# Constructing new solutions of the Yang-Baxter equation 

Ana L. Retore

(Trinity College Dublin - School of Mathematics)

> DIAS Theoretical Physics Seminar, February, 17th, 2022

Based on arXiv:1911.01439, 2003.04332, 2010.11231 and 2109.00017 in collaboration with Marius de Leeuw, Chiara Paletta, Anton Pribytok and Paul Ryan
(1) Introduction
(2) New method
(3) Integrable models with $s u(2) \oplus s u(2)$ symmetry
(4) $\mathrm{AdS}_{2,3}$ deformations
(5) Conclusions and Further developments

## Introduction

- There are some models that have a high amount of symmetry;


## Introduction

- There are some models that have a high amount of symmetry;
- and consequently they have many conserved charges:

$$
\left\{\mathbb{Q}_{1}, \mathbb{Q}_{2}, \mathbb{Q}_{3}, \ldots\right\}
$$

## Introduction

- There are some models that have a high amount of symmetry;
- and consequently they have many conserved charges:

$$
\left\{\mathbb{Q}_{1}, \mathbb{Q}_{2}, \mathbb{Q}_{3}, \ldots\right\}
$$

- Usually:
- $\mathbb{Q}_{1}=\mathbb{P}$,


## Introduction

- There are some models that have a high amount of symmetry;
- and consequently they have many conserved charges:

$$
\left\{\mathbb{Q}_{1}, \mathbb{Q}_{2}, \mathbb{Q}_{3}, \ldots\right\}
$$

- Usually:
- $\mathbb{Q}_{1}=\mathbb{P}$,
- $\mathbb{Q}_{2}=\mathbb{H}$,


## Introduction

- There are some models that have a high amount of symmetry;
- and consequently they have many conserved charges:

$$
\left\{\mathbb{Q}_{1}, \mathbb{Q}_{2}, \mathbb{Q}_{3}, \ldots\right\}
$$

- Usually:
- $\mathbb{Q}_{1}=\mathbb{P}$,
- $\mathbb{Q}_{2}=\mathbb{H}$,
- $\mathbb{Q}_{3}=\ldots$
- Such quantum models have

$$
\left[\mathbb{Q}_{m}, \mathbb{Q}_{n}\right]=0
$$

- Such quantum models have

$$
\left[\mathbb{Q}_{m}, \mathbb{Q}_{n}\right]=0
$$

where

$$
\mathbb{Q}_{2}=\mathbb{H}
$$

- Such quantum models have

$$
\left[\mathbb{Q}_{m}, \mathbb{Q}_{n}\right]=0
$$

where

$$
\mathbb{Q}_{2}=\mathbb{H} .
$$

- the high amount of symmetry make these models so constrained that they can "usually" be completely solved;
- Such quantum models have

$$
\left[\mathbb{Q}_{m}, \mathbb{Q}_{n}\right]=0
$$

where

$$
\mathbb{Q}_{2}=\mathbb{H} .
$$

- the high amount of symmetry make these models so constrained that they can "usually" be completely solved;
- They are known as Integrable models.

They have applications in condensed matter: in magnetism and superconductivity

- Heisenberg spin chain;

They have applications in condensed matter: in magnetism and superconductivity

- Heisenberg spin chain;
- Potts model;

They have applications in condensed matter: in magnetism and superconductivity

- Heisenberg spin chain;
- Potts model;
- Hubbard model;
and more recently applications in AdS/CFT
and more recently applications in AdS/CFT
- $A d S_{5} \rightarrow$ Hubbard-like model;
and more recently applications in AdS/CFT
- $A d S_{5} \rightarrow$ Hubbard-like model;
- $A d S_{3} \rightarrow$ XXZ-like model;
and more recently applications in AdS/CFT
- $A d S_{5} \rightarrow$ Hubbard-like model;
- $A d S_{3} \rightarrow \mathrm{XXZ}$-like model;
- $A d S_{2} \rightarrow$ XYZ-like model.
- When I say that these models can be solved what I mean is that Integrable models have many very effective techniques that were developed specifically to deal with them such as
- Coordinate Bethe ansatz (CBA);
- (Nested) Algebraic Bethe ansatz (ABA);
- Thermodynamic Bethe ansatz (TBA);
- Q-operators;
- Quantum spectral Curve;
- With all these techniques we can in most of the cases solve these models.
- Due to the existence of so many conserved charges there are some features of these models that are completely fixed;
- Due to the existence of so many conserved charges there are some features of these models that are completely fixed;
- Let us consider the scattering of three particles in 2D:
- Due to the existence of so many conserved charges there are some features of these models that are completely fixed;
- Let us consider the scattering of three particles in 2D:
- No particle production;
- Due to the existence of so many conserved charges there are some features of these models that are completely fixed;
- Let us consider the scattering of three particles in 2D:
- No particle production;
- The set of initial and final momenta is the same $\left\{p_{i}\right\}=\left\{p_{f}\right\}$;
- Due to the existence of so many conserved charges there are some features of these models that are completely fixed;
- Let us consider the scattering of three particles in 2D:
- No particle production;
- The set of initial and final momenta is the same $\left\{p_{i}\right\}=\left\{p_{f}\right\}$;
- $3 \rightarrow 3$-particles scattering $\Rightarrow\{2 \rightarrow 2\}$-particles scattering

$R_{12}(u, v) R_{13}(u, w) R_{23}(v, w)=R_{23}(v, w) R_{13}(u, w) R_{12}(u, v)$


This is called Yang-Baxter equation (YBE);


$$
R_{12}(u, v) R_{13}(u, w) R_{23}(v, w)=R_{23}(v, w) R_{13}(u, w) R_{12}(u, v)
$$

This is called Yang-Baxter equation (YBE);
$u, v$ and $w$ can be interpreted as rapidities of the particles.

So, the main object to define a quantum integrable model is the R-matrix

where

$$
R: \quad V \otimes V \rightarrow V \otimes V
$$

- For example, it appears often in 1D systems called spin chains;
- For example, it appears often in 1D systems called spin chains;
- Usually, each R-matrix defines an integrable model and allows to compute all the charges

- For example, it appears often in 1D systems called spin chains;
- Usually, each R-matrix defines an integrable model and allows to compute all the charges

- We are interested in R-matrices with the regularity property:

$$
R(u, u)=P, \quad \text { where } \quad P_{12}\left(v_{1} \otimes v_{2}\right)=v_{2} \otimes v_{1}
$$

- And for such systems

$$
\mathcal{H}=\left.P \dot{R}(u, v)\right|_{v \rightarrow u}
$$

- And for such systems

$$
\mathcal{H}=\left.P \dot{R}(u, v)\right|_{v \rightarrow u} .
$$

- It will be also important make the distinction between difference form R-matrix:

$$
\begin{aligned}
R(u, v)=R & (u-v) \\
& \Rightarrow \mathcal{H} \text { does NOT depend on the spectral parameter }
\end{aligned}
$$

Examples: XXX, XXZ, XYZ, Sine/Sinh-Gordon...

- And for such systems

$$
\mathcal{H}=\left.P \dot{R}(u, v)\right|_{v \rightarrow u} .
$$

- It will be also important make the distinction between
difference form R-matrix:

$$
\begin{aligned}
R(u, v)=R & (u-v) \\
& \Rightarrow \mathcal{H} \text { does NOT depend on the spectral parameter }
\end{aligned}
$$

Examples: XXX, XXZ, XYZ, Sine/Sinh-Gordon... non-difference form R-matrix:

$$
\begin{aligned}
& R(u, v) \neq R(u-v) \\
& \quad \Rightarrow \mathcal{H} \text { depend on the spectral parameter }
\end{aligned}
$$

Example: Hubbard-model

## How about Yang-Baxter equation?

$$
R_{12}(u, v) R_{13}(u, w) R_{23}(v, w)=R_{23}(v, w) R_{13}(u, w) R_{12}(u, v)
$$

- YBE is very difficult to solve in general;


## How about Yang-Baxter equation?

$$
R_{12}(u, v) R_{13}(u, w) R_{23}(v, w)=R_{23}(v, w) R_{13}(u, w) R_{12}(u, v)
$$

- YBE is very difficult to solve in general;
- Imagine you just assume the simplest general case: you start with an R-matrix $4 \times 4$, so 16 unknown functions;


## How about Yang-Baxter equation?

$$
R_{12}(u, v) R_{13}(u, w) R_{23}(v, w)=R_{23}(v, w) R_{13}(u, w) R_{12}(u, v)
$$

- YBE is very difficult to solve in general;
- Imagine you just assume the simplest general case: you start with an R-matrix $4 \times 4$, so 16 unknown functions;
- You substitute it on YBE, you have a system with cubic polynomial functional equations, each function depending on two variables, and YBE depending on three variables;


## How about Yang-Baxter equation?

$$
R_{12}(u, v) R_{13}(u, w) R_{23}(v, w)=R_{23}(v, w) R_{13}(u, w) R_{12}(u, v)
$$

- YBE is very difficult to solve in general;
- Imagine you just assume the simplest general case: you start with an R-matrix $4 \times 4$, so 16 unknown functions;
- You substitute it on YBE, you have a system with cubic polynomial functional equations, each function depending on two variables, and YBE depending on three variables;

So, this is not how people usually do!

There are methods people usually use to find solutions of YBE:

There are methods people usually use to find solutions of YBE:

The algebraic method: (Drinfeld, Faddeev, Kulish, Reshetikin,...)

- you assume some symmetry for the R-matrix (Yangian symmetry, for example)
- use baxterization of Temperley-Lieb;

There are methods people usually use to find solutions of YBE:

The algebraic method: (Drinfeld, Faddeev, Kulish, Reshetikin,...)

- you assume some symmetry for the R-matrix (Yangian symmetry, for example)
- use baxterization of Temperley-Lieb;

Solving YBE "directly" (Vieira, Lima-Santos, ...)

- you derivate YBE with respect to one of the variables and solve the differential equations;


## Solving the Yang-Baxter equation:

$$
R_{12}(u, v) R_{13}(u, w) R_{23}(v, w)=R_{23}(v, w) R_{13}(u, w) R_{12}(u, v)
$$

## Solving the Yang-Baxter equation:

$$
R_{12}(u, v) R_{13}(u, w) R_{23}(v, w)=R_{23}(v, w) R_{13}(u, w) R_{12}(u, v)
$$

(De Leeuw, Pribytok, Ryan, 2019)
(De Leeuw, Paletta, Pribytok, A.R., Ryan, 2020)

- The idea is to start with an ansatz Hamiltonian:

$$
\mathbb{H}=\sum_{i} \mathcal{H}_{i, i+1}=\mathbb{Q}_{2} .
$$

## Solving the Yang-Baxter equation:

$$
R_{12}(u, v) R_{13}(u, w) R_{23}(v, w)=R_{23}(v, w) R_{13}(u, w) R_{12}(u, v)
$$

(De Leeuw, Pribytok, Ryan, 2019)
(De Leeuw, Paletta, Pribytok, A.R., Ryan, 2020)

- The idea is to start with an ansatz Hamiltonian:

$$
\mathbb{H}=\sum_{i} \mathcal{H}_{i, i+1}=\mathbb{Q}_{2}
$$

For example:

$$
H=\left(\begin{array}{cccc}
h_{1}(u) & 0 & 0 & h_{8}(u) \\
0 & h_{5}(u) & h_{3}(u) & 0 \\
0 & h_{2}(u) & h_{6}(u) & 0 \\
h_{7}(u) & 0 & 0 & h_{4}(u)
\end{array}\right)
$$

- If a model is integrable we know that it has to satisfy

$$
\left[\mathbb{Q}_{i}(\theta), \mathbb{Q}_{j}(\theta)\right]=0, \quad i, j=1, \ldots
$$

- If a model is integrable we know that it has to satisfy

$$
\left[\mathbb{Q}_{i}(\theta), \mathbb{Q}_{j}(\theta)\right]=0, \quad i, j=1, \ldots
$$

- So, a good start is to require

$$
\left[\mathbb{Q}_{2}(\theta), \mathbb{Q}_{3}(\theta)\right]=0
$$

- If a model is integrable we know that it has to satisfy

$$
\left[\mathbb{Q}_{i}(\theta), \mathbb{Q}_{j}(\theta)\right]=0, \quad i, j=1, \ldots
$$

- So, a good start is to require

$$
\left[\mathbb{Q}_{2}(\theta), \mathbb{Q}_{3}(\theta)\right]=0
$$

But how do we compute $Q_{3}$ if we don't know the R-matrix?

- If a model is integrable we know that it has to satisfy

$$
\left[\mathbb{Q}_{i}(\theta), \mathbb{Q}_{j}(\theta)\right]=0, \quad i, j=1, \ldots
$$

- So, a good start is to require

$$
\left[\mathbb{Q}_{2}(\theta), \mathbb{Q}_{3}(\theta)\right]=0
$$

But how do we compute $Q_{3}$ if we don't know the R-matrix?

- For that we use the so called Boost operator (see Tetelman, 1982, Loebbert, 2016, Grabowski and Mathieu, 1994):

$$
B\left[\mathbb{Q}_{2}\right]=\partial_{\theta}+\sum_{n=-\infty}^{\infty} n \mathcal{H}_{n, n+1}(\theta)
$$

- The advantage of this object is that we can use it to construct higher charges in a recursive way:

$$
\mathbb{Q}_{r+1} \sim\left[B\left[\mathbb{Q}_{2}\right], \mathbb{Q}_{r}\right], \quad r>1
$$

- The advantage of this object is that we can use it to construct higher charges in a recursive way:

$$
\mathbb{Q}_{r+1} \sim\left[B\left[\mathbb{Q}_{2}\right], \mathbb{Q}_{r}\right], \quad r>1
$$

- $\operatorname{So}, Q_{3}$ is given by

$$
\begin{aligned}
\mathbb{Q}_{3}(\theta) & =\left[B\left[\mathbb{Q}_{2}\right], \mathbb{Q}_{2}\right] \\
\mathbb{Q}_{3}(\theta) & =\sum_{i=1}^{L}\left[\mathcal{H}_{i-1, i}, \mathcal{H}_{i, i+1}\right]+\frac{d \mathbb{H}}{d \theta}
\end{aligned}
$$

- So, having $\mathbb{Q}_{3}$ in terms of the Hamiltonian density we can solve now

$$
\left[\mathbb{Q}_{2}(\theta), \mathbb{Q}_{3}(\theta)\right]=0
$$

- So, having $\mathbb{Q}_{3}$ in terms of the Hamiltonian density we can solve now

$$
\left[\mathbb{Q}_{2}(\theta), \mathbb{Q}_{3}(\theta)\right]=0
$$

- We obtain a set of ODEs in the variables $h_{i}(\theta)$ that can be solved.
- So, having $\mathbb{Q}_{3}$ in terms of the Hamiltonian density we can solve now

$$
\left[\mathbb{Q}_{2}(\theta), \mathbb{Q}_{3}(\theta)\right]=0
$$

- We obtain a set of ODEs in the variables $h_{i}(\theta)$ that can be solved.
- With this we have several potentially integrable Hamiltonians.
- So, having $\mathbb{Q}_{3}$ in terms of the Hamiltonian density we can solve now

$$
\left[\mathbb{Q}_{2}(\theta), \mathbb{Q}_{3}(\theta)\right]=0
$$

- We obtain a set of ODEs in the variables $h_{i}(\theta)$ that can be solved.
- With this we have several potentially integrable Hamiltonians.

But how to guarantee that all the other charges commute?

- So, having $\mathbb{Q}_{3}$ in terms of the Hamiltonian density we can solve now

$$
\left[\mathbb{Q}_{2}(\theta), \mathbb{Q}_{3}(\theta)\right]=0
$$

- We obtain a set of ODEs in the variables $h_{i}(\theta)$ that can be solved.
- With this we have several potentially integrable Hamiltonians.

But how to guarantee that all the other charges commute?

$$
\left[\mathbb{Q}_{2}(\theta), \mathbb{Q}_{3}(\theta)\right]=0=\left[\mathbb{Q}_{3}(\theta), \mathbb{Q}_{4}(\theta)\right]=\ldots
$$

- To guarantee that all the charges commute, we do need to find the R-matrix $R(u)$ for each of the potentially integrable Hamiltonians found in the previous step;
- To guarantee that all the charges commute, we do need to find the R-matrix $R(u)$ for each of the potentially integrable Hamiltonians found in the previous step;
- We will now solve YBE having the following boundary conditions:
- To guarantee that all the charges commute, we do need to find the R-matrix $R(u)$ for each of the potentially integrable Hamiltonians found in the previous step;
- We will now solve YBE having the following boundary conditions:

Regularity condition:

$$
R(u, u)=P
$$

- To guarantee that all the charges commute, we do need to find the R-matrix $R(u)$ for each of the potentially integrable Hamiltonians found in the previous step;
- We will now solve YBE having the following boundary conditions:

Regularity condition:

$$
R(u, u)=P
$$

Hamiltonian:

$$
H=\left.P \frac{d R(u, v)}{d u}\right|_{v=u}
$$

- In order to solve YBE we apply the derivative wrt $u$ and send $v \rightarrow u ;$
- In order to solve YBE we apply the derivative wrt $u$ and send $v \rightarrow u ;$
- This generates the so called Sutherland equation:

$$
\left[R_{13} R_{23}, \mathcal{H}_{12}(u)\right]=\dot{R}_{13} R_{23}-R_{13} \dot{R}_{23}
$$

- In order to solve YBE we apply the derivative wrt $u$ and send $v \rightarrow u$;
- This generates the so called Sutherland equation:

$$
\left[R_{13} R_{23}, \mathcal{H}_{12}(u)\right]=\dot{R}_{13} R_{23}-R_{13} \dot{R}_{23}
$$

- which we solve using the boundary conditions:

$$
R(u, u)=P, \quad H=\left.P \frac{d R(u, v)}{d u}\right|_{v=u} ;
$$

- In order to solve YBE we apply the derivative wrt $u$ and send $v \rightarrow u$;
- This generates the so called Sutherland equation:

$$
\left[R_{13} R_{23}, \mathcal{H}_{12}(u)\right]=\dot{R}_{13} R_{23}-R_{13} \dot{R}_{23}
$$

- which we solve using the boundary conditions:

$$
R(u, u)=P, \quad H=\left.P \frac{d R(u, v)}{d u}\right|_{v=u} ;
$$

- So, for each $H$, we solve the set of PDEs which depend on $r_{i}(u, v)$;
- In order to solve YBE we apply the derivative wrt $u$ and send $v \rightarrow u$;
- This generates the so called Sutherland equation:

$$
\left[R_{13} R_{23}, \mathcal{H}_{12}(u)\right]=\dot{R}_{13} R_{23}-R_{13} \dot{R}_{23}
$$

- which we solve using the boundary conditions:

$$
R(u, u)=P, \quad H=\left.P \frac{d R(u, v)}{d u}\right|_{v=u}
$$

- So, for each $H$, we solve the set of PDEs which depend on $r_{i}(u, v)$;
- The last step is to check that $R(u, v)$ satisfies YBE.


## Summarizing...


with boundary conditions:

$$
\mathcal{H}(u)=\left.P \frac{d R(u, v)}{d u}\right|_{v=u} \quad \text { and } \quad R(u, u)=P
$$

## Integrable models with $s u(2) \oplus s u(2)$ symmetry

- $\operatorname{dim}[\mathrm{V}]=4$, so each two sites Hamiltonian will be $16 \times 16$;


## Integrable models with $s u(2) \oplus s u(2)$ symmetry

- $\operatorname{dim}[\mathrm{V}]=4$, so each two sites Hamiltonian will be $16 \times 16$;
- Fully understand such systems is out of our ability;


## Integrable models with su(2) $\oplus s u(2)$ symmetry

- $\operatorname{dim}[\mathrm{V}]=4$, so each two sites Hamiltonian will be $16 \times 16$;
- Fully understand such systems is out of our ability;
- It has 256 components, so solving $\left[\mathbb{Q}_{2}, \mathbb{Q}_{3}\right]=0$ for so many coefficients is not feasible at the moment;


## Integrable models with su(2) $\oplus s u(2)$ symmetry

- $\operatorname{dim}[\mathrm{V}]=4$, so each two sites Hamiltonian will be $16 \times 16$;
- Fully understand such systems is out of our ability;
- It has 256 components, so solving $\left[\mathbb{Q}_{2}, \mathbb{Q}_{3}\right]=0$ for so many coefficients is not feasible at the moment;
- So, we assumed $s u(2) \oplus s u(2)$ symmetry;

Two sets of vectors: $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$ and $\left\{\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle\right\}$

$$
\left.\begin{aligned}
\text { - }\left|\phi_{1}\right\rangle & =|0\rangle \\
\text { - } & \left|\phi_{2}\right\rangle
\end{aligned}=c_{\uparrow}^{\dagger} c_{\downarrow}^{\dagger}|0\rangle \quad \uparrow \right\rvert\, ~ \begin{aligned}
&\left|\psi_{1}\right\rangle=c_{\uparrow}^{\dagger}|0\rangle \\
& \text { - }
\end{aligned}
$$



- With this symmetry our two-sites Hamiltonian has the form

$$
\begin{aligned}
\mathcal{H}\left|\phi_{a} \phi_{b}\right\rangle & =A\left|\phi_{a} \phi_{b}\right\rangle+B\left|\phi_{b} \phi_{a}\right\rangle+C \epsilon_{a b} \epsilon^{\alpha \beta}\left|\psi_{\alpha} \psi_{\beta}\right\rangle \\
\mathcal{H}\left|\phi_{a} \psi_{\beta}\right\rangle & =G\left|\phi_{a} \psi_{\beta}\right\rangle+H\left|\psi_{\beta} \phi_{a}\right\rangle \\
\mathcal{H}\left|\psi_{\alpha} \phi_{b}\right\rangle & =K\left|\psi_{\alpha} \phi_{b}\right\rangle+L\left|\phi_{b} \psi_{\alpha}\right\rangle \\
\mathcal{H}\left|\psi_{\alpha} \psi_{\beta}\right\rangle & =D\left|\psi_{\alpha} \psi_{\beta}\right\rangle+E\left|\psi_{\beta} \psi_{\alpha}\right\rangle+F \epsilon^{a b} \epsilon_{\alpha \beta}\left|\phi_{a} \phi_{b}\right\rangle
\end{aligned}
$$

- With this symmetry our two-sites Hamiltonian has the form

$$
\begin{aligned}
\mathcal{H}\left|\phi_{a} \phi_{b}\right\rangle & =A\left|\phi_{a} \phi_{b}\right\rangle+B\left|\phi_{b} \phi_{a}\right\rangle+C \epsilon_{a b} \epsilon^{\alpha \beta}\left|\psi_{\alpha} \psi_{\beta}\right\rangle \\
\mathcal{H}\left|\phi_{a} \psi_{\beta}\right\rangle & =G\left|\phi_{a} \psi_{\beta}\right\rangle+H\left|\psi_{\beta} \phi_{a}\right\rangle \\
\mathcal{H}\left|\psi_{\alpha} \phi_{b}\right\rangle & =K\left|\psi_{\alpha} \phi_{b}\right\rangle+L\left|\phi_{b} \psi_{\alpha}\right\rangle \\
\mathcal{H}\left|\psi_{\alpha} \psi_{\beta}\right\rangle & =D\left|\psi_{\alpha} \psi_{\beta}\right\rangle+E\left|\psi_{\beta} \psi_{\alpha}\right\rangle+F \epsilon^{a b} \epsilon_{\alpha \beta}\left|\phi_{a} \phi_{b}\right\rangle
\end{aligned}
$$

- Using this $\mathcal{H}$ and applying the method we found :
- With this symmetry our two-sites Hamiltonian has the form

$$
\begin{aligned}
\mathcal{H}\left|\phi_{a} \phi_{b}\right\rangle & =A\left|\phi_{a} \phi_{b}\right\rangle+B\left|\phi_{b} \phi_{a}\right\rangle+C \epsilon_{a b} \epsilon^{\alpha \beta}\left|\psi_{\alpha} \psi_{\beta}\right\rangle \\
\mathcal{H}\left|\phi_{a} \psi_{\beta}\right\rangle & =G\left|\phi_{a} \psi_{\beta}\right\rangle+H\left|\psi_{\beta} \phi_{a}\right\rangle \\
\mathcal{H}\left|\psi_{\alpha} \phi_{b}\right\rangle & =K\left|\psi_{\alpha} \phi_{b}\right\rangle+L\left|\phi_{b} \psi_{\alpha}\right\rangle \\
\mathcal{H}\left|\psi_{\alpha} \psi_{\beta}\right\rangle & =D\left|\psi_{\alpha} \psi_{\beta}\right\rangle+E\left|\psi_{\beta} \psi_{\alpha}\right\rangle+F \epsilon^{a b} \epsilon_{\alpha \beta}\left|\phi_{a} \phi_{b}\right\rangle
\end{aligned}
$$

- Using this $\mathcal{H}$ and applying the method we found :
- 12 independent solutions

The 12 solutions are:

| Model | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{F}$ | $\mathbf{G}$ | $\mathbf{H}$ | $\mathbf{K}$ | $\mathbf{L}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | $a$ | $b$ | $c$ | $d$ |
| 2 | 0 | 0 | 0 | $a+c$ | 0 | 0 | $a$ | $b$ | $c$ | $d$ |
| 3 | 0 | 0 | 0 | $a$ | 0 | 0 | $b$ | 0 | $c$ | 0 |
| 4 | $\rho$ | $-\rho$ | 0 | 0 | 0 | 0 | $a$ | $\rho e^{-\phi}$ | $2 \rho-a$ | $\rho e^{\phi}$ |
| 5 | $\rho$ | $-\rho$ | 0 | $\rho$ | $-\rho$ | 0 | $a$ | $\rho e^{-\phi}$ | $2 \rho-a$ | $\rho e^{\phi}$ |
| 6 | 0 | 0 | 0 | $\rho$ | $\rho$ | 0 | $a$ | $\rho e^{-\phi}$ | $2 \rho-a$ | $\rho e^{\phi}$ |
| 7 | $\rho$ | $-\rho$ | 0 | $\rho$ | $\rho$ | 0 | $a$ | $\rho e^{-\phi}$ | $2 \rho-a$ | $\rho e^{\phi}$ |
| 8 | $\rho$ | $-\rho$ | $\rho e^{-\phi}$ | $-\rho$ | $\rho$ | $-\rho e^{\phi}$ | 0 | 0 | 0 | 0 |
| 9 | $\rho$ | $-\rho$ | $\rho e^{-\phi}$ | $\rho$ | $-\rho$ | $\rho e^{\phi}$ | 0 | 0 | 0 | 0 |
| 10 | $\frac{7}{4} \rho$ | $-\rho$ | $\frac{1}{2} \rho e^{-\phi}$ | $\frac{7}{4} \rho$ | $-\rho$ | $\frac{1}{2} \rho e^{\phi}$ | 0 | 0 | 0 | 0 |
| 11 | $\rho$ | $-\rho$ | $\frac{1}{2} \rho e^{-\phi}$ | $\rho$ | $-\rho$ | $\frac{1}{2} \rho e^{\phi}$ | $\frac{3}{2} \rho$ | $-\frac{3}{2} \rho$ | $\frac{3}{2} \rho$ | $-\frac{3}{2} \rho$ |
| 12 | 0 | 0 | $-\rho e^{-\phi}$ | 0 | 0 | $\rho e^{\phi}$ | 0 | $\rho$ | 0 | $-\rho$ |

## Models 8, 9 and 10

- Models 8, 9 and 10 are the most interesting ones!


## Models 8, 9 and 10

- Models 8, 9 and 10 are the most interesting ones!
- They are new and have very interesting physical features;


## Models 8, 9 and 10

- Models 8, 9 and 10 are the most interesting ones!
- They are new and have very interesting physical features;
- They have $G=H=K=L=0$;

Why is relevant that $G=H=K=L=0$ ?

Remember the form of the Hamiltonian

$$
\begin{aligned}
\mathcal{H}\left|\phi_{a} \phi_{b}\right\rangle & =A\left|\phi_{a} \phi_{b}\right\rangle+B\left|\phi_{b} \phi_{a}\right\rangle+C \epsilon_{a b} \epsilon^{\alpha \beta}\left|\psi_{\alpha} \psi_{\beta}\right\rangle \\
\mathcal{H}\left|\phi_{a} \psi_{\beta}\right\rangle & =G\left|\phi_{a} \psi_{\beta}\right\rangle+H\left|\psi_{\beta} \phi_{a}\right\rangle \\
\mathcal{H}\left|\psi_{\alpha} \phi_{b}\right\rangle & =K\left|\psi_{\alpha} \phi_{b}\right\rangle+L\left|\phi_{b} \psi_{\alpha}\right\rangle \\
\mathcal{H}\left|\psi_{\alpha} \psi_{\beta}\right\rangle & =D\left|\psi_{\alpha} \psi_{\beta}\right\rangle+E\left|\psi_{\beta} \psi_{\alpha}\right\rangle+F \epsilon^{a b} \epsilon_{\alpha \beta}\left|\phi_{a} \phi_{b}\right\rangle
\end{aligned}
$$

$G=H=K=L=0$ means that electrons can not move in the spin chain by themselves, they only move when in pairs.

$$
\begin{aligned}
\mathcal{H}\left|\phi_{a} \phi_{b}\right\rangle & =A\left|\phi_{a} \phi_{b}\right\rangle+B\left|\phi_{b} \phi_{a}\right\rangle+C \epsilon_{a b} \epsilon^{\alpha \beta}\left|\psi_{\alpha} \psi_{\beta}\right\rangle \\
\mathcal{H}\left|\phi_{a} \psi_{\beta}\right\rangle & =0 \\
\mathcal{H}\left|\psi_{\alpha} \phi_{b}\right\rangle & =0 \\
\mathcal{H}\left|\psi_{\alpha} \psi_{\beta}\right\rangle & =D\left|\psi_{\alpha} \psi_{\beta}\right\rangle+E\left|\psi_{\beta} \psi_{\alpha}\right\rangle+F \epsilon^{a b} \epsilon_{\alpha \beta}\left|\phi_{a} \phi_{b}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{H}\left|\phi_{a} \phi_{b}\right\rangle & =A\left|\phi_{a} \phi_{b}\right\rangle+B\left|\phi_{b} \phi_{a}\right\rangle+C \epsilon_{a b} \epsilon^{\alpha \beta}\left|\psi_{\alpha} \psi_{\beta}\right\rangle \\
\mathcal{H}\left|\phi_{a} \psi_{\beta}\right\rangle & =0 \\
\mathcal{H}\left|\psi_{\alpha} \phi_{b}\right\rangle & =0 \\
\mathcal{H}\left|\psi_{\alpha} \psi_{\beta}\right\rangle & =D\left|\psi_{\alpha} \psi_{\beta}\right\rangle+E\left|\psi_{\beta} \psi_{\alpha}\right\rangle+F \epsilon^{a b} \epsilon_{\alpha \beta}\left|\phi_{a} \phi_{b}\right\rangle
\end{aligned}
$$

Let us think in $\mathrm{L}=5$ (number of sites):

$$
\mathbb{H}=\mathcal{H}_{12}+\mathcal{H}_{23}+\mathcal{H}_{34}+\mathcal{H}_{45}+\mathcal{H}_{51}
$$

$$
\begin{aligned}
\mathcal{H}\left|\phi_{a} \phi_{b}\right\rangle & =A\left|\phi_{a} \phi_{b}\right\rangle+B\left|\phi_{b} \phi_{a}\right\rangle+C \epsilon_{a b} \epsilon^{\alpha \beta}\left|\psi_{\alpha} \psi_{\beta}\right\rangle \\
\mathcal{H}\left|\phi_{a} \psi_{\beta}\right\rangle & =0 \\
\mathcal{H}\left|\psi_{\alpha} \phi_{b}\right\rangle & =0 \\
\mathcal{H}\left|\psi_{\alpha} \psi_{\beta}\right\rangle & =D\left|\psi_{\alpha} \psi_{\beta}\right\rangle+E\left|\psi_{\beta} \psi_{\alpha}\right\rangle+F \epsilon^{a b} \epsilon_{\alpha \beta}\left|\phi_{a} \phi_{b}\right\rangle
\end{aligned}
$$

Let us think in $\mathrm{L}=5$ (number of sites):

$$
\mathbb{H}=\mathcal{H}_{12}+\mathcal{H}_{23}+\mathcal{H}_{34}+\mathcal{H}_{45}+\mathcal{H}_{51}
$$

Let us look the state

$$
\left|\phi_{1} \psi_{1} \phi_{1} \psi_{2} \phi_{1}\right\rangle
$$

$\mathbb{H}\left|\phi_{1} \psi_{1} \phi_{1} \psi_{2} \phi_{1}\right\rangle=(A+B)\left|\phi_{1} \psi_{1} \phi_{1} \psi_{2} \phi_{1}\right\rangle$
i.e. Electrons did not move!

$$
\begin{aligned}
\mathcal{H}\left|\phi_{a} \phi_{b}\right\rangle & =A\left|\phi_{a} \phi_{b}\right\rangle+B\left|\phi_{b} \phi_{a}\right\rangle+C \epsilon_{a b} \epsilon^{\alpha \beta}\left|\psi_{\alpha} \psi_{\beta}\right\rangle \\
\mathcal{H}\left|\phi_{a} \psi_{\beta}\right\rangle & =0 \\
\mathcal{H}\left|\psi_{\alpha} \phi_{b}\right\rangle & =0 \\
\mathcal{H}\left|\psi_{\alpha} \psi_{\beta}\right\rangle & =D\left|\psi_{\alpha} \psi_{\beta}\right\rangle+E\left|\psi_{\beta} \psi_{\alpha}\right\rangle+F \epsilon^{a b} \epsilon_{\alpha \beta}\left|\phi_{a} \phi_{b}\right\rangle
\end{aligned}
$$

Let us think in $\mathrm{L}=5$ (number of sites):

$$
\mathbb{H}=\mathcal{H}_{12}+\mathcal{H}_{23}+\mathcal{H}_{34}+\mathcal{H}_{45}+\mathcal{H}_{51}
$$

Let us look the state

$$
\left|\phi_{1} \phi_{1} \psi_{1} \psi_{2} \phi_{1}\right\rangle
$$

$\mathbb{H}\left|\phi_{1} \phi_{1} \psi_{1} \psi_{2} \phi_{1}\right\rangle=?$
Now they move!

## Spectrum:

- For 4 sites for example:

Model 8:
Model 9:
Model 10:
$\{1,1,1,1,14,14,224\} ;$
$\{1,15,16,30,194\}$;
$\{1,1,1,1,1,1,6,6,8,8,14,16,16,32,44,100\}$

## Spectrum:

- For 4 sites for example:

```
Model 8: \(\quad\{1,1,1,1,14,14,224\} ;\)
Model 9:
\(\{1,15,16,30,194\} ;\)
Model 10:
\(\{1,1,1,1,1,1,6,6,8,8,14,16,16,32,44,100\}\)
```

- So the three models despite their similarities have a very different spectrum;


## Spectrum:

- For 4 sites for example:

```
Model 8: \(\quad\{1,1,1,1,14,14,224\} ;\)
Model 9: \(\quad\{1,15,16,30,194\} ;\)
Model 10: \(\quad\{1,1,1,1,1,1,6,6,8,8,14,16,16,32,44,100\}\)
```

- So the three models despite their similarities have a very different spectrum;
- And also probably have some extra symmetries we still do not understand;

$$
\begin{aligned}
& R(u)= \\
& \left(\begin{array}{ccccccccccccccc}
r_{1,2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & r_{1} & 0 & 0 & r_{2} & 0 & 0 & 0 & 0 & 0 & 0 & -r_{8} & 0 & 0 & r_{8} \\
0 & 0 & r_{4} & 0 & 0 & 0 & 0 & 0 & r_{10} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & r_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{10} & 0 & 0 \\
0 & r_{2} & 0 & 0 & r_{1} & 0 & 0 & 0 & 0 & 0 & 0 & r_{8} & 0 & 0 & -r_{8} \\
0 & 0 & 0 & 0 & 0 & r_{1,2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & r_{4} & 0 & 0 & r_{10} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{4} & 0 & 0 & 0 & 0 & 0 & r_{10} & 0 \\
0 & 0 & r_{7} & 0 & 0 & 0 & 0 & 0 & r_{3} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & r_{7} & 0 & 0 & r_{3} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{5}, 6 & 0 & 0 & 0 & 0 \\
0 & -r_{9} & 0 & 0 & r_{9} & 0 & 0 & 0 & 0 & 0 & 0 & r_{5} & 0 & 0 & r_{6} \\
0 & 0 & 0 & r_{7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{7} & 0 & 0 & 0 & 0 & 0 & r_{3} & 0 \\
0 & r_{9} & 0 & 0 & -r_{9} & 0 & 0 & 0 & 0 & 0 & 0 & r_{6} & 0 & 0 & r_{5} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right.
\end{aligned}
$$

where $r_{i, j}=r_{i}+r_{j}$.

Model 8

$$
\begin{array}{ll}
r_{1}=-r_{5}=-\tan (u \rho) \\
r_{2}=1-r_{1} \\
r_{6}=1+r_{1} & ,
\end{array} \begin{aligned}
& r_{7}=r_{10}=1 \\
& r_{8}=e^{\phi} r_{1} \\
& r_{9}=-e^{-\phi} r_{1}
\end{aligned}
$$

Model 9

$$
\begin{aligned}
& r_{1}=r_{5} r_{8}=-e^{\phi} r_{1} \\
& r_{2}=r_{6}=1-r_{1}, r_{9}=-e^{-\phi} r_{1} \\
& r_{7}=r_{10}=1 \\
& r_{1}=2+\sqrt{3} \operatorname{coth}(\sqrt{3} \rho u+\log (2-\sqrt{3}))
\end{aligned}
$$

Model 10

$$
\begin{array}{ll}
r_{1}=r_{5}=\frac{2\left(e^{\frac{3 \rho u}{2}}-1\right)}{e^{\frac{3 \rho u}{2}}-4} & ,
\end{array} \quad r_{2}=r_{6}=-\frac{e^{\frac{3 \rho u}{2}}+2}{e^{\frac{3 \rho u}{2}}-4}
$$

## Generalized Hubbard model

- The 1D Hubbard model is integrable (E.H. Lieb \& F.Y Wu, 1968 and B.Sriram Shastry, 1988);


## Generalized Hubbard model

- The 1D Hubbard model is integrable (E.H. Lieb \& F.Y Wu, 1968 and B.Sriram Shastry, 1988);
- We found that only the kinetic part of Hubbard is also integrable:

$$
K_{H u b}=\sum_{\uparrow, \downarrow}\left(c_{\alpha, 1}^{\dagger} c_{\alpha, 2}+c_{\alpha, 2}^{\dagger} c_{\alpha, 1}\right)
$$

## Generalized Hubbard model

- The 1D Hubbard model is integrable (E.H. Lieb \& F.Y Wu, 1968 and B.Sriram Shastry, 1988);
- We found that only the kinetic part of Hubbard is also integrable:

$$
K_{H u b}=\sum_{\uparrow, \downarrow}\left(c_{\alpha, 1}^{\dagger} c_{\alpha, 2}+c_{\alpha, 2}^{\dagger} c_{\alpha, 1}\right)
$$

- So we decided to see which terms we could add and still keep integrability;


## Generalized Hubbard model

- The 1D Hubbard model is integrable (E.H. Lieb \& F.Y Wu, 1968 and B.Sriram Shastry, 1988);
- We found that only the kinetic part of Hubbard is also integrable:

$$
K_{H u b}=\sum_{\uparrow, \downarrow}\left(c_{\alpha, 1}^{\dagger} c_{\alpha, 2}+c_{\alpha, 2}^{\dagger} c_{\alpha, 1}\right)
$$

- So we decided to see which terms we could add and still keep integrability;
- but we would like to study only models we could interpret as electrons moving on a one-dimensional lattice;


## Generalized Hubbard model

- The 1D Hubbard model is integrable (E.H. Lieb \& F.Y Wu, 1968 and B.Sriram Shastry, 1988);
- We found that only the kinetic part of Hubbard is also integrable:

$$
K_{H u b}=\sum_{\uparrow, \downarrow}\left(c_{\alpha, 1}^{\dagger} c_{\alpha, 2}+c_{\alpha, 2}^{\dagger} c_{\alpha, 1}\right)
$$

- So we decided to see which terms we could add and still keep integrability;
- but we would like to study only models we could interpret as electrons moving on a one-dimensional lattice;
- So we only included terms which preserve fermion number;

We added three types of terms:

- $K_{\text {pair }}$ : moves one pair of electrons from one site to the next;

We added three types of terms:

- $K_{\text {pair }}$ : moves one pair of electrons from one site to the next;

$$
K_{\text {pair }}=A_{1} \mathbf{c}_{\uparrow, 1}^{\dagger} \mathbf{c}_{\downarrow, 1}^{\dagger} \mathbf{c}_{\uparrow, 2} \mathbf{c}_{\downarrow, 2}+A_{2} \mathbf{c}_{\uparrow, 2}^{\dagger} \mathbf{c}_{\downarrow, 2}^{\dagger} \mathbf{c}_{\uparrow, 1} \mathbf{c}_{\downarrow, 1},
$$

- $K_{\text {flip }}$ : flips spins in neighbor sites;

We added three types of terms:

- $K_{\text {pair }}$ : moves one pair of electrons from one site to the next;

$$
K_{\text {pair }}=A_{1} \mathbf{c}_{\uparrow, 1}^{\dagger} \mathbf{c}_{\downarrow, 1}^{\dagger} \mathbf{c}_{\uparrow, 2} \mathbf{c}_{\downarrow, 2}+A_{2} \mathbf{c}_{\uparrow, 2}^{\dagger} \mathbf{c}_{\downarrow, 2}^{\dagger} \mathbf{c}_{\uparrow, 1} \mathbf{c}_{\downarrow, 1},
$$

- $K_{\text {flip }}$ : flips spins in neighbor sites;

$$
\begin{aligned}
K_{f l i p} & =A_{3} \mathbf{c}_{\uparrow, 1}^{\dagger} \mathbf{c}_{\downarrow, 2}^{\dagger} \mathbf{c}_{\downarrow, 1} \mathbf{c}_{\uparrow, 2}+A_{4} \mathbf{c}_{\downarrow, 1}^{\dagger} \mathbf{c}_{\uparrow, 2}^{\dagger} \mathbf{c}_{\uparrow, 1} \mathbf{c}_{\downarrow, 2} \\
& +A_{5} \mathbf{c}_{\uparrow, 1}^{\dagger} \mathbf{c}_{\uparrow, 2}^{\dagger} \mathbf{c}_{\downarrow, 1} \mathbf{c}_{\downarrow, 2}+A_{6} \mathbf{c}_{\downarrow, 1}^{\dagger} \mathbf{c}_{\downarrow, 2}^{\dagger} \mathbf{c}_{\uparrow, 1} \mathbf{c}_{\uparrow, 2} .
\end{aligned}
$$

- $V$ : potential term

We added three types of terms:

- $K_{\text {pair }}$ : moves one pair of electrons from one site to the next;

$$
K_{\text {pair }}=A_{1} \mathbf{c}_{\uparrow, 1}^{\dagger} \mathbf{c}_{\downarrow, 1}^{\dagger} \mathbf{c}_{\uparrow, 2} \mathbf{c}_{\downarrow, 2}+A_{2} \mathbf{c}_{\uparrow, 2}^{\dagger} \mathbf{c}_{\downarrow, 2}^{\dagger} \mathbf{c}_{\uparrow, 1} \mathbf{c}_{\downarrow, 1}
$$

- $K_{\text {flip }}$ : flips spins in neighbor sites;

$$
\begin{aligned}
K_{f l i p} & =A_{3} \mathbf{c}_{\uparrow, 1}^{\dagger} \mathbf{c}_{\downarrow, 2}^{\dagger} \mathbf{c}_{\downarrow, 1} \mathbf{c}_{\uparrow, 2}+A_{4} \mathbf{c}_{\downarrow, 1}^{\dagger} \mathbf{c}_{\uparrow, 2}^{\dagger} \mathbf{c}_{\uparrow, 1} \mathbf{c}_{\downarrow, 2} \\
& +A_{5} \mathbf{c}_{\uparrow, 1}^{\dagger} \mathbf{c}_{\uparrow, 2}^{\dagger} \mathbf{c}_{\downarrow, 1} \mathbf{c}_{\downarrow, 2}+A_{6} \mathbf{c}_{\downarrow, 1}^{\dagger} \mathbf{c}_{\downarrow, 2}^{\dagger} \mathbf{c}_{\uparrow, 1} \mathbf{c}_{\uparrow, 2} .
\end{aligned}
$$

- $V$ : potential term

The density Hamiltonian whose integrability we investigate is

$$
\mathcal{H}=K_{H u b}+K_{\text {pair }}+K_{f l i p}+V
$$

It has 22 free parameters

If we consider a non-trivial $K_{\text {flip }}$ and also a potential part we found that

$$
\begin{aligned}
\mathcal{H}= & \mathcal{K}_{H u b}+a\left(\mathbf{c}_{\uparrow, 1}^{\dagger} \mathbf{c}_{\downarrow, 2}^{\dagger} \mathbf{c}_{\downarrow, 1} \mathbf{c}_{\uparrow, 2}+\mathbf{c}_{\downarrow, 1}^{\dagger} \mathbf{c}_{\uparrow, 2}^{\dagger} \mathbf{c}_{\uparrow, 1} \mathbf{c}_{\downarrow, 2}\right. \\
& \left.+\mathbf{c}_{\uparrow, 1}^{\dagger} \mathbf{c}_{\uparrow, 2}^{\dagger} \mathbf{c}_{\downarrow, 1} \mathbf{c}_{\downarrow, 2}+\mathbf{c}_{\downarrow, 1}^{\dagger} \mathbf{c}_{\downarrow, 2}^{\dagger} \mathbf{c}_{\uparrow, 1} \mathbf{c}_{\uparrow, 2}\right) \\
& +(2 a-b)\left(\mathbf{n}_{\uparrow, 1}+\mathbf{n}_{\downarrow, 1}\right)+b\left(\mathbf{n}_{\uparrow, 2}+\mathbf{n}_{\downarrow, 2}\right) \\
& -a\left(\mathbf{n}_{\uparrow, 1}+\mathbf{n}_{\downarrow, 1}\right)\left(\mathbf{n}_{\uparrow, 2}+\mathbf{n}_{\downarrow, 2}\right) .
\end{aligned}
$$

If we consider a non-trivial $K_{\text {flip }}$ and also a potential part we found that

$$
\begin{aligned}
\mathcal{H}= & \mathcal{K}_{H u b}+a\left(\mathbf{c}_{\uparrow, 1}^{\dagger} \mathbf{c}_{\downarrow, 2}^{\dagger} \mathbf{c}_{\downarrow, 1} \mathbf{c}_{\uparrow, 2}+\mathbf{c}_{\downarrow, 1}^{\dagger} \mathbf{c}_{\uparrow, 2}^{\dagger} \mathbf{c}_{\uparrow, 1} \mathbf{c}_{\downarrow, 2}\right. \\
& \left.+\mathbf{c}_{\uparrow, 1}^{\dagger} \mathbf{c}_{\uparrow, 2}^{\dagger} \mathbf{c}_{\downarrow, 1} \mathbf{c}_{\downarrow, 2}+\mathbf{c}_{\downarrow, 1}^{\dagger} \mathbf{c}_{\downarrow, 2}^{\dagger} \mathbf{c}_{\uparrow, 1} \mathbf{c}_{\uparrow, 2}\right) \\
& +(2 a-b)\left(\mathbf{n}_{\uparrow, 1}+\mathbf{n}_{\downarrow, 1}\right)+b\left(\mathbf{n}_{\uparrow, 2}+\mathbf{n}_{\downarrow, 2}\right) \\
& -a\left(\mathbf{n}_{\uparrow, 1}+\mathbf{n}_{\downarrow, 1}\right)\left(\mathbf{n}_{\uparrow, 2}+\mathbf{n}_{\downarrow, 2}\right) .
\end{aligned}
$$

- It does not conserve spin orientation, so it is XYZ deformation of the Hubbard model;

If we consider a non-trivial $K_{\text {flip }}$ and also a potential part we found that

$$
\begin{aligned}
\mathcal{H}= & \mathcal{K}_{H u b}+a\left(\mathbf{c}_{\uparrow, 1}^{\dagger} \mathbf{c}_{\downarrow, 2}^{\dagger} \mathbf{c}_{\downarrow, 1} \mathbf{c}_{\uparrow, 2}+\mathbf{c}_{\downarrow, 1}^{\dagger} \mathbf{c}_{\uparrow, 2}^{\dagger} \mathbf{c}_{\uparrow, 1} \mathbf{c}_{\downarrow, 2}\right. \\
& \left.+\mathbf{c}_{\uparrow, 1}^{\dagger} \mathbf{c}_{\uparrow, 2}^{\dagger} \mathbf{c}_{\downarrow, 1} \mathbf{c}_{\downarrow, 2}+\mathbf{c}_{\downarrow, 1}^{\dagger} \mathbf{c}_{\downarrow, 2}^{\dagger} \mathbf{c}_{\uparrow, 1} \mathbf{c}_{\uparrow, 2}\right) \\
& +(2 a-b)\left(\mathbf{n}_{\uparrow, 1}+\mathbf{n}_{\downarrow, 1}\right)+b\left(\mathbf{n}_{\uparrow, 2}+\mathbf{n}_{\downarrow, 2}\right) \\
& -a\left(\mathbf{n}_{\uparrow, 1}+\mathbf{n}_{\downarrow, 1}\right)\left(\mathbf{n}_{\uparrow, 2}+\mathbf{n}_{\downarrow, 2}\right) .
\end{aligned}
$$

- It does not conserve spin orientation, so it is XYZ deformation of the Hubbard model;
- Bethe ansatz does not work;

If we consider a non-trivial $K_{\text {flip }}$ and also a potential part we found that

$$
\begin{aligned}
\mathcal{H}= & \mathcal{K}_{H u b}+a\left(\mathbf{c}_{\uparrow, 1}^{\dagger} \mathbf{c}_{\downarrow, 2}^{\dagger} \mathbf{c}_{\downarrow, 1} \mathbf{c}_{\uparrow, 2}+\mathbf{c}_{\downarrow, 1}^{\dagger} \mathbf{c}_{\uparrow, 2}^{\dagger} \mathbf{c}_{\uparrow, 1} \mathbf{c}_{\downarrow, 2}\right. \\
& \left.+\mathbf{c}_{\uparrow, 1}^{\dagger} \mathbf{c}_{\uparrow, 2}^{\dagger} \mathbf{c}_{\downarrow, 1} \mathbf{c}_{\downarrow, 2}+\mathbf{c}_{\downarrow, 1}^{\dagger} \mathbf{c}_{\downarrow, 2}^{\dagger} \mathbf{c}_{\uparrow, 1} \mathbf{c}_{\uparrow, 2}\right) \\
& +(2 a-b)\left(\mathbf{n}_{\uparrow, 1}+\mathbf{n}_{\downarrow, 1}\right)+b\left(\mathbf{n}_{\uparrow, 2}+\mathbf{n}_{\downarrow, 2}\right) \\
& -a\left(\mathbf{n}_{\uparrow, 1}+\mathbf{n}_{\downarrow, 1}\right)\left(\mathbf{n}_{\uparrow, 2}+\mathbf{n}_{\downarrow, 2}\right) .
\end{aligned}
$$

- It does not conserve spin orientation, so it is XYZ deformation of the Hubbard model;
- Bethe ansatz does not work;
- It has two free parameters, so it may have a phase diagram;


## $\mathrm{AdS}_{2,3}$ deformations

- It is known that in addition to $\operatorname{AdS}_{5} \times \mathrm{S}^{5}$, lower dimensional versions of AdS like:

$$
\begin{aligned}
\operatorname{AdS}_{3} \times S^{3} \times \mathrm{T}^{4} & \text { (Borsato, Ohlsson Sax } \\
& \text { Sfondrini, B. Stefanski, 2014) }
\end{aligned}
$$

$\operatorname{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{S}^{3} \times \mathrm{S}^{1}$ (Borsato, Ohlsson Sax, Sfondrini, B. Stefanski, 2015)
$\mathrm{AdS}_{2} \times \mathrm{S}^{2} \times \mathrm{T}^{6}$ (Hoare, Pittelli, Torrielli, 2014).
are also integrable.

## $\mathrm{AdS}_{2,3}$ deformations

- The R-matrix for $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$, for example, was obtained by assuming that


## $\mathrm{AdS}_{2,3}$ deformations

- The R-matrix for $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$, for example, was obtained by assuming that
- the off-shell symmetries obtained for the nonlinear Sigma model;


## $\mathrm{AdS}_{2,3}$ deformations

- The R-matrix for $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$, for example, was obtained by assuming that
- the off-shell symmetries obtained for the nonlinear Sigma model;and
- the symmetries responsible for the integrability of the classical field theory


## $\mathrm{AdS}_{2,3}$ deformations

- The R-matrix for $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$, for example, was obtained by assuming that
- the off-shell symmetries obtained for the nonlinear Sigma model;and
- the symmetries responsible for the integrability of the classical field theory
both remain at quantum level;


## $\mathrm{AdS}_{2,3}$ deformations

- The R-matrix for $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$, for example, was obtained by assuming that
- the off-shell symmetries obtained for the nonlinear Sigma model;and
- the symmetries responsible for the integrability of the classical field theory
both remain at quantum level;
- This was enough to fix the S-matrix up to the dressing factor;


## $\mathrm{AdS}_{2,3}$ deformations

- Focusing on the $\mathrm{su}(1 \mid 1)_{\text {ce }}^{2}$ sector, one can write the S -matrix as

$$
\check{S}=\left(\begin{array}{ll}
\check{S}^{\mathrm{LL}} & \check{S}^{\mathrm{RL}} \\
\check{S}^{\mathrm{LR}} & \check{S}^{\mathrm{RR}}
\end{array}\right)
$$

## $\mathrm{AdS}_{2,3}$ deformations

- Focusing on the $\operatorname{su}(1 \mid 1)_{\text {ce }}^{2}$ sector, one can write the S -matrix as

$$
\check{S}=\left(\begin{array}{cc}
\check{S}^{\mathrm{LL}} & \check{S}^{\mathrm{RL}} \\
\check{S}^{\mathrm{LR}} & \check{S}^{\mathrm{RR}}
\end{array}\right)
$$

- it satisfies the Yang-Baxter equation;


## $\mathrm{AdS}_{2,3}$ deformations

- Focusing on the $\mathrm{su}(1 \mid 1)_{\text {ce }}^{2}$ sector, one can write the S -matrix as

$$
\check{\mathbb{S}}=\left(\begin{array}{ll}
\check{S}^{\mathrm{LL}} & \check{S}^{\mathrm{RL}} \\
\check{S}^{\mathrm{LR}} & \check{S}^{\mathrm{RR}}
\end{array}\right)
$$

- it satisfies the Yang-Baxter equation;
- each of these blocks are an embedding of a $4 \times 4$ R-matrix;


## $\mathrm{AdS}_{2,3}$ deformations

- Focusing on the $\operatorname{su}(1 \mid 1)_{\text {ce }}^{2}$ sector, one can write the S -matrix as

$$
\check{S}=\left(\begin{array}{cc}
\check{S}^{\mathrm{LL}} & \check{S}^{\mathrm{RL}} \\
\check{S}^{\mathrm{LR}} & \check{S}^{\mathrm{RR}}
\end{array}\right)
$$

- it satisfies the Yang-Baxter equation;
- each of these blocks are an embedding of a $4 \times 4$ R-matrix;
- the blocks with same chirality come from regular R-matrices while the opposite-chirality ones come from non-regular R-matrices;


## $\mathrm{AdS}_{2,3}$ deformations

- For $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{M}^{4}$ the diagonal blocks are regular 6-vertex regular R -matrices, i.e.

$$
R(u, v)=\left(\begin{array}{cccc}
r_{1}(u, v) & 0 & 0 & 0 \\
0 & r_{2}(u, v) & r_{6}(u, v) & 0 \\
0 & r_{5}(u, v) & r_{3}(u, v) & 0 \\
0 & 0 & 0 & r_{4}(u, v)
\end{array}\right), \quad R(u, u)=P
$$

## $\mathrm{AdS}_{2,3}$ deformations

- For $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{M}^{4}$ the diagonal blocks are regular 6-vertex regular R -matrices, i.e.

$$
R(u, v)=\left(\begin{array}{cccc}
r_{1}(u, v) & 0 & 0 & 0 \\
0 & r_{2}(u, v) & r_{6}(u, v) & 0 \\
0 & r_{5}(u, v) & r_{3}(u, v) & 0 \\
0 & 0 & 0 & r_{4}(u, v)
\end{array}\right), \quad R(u, u)=P
$$

which means that only scatterings like

$$
\begin{aligned}
& \phi \phi \rightarrow \phi \phi \\
& \psi \psi \rightarrow \psi \psi \\
& \phi \psi \rightarrow \phi \psi+\psi \phi \\
& \psi \phi \rightarrow \psi \phi+\phi \psi
\end{aligned}
$$

are allowed. Spin is conserved.

## $\mathrm{AdS}_{2,3}$ deformations

- While for massive $\mathrm{AdS}_{2} \times \mathrm{S}^{2} \times \mathrm{T}^{6}$ the RR and LL blocks are described by an $4 \times 48$-vertex regular R-matrix:

$$
R(u, v)=\left(\begin{array}{cccc}
r_{1}(u, v) & 0 & 0 & r_{8}(u, v) \\
0 & r_{2}(u, v) & r_{6}(u, v) & 0 \\
0 & r_{5}(u, v) & r_{3}(u, v) & 0 \\
r_{7}(u, v) & 0 & 0 & r_{4}(u, v)
\end{array}\right), \quad R(u, u)=P
$$

## $\mathrm{AdS}_{2,3}$ deformations

- While for massive $\mathrm{AdS}_{2} \times \mathrm{S}^{2} \times \mathrm{T}^{6}$ the RR and LL blocks are described by an $4 \times 48$-vertex regular R-matrix:

$$
R(u, v)=\left(\begin{array}{cccc}
r_{1}(u, v) & 0 & 0 & r_{8}(u, v) \\
0 & r_{2}(u, v) & r_{6}(u, v) & 0 \\
0 & r_{5}(u, v) & r_{3}(u, v) & 0 \\
r_{7}(u, v) & 0 & 0 & r_{4}(u, v)
\end{array}\right), \quad R(u, u)=P
$$

which means that only scatterings like

$$
\begin{aligned}
\phi \phi & \rightarrow \phi \phi+\psi \psi \\
\psi \psi & \rightarrow \psi \psi+\phi \phi \\
\phi \psi & \rightarrow \phi \psi+\psi \phi \\
\psi \phi & \rightarrow \psi \phi+\phi \psi
\end{aligned}
$$

are allowed.

## $\mathrm{AdS}_{2,3}$ deformations

Goal: Find the most general integrable deformations of $\mathrm{AdS}_{3}$ and $\mathrm{AdS}_{2} \mathrm{R}$-matrices.

## Spoiler:

$$
\operatorname{AdS}_{3} \times S^{3} \times M^{4}
$$

## Elliptic

crossing
Yes

## Functional

## $\mathrm{AdS}_{2} \times S^{2} \times T^{6}$

crossing
No

We found 4 independent solutions:

We found 4 independent solutions:
Two of 6 vertex form;

We found 4 independent solutions:
Two of 6 vertex form;
and
Two of 8 vertex form

We found 4 independent solutions:
Two of 6 vertex form;
and
Two of 8 vertex form

But in only one of the 6 -vertex and one of the 8 -vertex, $\operatorname{AdS}_{2,3}$ known R-matrices could be embedded.

We found 4 independent solutions:
Two of 6 vertex form;
and
Two of 8 vertex form

But in only one of the 6 -vertex and one of the 8 -vertex, $\operatorname{AdS}_{2,3}$ known R-matrices could be embedded.

## We called them 6-vertex B and 8-vertex B

## 6 -vertex B

$$
\begin{aligned}
r_{1} & =\frac{h_{2}(q)-h_{1}(p)}{h_{2}(p)-h_{1}(p)} \\
r_{2} & =\left(h_{2}(p)-h_{2}(q)\right) X(p) Y(p), \\
r_{3} & =\frac{h_{1}(p)-h_{1}(q)}{\left(h_{2}(p)-h_{1}(p)\right)\left(h_{2}(q)-h_{1}(q)\right)} \frac{1}{X(q) Y(q)}, \\
r_{4} & =\frac{h_{2}(p)-h_{1}(q)}{h_{2}(q)-h_{1}(q)} \frac{X(p) Y(p)}{X(q) Y(q)}, \\
r_{5} & =\frac{Y(p)}{Y(q)} \\
r_{6} & =\frac{X(p)}{X(q)}
\end{aligned}
$$

## 6 -vertex B

$$
\begin{aligned}
r_{1} & =\frac{h_{2}(q)-h_{1}(p)}{h_{2}(p)-h_{1}(p)} \\
r_{2} & =\left(h_{2}(p)-h_{2}(q)\right) X(p) Y(p) \\
r_{3} & =\frac{h_{1}(p)-h_{1}(q)}{\left(h_{2}(p)-h_{1}(p)\right)\left(h_{2}(q)-h_{1}(q)\right)} \frac{1}{X(q) Y(q)} \\
r_{4} & =\frac{h_{2}(p)-h_{1}(q)}{h_{2}(q)-h_{1}(q)} \frac{X(p) Y(p)}{X(q) Y(q)} \\
r_{5} & =\frac{Y(p)}{Y(q)} \\
r_{6} & =\frac{X(p)}{X(q)}
\end{aligned}
$$

We will assume $R^{R R}(u, v)$ and $R^{L L}(u, v)$ as two independent copies of 6 -vertex B.

## 6 -vertex $\mathrm{B}-\mathrm{AdS}_{3}$

- It was possible to keep the LL and RR blocks completely independent of each other;


## 6 -vertex $\mathrm{B}-\mathrm{AdS}_{3}$

- It was possible to keep the LL and RR blocks completely independent of each other;
- So, the result is a deformation of both $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ and $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{S}^{3} \times \mathrm{S}^{1}$;


## 6 -vertex $\mathrm{B}-\mathrm{AdS}_{3}$

- It was possible to keep the LL and RR blocks completely independent of each other;
- So, the result is a deformation of both $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ and $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{S}^{3} \times \mathrm{S}^{1}$;
- It actually corresponds to a deformation of the q-deformation introduced by Ben Hoare in 2015;


## 6 -vertex $\mathrm{B}-\mathrm{AdS}_{3}$

- It was possible to keep the LL and RR blocks completely independent of each other;
- So, the result is a deformation of both $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ and $\operatorname{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{S}^{3} \times \mathrm{S}^{1}$;
- It actually corresponds to a deformation of the q-deformation introduced by Ben Hoare in 2015;
- It is what we are calling a functional deformation, because instead of $x_{R, L}^{ \pm}(u)$ we have general functions $h_{1,2}^{R, L}(u)$


## 6 -vertex $\mathrm{B}-\mathrm{AdS}_{3}$

- By making the following identifications

$$
\begin{array}{ll}
h_{1}^{\mathrm{R}}(p)=-\frac{x_{R}^{-}(p)}{\beta}, & h_{1}^{\mathrm{L}}(p)=\beta x_{L}^{-}(p), \\
h_{2}^{\mathrm{R}}(p)=-\frac{x_{R}^{+}(p)}{\beta}, & h_{2}^{\mathrm{L}}(p)=\beta x_{L}^{+}(p),
\end{array}
$$

where $\beta$ is an arbitrary constant

## 6 -vertex $\mathrm{B}-\mathrm{AdS}_{3}$

- By making the following identifications

$$
\begin{array}{ll}
h_{1}^{\mathrm{R}}(p)=-\frac{x_{R}^{-}(p)}{\beta}, & h_{1}^{\mathrm{L}}(p)=\beta x_{L}^{-}(p), \\
h_{2}^{\mathrm{R}}(p)=-\frac{x_{R}^{+}(p)}{\beta}, & h_{2}^{\mathrm{L}}(p)=\beta x_{L}^{+}(p),
\end{array}
$$

where $\beta$ is an arbitrary constant and

$$
\begin{aligned}
X^{\mathrm{L}}(p) & =\frac{\rho}{\gamma_{L}(p)}, & Y^{\mathrm{L}}(p) & =\frac{1}{\beta \rho} \frac{\gamma_{L}(p)}{U_{L}(p) V_{L}(p) W_{L}(p)} \frac{1}{x_{L}^{-}(p)-x_{L}^{+}(p)}, \\
Y^{\mathrm{R}}(p) & =\frac{1}{\beta \rho} \frac{x_{R}^{+}(p)}{\gamma_{R}(p)}, & X^{\mathrm{R}}(p) & =-\frac{\rho \gamma_{R}(p)}{U_{R}(p) V_{R}(p) W_{R}(p)} \frac{x_{R}^{+}(p)}{x_{R}^{-}(p)-x_{R}^{+}(p)}
\end{aligned}
$$

we recover the two parametric q-deformation;

## 6 -vertex $\mathrm{B}-\mathrm{AdS}_{3}$

- But let us keep these functions $h_{1,2}^{R, L}(u)$ general;


## 6 -vertex $\mathrm{B}-\mathrm{AdS}_{3}$

- But let us keep these functions $h_{1,2}^{R, L}(u)$ general;
- In such case we can interpret as the mass now depends on $u$;


## 6 -vertex $\mathrm{B}-\mathrm{AdS}_{3}$

- But let us keep these functions $h_{1,2}^{R, L}(u)$ general;
- In such case we can interpret as the mass now depends on $u$;
- It has crossing symmetry;


## 8 -vertex B model

$$
\begin{aligned}
& r_{1}=\frac{1}{\sqrt{\sin \eta(u)} \sqrt{\sin \eta(v)}}\left[\sin \eta_{+} \frac{\mathrm{cn}}{\mathrm{dn}}-\cos \eta_{+} \mathrm{sn}\right], \\
& r_{2}=\frac{1}{\sqrt{\sin \eta(u)} \sqrt{\sin \eta(v)}}\left[\cos \eta_{-} \mathrm{sn}+\sin \eta_{-} \frac{\mathrm{cn}}{\mathrm{dn}}\right], \\
& r_{3}=\frac{1}{\sqrt{\sin \eta(u)} \sqrt{\sin \eta(v)}}\left[\cos \eta_{-} \mathrm{sn}-\sin \eta_{-} \frac{\mathrm{cn}}{\mathrm{dn}}\right], \\
& r_{4}=\frac{1}{\sqrt{\sin \eta(u)} \sqrt{\sin \eta(v)}}\left[\sin \eta_{+} \frac{\mathrm{cn}}{\mathrm{dn}}+\cos \eta_{+} \mathrm{sn}\right], \\
& r_{5}=r_{6}=1, \\
& r_{7}=r_{8}=k \mathrm{sn} \frac{\mathrm{cn}}{\mathrm{dn}},
\end{aligned}
$$

with

$$
\mathrm{sn}=\operatorname{sn}\left(G(u)-G(v), k^{2}\right), \quad \mathrm{cn}=\operatorname{cn}\left(G(u)-G(v), k^{2}\right), \quad \text { etc }
$$

## 8-vertex B model

- This model was a nice surprise;


## 8-vertex B model

- This model was a nice surprise;
- It is a deformation of:
$\mathrm{AdS}_{2}$ when $k \rightarrow \infty$


## 8-vertex B model

- This model was a nice surprise;
- It is a deformation of:
$\mathrm{AdS}_{2}$ when $k \rightarrow \infty$
and
$\mathrm{AdS}_{3}$ when $k \rightarrow 0$


## 8-vertex $\mathrm{B}-\mathrm{AdS}_{3}$ deformation

- This was the biggest surprise when we compared the models with the undeformed ones:

An 8-vertex deformation of $\mathrm{AdS}_{3}$ !

## 8-vertex $\mathrm{B}-\mathrm{AdS}_{3}$ deformation

- This was the biggest surprise when we compared the models with the undeformed ones:

An 8-vertex deformation of $\mathrm{AdS}_{3}$ !

- We constructed the full R-matrix for this model, and again we found that the LL and RR blocks can be deformed separately here;


## 8-vertex $\mathrm{B}-\mathrm{AdS}_{3}$ deformation

- This was the biggest surprise when we compared the models with the undeformed ones:

An 8-vertex deformation of $\mathrm{AdS}_{3}$ !

- We constructed the full R-matrix for this model, and again we found that the LL and RR blocks can be deformed separately here;
- So, we have again a deformation of $\operatorname{Ad} S_{3} \times S^{3} \times M^{4}$;
- This is not however a deformation of the q-deformed model found by Hoare in 2014;


## Conclusions

- we presented a new method to construct R-matrices satisfying YBE;


## Conclusions

- we presented a new method to construct R-matrices satisfying YBE;
- Some models with potential interesting physical properties were found;


## Conclusions

- we presented a new method to construct R-matrices satisfying YBE;
- Some models with potential interesting physical properties were found;
- And three new integrable deformations of lower dimensional AdS were found,


## Further developments

- Consider models with less symmetry and maybe try a full classification;
- Compute the spectrum of the new models where electrons can move only when in pairs ;
- Maybe nested algebraic Bethe ansatz will work;
- Study physical properties of the deformed Hubbard-like model;
- Investigate if there are field theories whose S-matrix would correspond to the new R-matrices we found;
- Prove that $\left[\mathbb{Q}_{2}, \mathbb{Q}_{3}\right]=0$ is always enough or find a counterexample;
- Construct the $K$-matrices;
- Study better the deformations of $A d S_{2}$ and $A d S_{3}$ we found, including its symmetries and solve the crossing equations.

Thank you!

