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Introduction

There are some models that have a high amount of symmetry;

and consequently they have many conserved charges:

{Q1, Q2, Q3, ... }

Usually:

Q1 = P,

Q2 = H,

Q3 =...
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Such quantum models have

[Qm,Qn] = 0

where
Q2 = H.

the high amount of symmetry make these models so constrained
that they can ”usually” be completely solved;

They are known as Integrable models.
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They have applications in condensed matter: in magnetism and
superconductivity

Heisenberg spin chain;

Potts model;

Hubbard model;
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and more recently applications in AdS/CFT

AdS5 → Hubbard-like model;

AdS3 → XXZ-like model;

AdS2 → XYZ-like model.
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When I say that these models can be solved what I mean is that
Integrable models have many very effective techniques that were
developed specifically to deal with them such as

Coordinate Bethe ansatz (CBA);

(Nested) Algebraic Bethe ansatz (ABA);

Thermodynamic Bethe ansatz (TBA);

Q-operators;

Quantum spectral Curve;

With all these techniques we can in most of the cases solve these
models.
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Due to the existence of so many conserved charges there are some
features of these models that are completely fixed;

Let us consider the scattering of three particles in 2D:

No particle production;

The set of initial and final momenta is the same {pi} = {pf};

3→ 3-particles scattering ⇒ {2→ 2}-particles scattering
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u u vv w w

= =

1 12 23 3

R12(u, v)R13(u,w)R23(v, w) = R23(v, w)R13(u,w)R12(u, v)

This is called Yang-Baxter equation (YBE);

u, v and w can be interpreted as rapidities of the particles.
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So, the main object to define a quantum integrable model is the
R-matrix

u v

R(u,v)

where
R : V ⊗ V → V ⊗ V
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For example, it appears often in 1D systems called spin chains;

Usually, each R-matrix defines an integrable model and allows to
compute all the charges

R

...

We are interested in R-matrices with the regularity property:

R(u, u) = P, where P12(v1 ⊗ v2) = v2 ⊗ v1
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And for such systems

H = P Ṙ(u, v)|v→u.

It will be also important make the distinction between

difference form R-matrix:

R(u, v) =R(u− v)

⇒ H does NOT depend on the spectral parameter

Examples: XXX, XXZ, XYZ, Sine/Sinh-Gordon...
non-difference form R-matrix:

R(u, v) 6=R(u− v)

⇒ H depend on the spectral parameter

Example: Hubbard-model
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How about Yang-Baxter equation?

R12(u, v)R13(u,w)R23(v, w) = R23(v, w)R13(u,w)R12(u, v)

YBE is very difficult to solve in general;

Imagine you just assume the simplest general case: you start with
an R-matrix 4× 4, so 16 unknown functions;

You substitute it on YBE, you have a system with cubic
polynomial functional equations, each function depending on two
variables, and YBE depending on three variables;

So, this is not how people usually do!
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There are methods people usually use to find solutions of YBE:

The algebraic method: (Drinfeld, Faddeev, Kulish, Reshetikin,...)

you assume some symmetry for the R-matrix (Yangian symmetry,
for example)

use baxterization of Temperley-Lieb;

Solving YBE ”directly” (Vieira, Lima-Santos, ...)

you derivate YBE with respect to one of the variables and solve
the differential equations;
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Solving the Yang-Baxter equation:

R12(u, v)R13(u,w)R23(v, w) = R23(v, w)R13(u,w)R12(u, v)

(De Leeuw, Pribytok, Ryan, 2019)
(De Leeuw, Paletta, Pribytok, A.R., Ryan, 2020)

The idea is to start with an ansatz Hamiltonian:

H =
∑
i

Hi,i+1 = Q2.

For example:

H =


h1(u) 0 0 h8(u)

0 h5(u) h3(u) 0
0 h2(u) h6(u) 0

h7(u) 0 0 h4(u)

 .
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If a model is integrable we know that it has to satisfy

[Qi(θ),Qj(θ)] = 0, i, j = 1, ...

So, a good start is to require

[Q2(θ),Q3(θ)] = 0

But how do we compute Q3 if we don’t know the R-matrix?

For that we use the so called Boost operator (see Tetelman, 1982,
Loebbert, 2016, Grabowski and Mathieu, 1994):

B [Q2] = ∂θ +

∞∑
n=−∞

nHn,n+1(θ);
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The advantage of this object is that we can use it to construct
higher charges in a recursive way:

Qr+1 ∼ [B [Q2] ,Qr] , r > 1

So, Q3 is given by

Q3(θ) = [B [Q2] ,Q2]

Q3(θ) =

L∑
i=1

[Hi−1,i,Hi,i+1] +
dH
dθ
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So, having Q3 in terms of the Hamiltonian density we can solve
now

[Q2(θ),Q3(θ)] = 0

We obtain a set of ODEs in the variables hi(θ) that can be solved.

With this we have several potentially integrable Hamiltonians.

But how to guarantee that all the other charges commute?

[Q2(θ),Q3(θ)] = 0 = [Q3(θ),Q4(θ)] = ...
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To guarantee that all the charges commute, we do need to find the
R-matrix R(u) for each of the potentially integrable Hamiltonians
found in the previous step;

We will now solve YBE having the following boundary conditions:

Regularity condition: R(u, u) = P

Hamiltonian:

H = P
dR(u, v)

du

∣∣∣
v=u
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In order to solve YBE we apply the derivative wrt u and send
v → u;

This generates the so called Sutherland equation:

[R13R23,H12(u)] = Ṙ13R23 −R13Ṙ23

which we solve using the boundary conditions:

R(u, u) = P, H = P
dR(u, v)

du

∣∣∣
v=u

;

So, for each H, we solve the set of PDEs which depend on ri(u, v);

The last step is to check that R(u, v) satisfies YBE.

Ana L. Retore 20 / 54



In order to solve YBE we apply the derivative wrt u and send
v → u;

This generates the so called Sutherland equation:

[R13R23,H12(u)] = Ṙ13R23 −R13Ṙ23

which we solve using the boundary conditions:

R(u, u) = P, H = P
dR(u, v)

du

∣∣∣
v=u

;

So, for each H, we solve the set of PDEs which depend on ri(u, v);

The last step is to check that R(u, v) satisfies YBE.

Ana L. Retore 20 / 54



In order to solve YBE we apply the derivative wrt u and send
v → u;

This generates the so called Sutherland equation:

[R13R23,H12(u)] = Ṙ13R23 −R13Ṙ23
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Summarizing...

general

H

Boost 
op.

Integrable

H?

[  ,  ]=0

R-matrix

Solve
YBE

with BC

with boundary conditions:

H(u) = P
dR(u, v)

du

∣∣∣
v=u

and R(u, u) = P.
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Integrable models with su(2)⊕ su(2) symmetry

dim[V]=4, so each two sites Hamiltonian will be 16× 16;

Fully understand such systems is out of our ability;

It has 256 components, so solving [Q2,Q3] = 0 for so many
coefficients is not feasible at the moment;

So, we assumed su(2)⊕ su(2) symmetry;
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Two sets of vectors: {|φ1〉, |φ2〉} and {|ψ1〉, |ψ2〉}

|φ1〉 = |0〉

|φ2〉 = c†↑c
†
↓|0〉

|ψ1〉 = c†↑|0〉

|ψ2〉 = c†↓|0〉

where
{
c†i , cj

}
= δij

1 2
3

LL-1L-2

...
...
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With this symmetry our two-sites Hamiltonian has the form

H|φaφb〉 = A|φaφb〉+B|φbφa〉+ Cεabε
αβ|ψαψβ〉

H|φaψβ〉 = G|φaψβ〉+H|ψβφa〉
H|ψαφb〉 = K|ψαφb〉+ L|φbψα〉
H|ψαψβ〉 = D|ψαψβ〉+ E|ψβψα〉+ Fεabεαβ|φaφb〉

Using this H and applying the method we found :

12 independent solutions
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The 12 solutions are:

Model A B C D E F G H K L

1 0 0 0 0 0 0 a b c d

2 0 0 0 a+ c 0 0 a b c d

3 0 0 0 a 0 0 b 0 c 0

4 ρ −ρ 0 0 0 0 a ρe−φ 2ρ− a ρeφ

5 ρ −ρ 0 ρ −ρ 0 a ρe−φ 2ρ− a ρeφ

6 0 0 0 ρ ρ 0 a ρe−φ 2ρ− a ρeφ

7 ρ −ρ 0 ρ ρ 0 a ρe−φ 2ρ− a ρeφ

8 ρ −ρ ρe−φ −ρ ρ −ρeφ 0 0 0 0

9 ρ −ρ ρe−φ ρ −ρ ρeφ 0 0 0 0

10 7
4ρ −ρ

1
2ρe
−φ 7

4ρ −ρ 1
2ρe

φ 0 0 0 0

11 ρ −ρ 1
2ρe
−φ ρ −ρ 1

2ρe
φ 3

2ρ −
3
2ρ

3
2ρ −3

2ρ

12 0 0 −ρe−φ 0 0 ρeφ 0 ρ 0 −ρ
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Models 8, 9 and 10

Models 8, 9 and 10 are the most interesting ones!

They are new and have very interesting physical features;

They have G = H = K = L = 0;
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Why is relevant that G = H = K = L = 0 ?

Remember the form of the Hamiltonian

H|φaφb〉 = A|φaφb〉+B|φbφa〉+ Cεabε
αβ|ψαψβ〉

H|φaψβ〉 = G|φaψβ〉+H|ψβφa〉
H|ψαφb〉 = K|ψαφb〉+ L|φbψα〉
H|ψαψβ〉 = D|ψαψβ〉+ E|ψβψα〉+ Fεabεαβ|φaφb〉

G = H = K = L = 0 means that electrons can not move in the spin
chain by themselves, they only move when in pairs.
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H|φaφb〉 = A|φaφb〉+B|φbφa〉+ Cεabε
αβ|ψαψβ〉

H|φaψβ〉 = 0

H|ψαφb〉 = 0

H|ψαψβ〉 = D|ψαψβ〉+ E|ψβψα〉+ Fεabεαβ|φaφb〉

Let us think in L=5 (number of sites):

H = H12 +H23 +H34 +H45 +H51

Let us look the state

|φ1 ψ1 φ1 ψ2 φ1〉

H|φ1 ψ1 φ1 ψ2 φ1〉 = (A+B)|φ1 ψ1 φ1 ψ2 φ1〉

i.e. Electrons did not move!
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H|φaφb〉 = A|φaφb〉+B|φbφa〉+ Cεabε
αβ|ψαψβ〉

H|φaψβ〉 = 0

H|ψαφb〉 = 0

H|ψαψβ〉 = D|ψαψβ〉+ E|ψβψα〉+ Fεabεαβ|φaφb〉

Let us think in L=5 (number of sites):

H = H12 +H23 +H34 +H45 +H51

Let us look the state

|φ1 φ1 ψ1 ψ2 φ1〉

H|φ1 φ1 ψ1 ψ2 φ1〉 =?

Now they move!
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Spectrum:

For 4 sites for example:

Model 8: {1, 1, 1, 1, 14, 14, 224};
Model 9: {1, 15, 16, 30, 194};
Model 10: {1, 1, 1, 1, 1, 1, 6, 6, 8, 8, 14, 16, 16, 32, 44, 100}

So the three models despite their similarities have a very different
spectrum;

And also probably have some extra symmetries we still do not
understand;
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R(u) =

r1,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 r1 0 0 r2 0 0 0 0 0 0 −r8 0 0 r8 0
0 0 r4 0 0 0 0 0 r10 0 0 0 0 0 0 0
0 0 0 r4 0 0 0 0 0 0 0 0 r10 0 0 0
0 r2 0 0 r1 0 0 0 0 0 0 r8 0 0 −r8 0
0 0 0 0 0 r1,2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 r4 0 0 r10 0 0 0 0 0 0
0 0 0 0 0 0 0 r4 0 0 0 0 0 r10 0 0
0 0 r7 0 0 0 0 0 r3 0 0 0 0 0 0 0
0 0 0 0 0 0 r7 0 0 r3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 r5,6 0 0 0 0 0
0 −r9 0 0 r9 0 0 0 0 0 0 r5 0 0 r6 0
0 0 0 r7 0 0 0 0 0 0 0 0 r3 0 0 0
0 0 0 0 0 0 0 r7 0 0 0 0 0 r3 0 0
0 r9 0 0 −r9 0 0 0 0 0 0 r6 0 0 r5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r5,6



where ri,j = ri + rj .
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Model 8
r1 = −r5 = −tan(u ρ)
r2 = 1− r1

r6 = 1 + r1

,
r7 = r10 = 1
r8 = eφ r1

r9 = −e−φ r1

Model 9
r1 = r5

r2 = r6 = 1− r1

r7 = r10 = 1
,

r8 = −eφ r1

r9 = −e−φ r1

r1 = 2 +
√

3 coth
(√

3ρu+ log
(

2−
√

3
))

Model 10

r1 = r5 = 2(e
3ρu
2 −1)

e
3ρu
2 −4

r7 = r10 = e−
1
4

(3ρu)
,

r2 = r6 = − e
3ρu
2 +2

e
3ρu
2 −4

e−2φr9 = r8 = −1
2e

3ρu
4

+φ r1
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Generalized Hubbard model

The 1D Hubbard model is integrable (E.H. Lieb & F.Y Wu, 1968
and B.Sriram Shastry, 1988);

We found that only the kinetic part of Hubbard is also integrable:

KHub =
∑
↑,↓

(
c†α,1cα,2 + c†α,2cα,1

)

So we decided to see which terms we could add and still keep
integrability;

but we would like to study only models we could interpret as
electrons moving on a one-dimensional lattice;

So we only included terms which preserve fermion number;
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We added three types of terms:

Kpair: moves one pair of electrons from one site to the next;

Kpair = A1c
†
↑,1c
†
↓,1c↑,2c↓,2 +A2c

†
↑,2c
†
↓,2c↑,1c↓,1,

Kflip: flips spins in neighbor sites;

Kflip = A3c
†
↑,1c
†
↓,2c↓,1c↑,2 +A4c

†
↓,1c
†
↑,2c↑,1c↓,2

+A5c
†
↑,1c
†
↑,2c↓,1c↓,2 +A6c

†
↓,1c
†
↓,2c↑,1c↑,2.

V : potential term

The density Hamiltonian whose integrability we investigate is

H = KHub +Kpair +Kflip + V,

It has 22 free parameters
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If we consider a non-trivial Kflip and also a potential part we found
that

H = KHub + a
(
c†↑,1c

†
↓,2c↓,1c↑,2 + c†↓,1c

†
↑,2c↑,1c↓,2

+c†↑,1c
†
↑,2c↓,1c↓,2 + c†↓,1c

†
↓,2c↑,1c↑,2

)
+ (2a− b)(n↑,1 + n↓,1) + b(n↑,2 + n↓,2)

− a(n↑,1 + n↓,1)(n↑,2 + n↓,2).

It does not conserve spin orientation, so it is XYZ deformation of
the Hubbard model;

Bethe ansatz does not work;

It has two free parameters, so it may have a phase diagram;
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AdS2,3 deformations

It is known that in addition to AdS5×S5, lower dimensional
versions of AdS like:

AdS3 × S3 × T4 (Borsato, Ohlsson Sax,

Sfondrini, B. Stefanski, 2014)

AdS3 × S3 × S3 × S1 (Borsato, Ohlsson Sax,

Sfondrini, B. Stefanski, 2015)

AdS2 × S2 × T6 (Hoare, Pittelli, Torrielli, 2014).

are also integrable.
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AdS2,3 deformations

The R-matrix for AdS3 × S3 × T4, for example, was obtained by
assuming that

the off-shell symmetries obtained for the nonlinear Sigma model;and

the symmetries responsible for the integrability of the classical field
theory

both remain at quantum level;

This was enough to fix the S-matrix up to the dressing factor;
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AdS2,3 deformations

Focusing on the su(1|1)2
ce sector, one can write the S-matrix as

Š =

(
ŠLL ŠRL

ŠLR ŠRR

)

it satisfies the Yang-Baxter equation;

each of these blocks are an embedding of a 4× 4 R-matrix;

the blocks with same chirality come from regular R-matrices while
the opposite-chirality ones come from non-regular R-matrices;
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ŠLR ŠRR
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AdS2,3 deformations

For AdS3 × S3 ×M4 the diagonal blocks are regular 6-vertex
regular R-matrices, i.e.

R(u, v) =


r1(u, v) 0 0 0

0 r2(u, v) r6(u, v) 0
0 r5(u, v) r3(u, v) 0
0 0 0 r4(u, v)

 , R(u, u) = P,

which means that only scatterings like

φφ → φφ

ψ ψ → ψ ψ

φψ → φψ + ψ φ

ψ φ → ψ φ+ φψ

are allowed. Spin is conserved.
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AdS2,3 deformations

While for massive AdS2 × S2 × T6 the RR and LL blocks are
described by an 4× 4 8-vertex regular R-matrix:

R(u, v) =


r1(u, v) 0 0 r8(u, v)

0 r2(u, v) r6(u, v) 0
0 r5(u, v) r3(u, v) 0

r7(u, v) 0 0 r4(u, v)

 , R(u, u) = P.

which means that only scatterings like

φφ → φφ+ ψ ψ,

ψ ψ → ψ ψ + φφ,

φψ → φψ + ψ φ,

ψ φ → ψ φ+ φψ

are allowed.
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AdS2,3 deformations

Goal: Find the most general integrable deformations of AdS3

and AdS2 R-matrices.
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Spoiler:
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We found 4 independent solutions:

Two of 6 vertex form;

and

Two of 8 vertex form

But in only one of the 6-vertex and one of the 8-vertex, AdS2,3 known
R-matrices could be embedded.

We called them 6-vertex B and 8-vertex B
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6-vertex B

r1 =
h2(q)− h1(p)

h2(p)− h1(p)
,

r2 = (h2(p)− h2(q))X(p)Y (p),

r3 =
h1(p)− h1(q)

(h2(p)− h1(p))(h2(q)− h1(q))

1

X(q)Y (q)
,

r4 =
h2(p)− h1(q)

h2(q)− h1(q)

X(p)Y (p)

X(q)Y (q)
,

r5 =
Y (p)

Y (q)
,

r6 =
X(p)

X(q)
.

We will assume RRR(u, v) and RLL(u, v) as two independent copies of
6-vertex B.
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6-vertex B - AdS3

It was possible to keep the LL and RR blocks completely
independent of each other;

So, the result is a deformation of both AdS3×S3×T4 and
AdS3×S3×S3×S1;

It actually corresponds to a deformation of the q-deformation
introduced by Ben Hoare in 2015;

It is what we are calling a functional deformation, because instead
of x±R,L(u) we have general functions hR,L1,2 (u)
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6-vertex B - AdS3

By making the following identifications

hR
1 (p) = −

x−R(p)

β
, hL

1 (p) = β x−L (p),

hR
2 (p) = −

x+
R(p)

β
, hL

2 (p) = β x+
L (p),

where β is an arbitrary constant

and

XL(p) =
ρ

γL(p)
, Y L(p) =

1

β ρ

γL(p)

UL(p)VL(p)WL(p)

1

x−L (p)− x+
L (p)

,

Y R(p) =
1

β ρ

x+
R(p)

γR(p)
, XR(p) = − ρ γR(p)

UR(p)VR(p)WR(p)

x+
R(p)

x−R(p)− x+
R(p)

we recover the two parametric q-deformation;
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6-vertex B - AdS3

But let us keep these functions hR,L1,2 (u) general;

In such case we can interpret as the mass now depends on u;

It has crossing symmetry;
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8-vertex B model

r1 =
1√

sin η(u)
√

sin η(v)

[
sin η+

cn

dn
− cos η+sn

]
,

r2 =
1√

sin η(u)
√

sin η(v)

[
cos η−sn + sin η−

cn

dn

]
,

r3 =
1√

sin η(u)
√

sin η(v)

[
cos η−sn− sin η−

cn

dn

]
,

r4 =
1√

sin η(u)
√

sin η(v)

[
sin η+

cn

dn
+ cos η+sn

]
,

r5 = r6 = 1,

r7 = r8 = k sn
cn

dn
,

with

sn = sn(G(u)−G(v), k2), cn = cn(G(u)−G(v), k2), etc
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8-vertex B model

This model was a nice surprise;

It is a deformation of:

AdS2 when k →∞

and

AdS3 when k → 0
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8-vertex B - AdS3 deformation

This was the biggest surprise when we compared the models with
the undeformed ones:

An 8-vertex deformation of AdS3!

We constructed the full R-matrix for this model, and again we
found that the LL and RR blocks can be deformed separately here;

So, we have again a deformation of AdS3 × S3 ×M4;

This is not however a deformation of the q-deformed model found
by Hoare in 2014;
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Conclusions

we presented a new method to construct R-matrices satisfying
YBE;

Some models with potential interesting physical properties were
found;

And three new integrable deformations of lower dimensional AdS
were found,

Ana L. Retore 51 / 54



Conclusions

we presented a new method to construct R-matrices satisfying
YBE;

Some models with potential interesting physical properties were
found;

And three new integrable deformations of lower dimensional AdS
were found,

Ana L. Retore 51 / 54



Conclusions

we presented a new method to construct R-matrices satisfying
YBE;

Some models with potential interesting physical properties were
found;

And three new integrable deformations of lower dimensional AdS
were found,

Ana L. Retore 51 / 54



Further developments

Consider models with less symmetry and maybe try a full
classification;

Compute the spectrum of the new models where electrons can
move only when in pairs ;

Maybe nested algebraic Bethe ansatz will work;

Study physical properties of the deformed Hubbard-like model;
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Investigate if there are field theories whose S-matrix would
correspond to the new R-matrices we found;

Prove that [Q2,Q3] = 0 is always enough or find a counterexample;

Construct the K-matrices;

Study better the deformations of AdS2 and AdS3 we found,
including its symmetries and solve the crossing equations.
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Thank you!
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