends on u;
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0-vertex B - AdS;

e But let us keep these functions hﬁ’;(u) general;
@ In such case we can interpret as the mass now depends on u;

e It has crossing symmetry;
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-vertex B model

: cn
T = \/sinn(u) \/Sinn(v) _sm 77+£ — COs 77+sn_ :
[ cn |
T V/sinn(u)/sinn(v) COST-SD A+ s g ] dn |’
1 [ cn |
r3 = \/Sinn(u) \/sinn(v) COS 1)—sn — Sin 17— — dn |’
- on ]
ry = \/smn \/smn _SlIl 77+d—n + cos 77+sn_ ;
rs =1 = 1,
cn
re=1rg =k snd—n

with
sn = sn(G(u) — G(v), k%), cn=cn(G(u) — G), k%), etc



-vertex B model

@ This model was a nice surprise;
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@ This model was a nice surprise;

e It is a deformation of:

AdSs when k — oo
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-vertex B model

@ This model was a nice surprise;

e It is a deformation of:

AdSs when k — oo

and

AdS3 when k — 0
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8-vertex B - AdS3 deformation

e This was the biggest surprise when we compared the models with
the undeformed ones:

An 8-vertex deformation of AdSs!
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8-vertex B - AdS3 deformation

e This was the biggest surprise when we compared the models with
the undeformed ones:

An 8-vertex deformation of AdSs!

@ We constructed the full R-matrix for this model, and again we
found that the LL and RR blocks can be deformed separately here;

Ana L. Retore 50 / 54



8-vertex B - AdS3 deformation

e This was the biggest surprise when we compared the models with
the undeformed ones:

An 8-vertex deformation of AdSs!

@ We constructed the full R-matrix for this model, and again we
found that the LL and RR blocks can be deformed separately here;

e So, we have again a deformation of AdS3 x S3 x M*;

@ This is not however a deformation of the gq-deformed model found
by Hoare in 2014;
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Conclusions

e we presented a new method to construct R-matrices satisfying
YBE;
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e we presented a new method to construct R-matrices satisfying
YBE;

e Some models with potential interesting physical properties were
found;
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Conclusions

e we presented a new method to construct R-matrices satisfying
YBE;

e Some models with potential interesting physical properties were
found;

@ And three new integrable deformations of lower dimensional AdS
were found,
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Further developments

e Consider models with less symmetry and maybe try a full
classification;

e Compute the spectrum of the new models where electrons can
move only when in pairs ;

o Maybe nested algebraic Bethe ansatz will work;

e Study physical properties of the deformed Hubbard-like model;
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e Investigate if there are field theories whose S-matrix would
correspond to the new R-matrices we found;

e Prove that [Q2, Q3] = 0 is always enough or find a counterexample;
@ Construct the K-matrices;

e Study better the deformations of AdSs> and AdS3 we found,
including its symmetries and solve the crossing equations.

Ana L. Retore 53 /54



Thank you!
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