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The Big picture
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Cosmology: modern tools for age-old questions

1929

1964

2018
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Inflation: two birds with one ... scalar field

PHYSICAL REVIEW D VOLUME 23, NUMBER 2 15 JAN UAR Y 1981

Infiationary universe: A possible solution to the horizon and fiatness problems

Alan H. Guth*
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

(Received 11 August 1980)

The standard model of hot big-bang cosmology requires initial conditions which are problematic in two ways: (1)
The early universe is assumed to be highly homogeneous, in spite of the fact that separated regions were causally
disconnected (horizon problem); and (2) the initial value of the Hubble constant must be fine tuned to extraordinary
accuracy to produce a universe as flat (i.e., near critical mass density) as the one we see today (flatness problem).
These problems would disappear if, in its early history, the universe supercooled to temperatures 28 or more orders
of magnitude below the critical temperature for some phase transition. A huge expansion factor would then result
from a period of exponential growth, and the entropy of the universe would be multiplied by a huge factor when the
latent heat is released. Such a scenario is completely natural in the context of grand unified models of elementary-
particle interactions. In such models, the supercooling is also relevant to the problem of monopole suppression.
Unfortunately, the scenario seems to lead to some unacceptable consequences, so modifications must be sought.

I. INTRODUCTION: THE HORIZON AND FLATNESS
PROBLEMS

The standard model of hot big-bang cosmology
relies on the assumption of initial conditions which
are very puzzling in two ways which I will explain
below. The purpose of this paper is to suggest a
modified scenario which avoids both of these puz-
zles.
By "standard model, " I refer to an adiabatically

expanding radiation- dominated universe described
by a Robertson-%alker metric. Details will be
given in Sec. II.
Before explaining the puzzles, I would first like

to clarify my notion of "initial conditions. " The
standard model has a singularity which is conven-
tionally taken to be at time t =0. As t -0, the
temperature T—~. Thus, no initial-value prob-
lem can be defined at t=0. However, when T is
of the order of the Planck mass (Mz, —=I/~6=1. 22
&&10~~ GeV)' or greater, the equations of the stan-
dard model are undoubtedly meaningless, since
quantum gravitational effects are expected to be-
come essential. Thus, within the scope of our
knowl, edge, it is sensible to begin the hot big-bang
scenario at some temperature To which is com-
fortably below Mp, let us say To——10"GeV. At
this time one can take the description of the uni-
verse as a set of initial conditions, and the equa-
tions of motion then describe the subsequent evolu-
tion. Of course, the equation of state for matter
at these temperatures is not really known, but one
can make various hypotheses and pursue the con-
sequences.
In the standard model, the initial universe is

taken to be homogeneous and isotropic, and filled
with a gas of effectively massless particles in
thermal equilibrium at temperature To. The ini-
tial value of the Hubble expansion "constant" H is
taken to be Ho, and the model universe is then

completely described.
Now I can explain the puzzles. The first is the

well-known horizon problem. 2 The initial uni-
verse is assumed to be homogeneous, yet it con-
sists of at least -10" separate regions which are
causally disconnected (i. e. , these regions have
not yet had time to communicate with each other
via light signals). ' (The precise assumptions
which lead to these numbers will be spelled out in
Sec. II. ) Thus, one must assume that the forces
which created these initial conditions were capable
of violating causality.
The second puzzle is the flatness problem. This

puzzle seems to be much less celebrated than the
first, but it has been stressed by Dicke and Pee-
bles. I feel that it is of comparable importance
to the first. It is known that the energy density p
of the universe today is near the critical value p„
(corresponding to the borderline between an open
and closed universe). One can safely assume that~

0. 01 & Q& ( 10,
where

0—=p/p„= (8w/3)Gp/H2,

and the subscript p denotes the value at the present
time. Although these bounds do not appear at first
sight to be remarkably stringent, they, in fact,
have powerful implications. The key point is that
the condition 0=1 is unstable. Furthermore, the
only time scale which appears in the equations for
a radiation-dominated universe is the Planck time,
1/I„=5. 4 && 10 sec. A typical closed universe
will reach its maximum size on the order of this
time scale, while a typical open universe will
dwindle to a value of p much less than p„. A uni-
verse can survive -10' years only by extreme fine
tuning of the initial values of p and H, so that p is
very near p„. For the initial conditions taken at

A scalar field called the “inflaton”,
slowly rolling down its potential.

φ̈+ 3Hφ̇− 1

a2(t)
∇2φ+

∂V

∂φ
= 0

The motion is dominated by a
drag coefficient caused by the

expansion of the universe
H(t) = ȧ(t)

a(t) .

2

(a) (b)

FIG. 1: (a) Potential energy function for new inflation. (b) Potential energy function for chaotic

inflation.

II. ORIGIN OF DENSITY PERTURBATIONS DURING THE INFLATIONARY

ERA

The idea that quantum fluctuations might be the origin of structure in the universe goes
back at least as far as a 1965 paper by Sakharov [1]. In the context of inflationary mod-
els, the detailed predictions are model-dependent, but a wide range of simple models give
generic predictions which are in excellent agreement with observations. In this section I
will give a pedagogical explanation of how these predictions arise, based on the time-delay
formalism that was used in the paper I wrote with S.-Y. Pi [2]. This formalism, which we
learned from Stephen Hawking, is the simplest to understand, and it is completely adequate
for the dominant perturbations in single-field, slow-roll inflation.1 More sophisticated ap-
proaches are needed, however, to study multifield models or models that violate the slow-roll
approximation, or to study extremely subdominant effects in single-field, slow-roll models.
Even for multifield inflation, however, some of the simplicity of the time-delay formalism
can be maintained by the use of the so-called δN formalism [11, 12]. There are a number of
reviews [12–14] and textbooks [15–18] that give a much more thorough discussion of density
perturbations in inflationary models than is appropriate here.

Inflation [20–22] takes place when a scalar field has a large potential energy density. A

1 The original work on density perturbations arising from scalar-field-driven inflation centered around the

Nuffield Workshop on the Very Early Universe, Cambridge, U.K., June-July 1982. Four papers came out

of that workshop: Refs. [3], [2], [4], and [5]. Ref. [5] introduced a formalism significantly more general than

the previous papers. These papers tracked the perturbations from their quantum origin through Hubble

exit, reheating, and Hubble reentry. Earlier Mukhanov and Chibisov [6] had revived Sakharov’s idea in

a modern context, studying the conformally flat perturbations generated during the inflationary phase

of the Starobinsky model [8]. They developed a method of quantizing the metric fluctuations, a method

more sophisticated than is needed for the simpler models of Refs. [2]–[5], and gave a formula (without

derivation) for the final spectrum. For various reasons the calculations showing how the conformally flat

fluctuations during inflation evolve to the conformally Newtonian fluctuations after inflation were never

published, until the problem was reconsidered later in Refs. [9] and [10]. The precise answer obtained in

Ref. [6], Q(k) =
√

24πGM
(
1 + 1

2 ln(H/k)
)
, has not (to my knowledge) been confirmed in any modern

paper. However, the fact that Q(k) is proportional to ln(const/k) has been confirmed, showing that the

1981 paper by Mukhanov and Chibisov did correctly calculate what we now call ns (as was pointed out

in Ref. [7]).

Evangelos Sfakianakis Field-space Surprises in Preheating 6/41



Bonus: fluctuations

fluctuations are always present in
quantum fields and in the

metric itself

they are stretched beyond the
horizon by the expansion

they freeze out and become
classical fluctuations:
density perturbations
& gravitational waves

H�1

...stretched by the 
expansion...

Quantum fluctuations of the metric 
and fields are always present...

...freeze out to become 
classical fluctuations outside the 

horizon

Inflationary expansion preserves perturbations.

H
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2018

Inflation

P = As(k/k∗)ns−1

(Simple) Single field inflation:

Solves horizon, flatness,
monopole problems

Explains fluctuations as
stretched quantum
mechanical perturbations

Predicts a nearly scale
invariant spectrum (of
tunable amplitude)

Predicts Gaussian
perturbations

Spectral index not flat by 5σ

Spectral index running is small

|fNL| . O(1)
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Hints from the sky

Many models with different motivation.

⇓

They all share the same uncertainty.
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Big picture reminder
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Inflation must end

The inflaton rolls on a flat
potential.

The inflaton oscillates.

ϕ

V
(ϕ

)

During inflation: p ' −ρ
After inflation:
V (φ) ≈ 1

2 m2φ2 and p → 0
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The inflaton must transfer its energy to
radiative degrees of freedom, setting the stage for BBN.

This process is called reheating.
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Reheating effects
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Figure 1: Each figure shows the evolution of the comoving horizon distance over time.
Each figure shows the extreme cases for wre: the first figure for wre = 1 and the second for
wre = �1

3 .

If one assumes a constant equation of state, the change in the scale factor during reheating is
easily related to the change in the energy density. Using ⇢ / a�3(1+w), the reheating epoch
is described by

⇢end

⇢re
=

✓
aend

are

◆�3(1+wre)

, (2.1)

where the subscript end refers to the end of inflation (the start of reheating), and re refers
to the end of reheating. Writing this in terms of e-foldings

Nre =
1

3(1 + wre)
ln

✓
⇢end

⇢re

◆
=

1

3(1 + wre)
ln

✓
3

2

Vend

⇢re

◆
, (2.2)

where the last step of (2.2) is obtained by replacing ⇢end = (3/2)Vend, derived by setting
w = �1/3 at the end of inflation.
The temperature is related to the density by

⇢re =
⇡2

30
greT

4
re, (2.3)

where gre is the number of relativistic species at the end of reheating. Combining Eqs. (2.2)
and (2.3) one finds

Nre =
1

3(1 + w)
ln

 
30 · 3

2Vend

⇡2greT 4
re

!
. (2.4)

Making the standard assumption that entropy is conserved between the end of reheating
and today, one can relate the reheating temperature to the temperature today by taking
into account the changing number of helicity states in the radiation gas as a function of
temperature,

Tre = T0

✓
a0

are

◆✓
43

11gre

◆ 1
3

= T0

✓
a0

aeq

◆
eNRD

✓
43

11gre

◆ 1
3

, (2.5)
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Cook et al. 2015

�

��

��

��

��

��

��

��

�
��

�= �
�

�	
� �	
� �	
� �	
� �	


�	��

���	��

���

����

����

��

� �
�
[�
��

]

�

��

��

��

��

��

��

��

�
��

�=�

�	
� �	
� �	
� �	
� �	


�	��

���	��

���

����

����

��

� �
�
[�
��

]

�

��

��

��

��

��

��

��

�
��

�=�

�	
� �	
� �	
� �	
� �	


�	��

���	��

���

����

����

��

� �
�
[�
��

]

�

��

��

��

��

��

��

��

�
��

�=�

�	
� �	
� �	
� �	
� �	
� �	
� �	


�	��

���	��

���

����

����

��

� �
�
[�
��

]

Figure 2: Plots of Nre and Tre, the length of reheating and the temperature at the end
of reheating respectively, for polynomial potentials with exponent ↵. The solid red line
corresponds to wre = �1/3, the dashed green line to wre = 0, the dotted blue line to
wre = 2/3, and the dot-dashed black line to wre = 1. The pink shaded region corresponds to
the 1� bounds on ns from Planck. The purple shaded region corresponds to the 1� bounds of
a further CMB experiment with sensitivity ±10�3 [83, 84], using the same central ns value as
Planck. Temperatures below the dark green shaded region are ruled out by BBN. The light
green shaded region is below the electroweak scale, assumed 100 GeV for reference. This
region is not disallowed but would be interesting in the context of baryogenesis.

considering the 2� bounds on ns
6.

Instantaneous reheating is defined as the limit Nre ! 0, visualized in the figure as the point
where all the lines converge. Such instantaneous reheating leads to the maximum temperature
at the end of reheating, and the equation of state parameter is irrelevant.
(Thus, while not shown, a wre = 1

3 solution would correspond to a vertical line passing
through the instantaneous reheat point.)

From Fig. 2, ↵ = 2/3 can be consistent with Planck bounds, but assuming an equation
of state wre � 0, the model would tend to predict smaller reheating temperatures if one
considers Planck’s 1� bound on ns; using Planck’s 2� bounds, any reheating temperature up

6An exception where �4 may still be viable is in the context of warm inflation [85, 86].

– 9 –

The reheating history connects the times
of horizon exit & re-entry of perturbations
⇒ shifts CMB observables

“The value of N∗ is not well constrained
and depends on unknown details of

reheating”

CMB-S4 Science Book, 2016
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Perturbative reheating

Introduce couplings µφχ2 or hφψ̄ψ and assume mφ � mχ,mψ

Γφ→χχ =
µ2

8πmφ
Γφ→ψ̄ψ =

h2mφ

8π

We can describe the decays as an extra friction term

φ̈+ 3Hφ̇+ Γφ̇+ m2φ = 0

Reheating occurs for Γ > H.
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Parametric resonance: preheating

Bose enhancement changes the game. Take L ⊂ −1
2 gφ2χ2

χ̈k + 3Hχ̇k +

(
k2

a2
+ 2gφ2

)
χk = 0

Neglect the expansion (H = 0) and take φ(t) = Φ0sin(mt)

χ̈k +
[
k2 + gΦ2

0 sin2(mt)
]
χk = 0

An equation of the form ẋ = A(t)x , where A(t) is periodic,
A(t + T ) = A(t), has solutions of the form

x(t) = c1P(t)eµt + c2P(t)e−µt

where µ is called the Floquet exponent.
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Solid-state analogue

In crystals the potential is periodic in space V (~x) = V (~x + ~x0)

⇓

The Schroedinger equation has solutions ψ(x) ∝ eµx

leading to bands and band-gapsBand structure introduction, Andreas Wacker, Lund University, November 20, 2018 6

Figure 4: Left: Brillouin zone for the fcc lattice. Right: Sketch of band structure for silicon
[after J.R. Chelikowsky and M.L. Cohen, Phys. Rev B 10, 5095 (1974)]. The figures are based
on files from Wikimedia Commons [Original files: Brillouin Zone (1st, FCC), public domain;
Band structure Si schematic, CC-BY-SA Cepheiden.]

for a macroscopic net charge due to the Coulomb repulsion. Thus the total number of electrons
must match the charges of the nuclei. This rule provides the Fermi energy for a given crystal.

Example: We consider a (hypothetical) one-dimensional chain of Lithium atoms regularly
spaced by a. Each Li-nucleus has a positive charge 3e and thus three electrons per period are
required for charge neutrality. Thus the band n = 1 is entirely filled and band n = 2 is half
filled. The corresponding Fermi energy is indicated in Fig. (2).

Exercise 3: Consider a chain of Lithium atoms, where each second atom is moved by a small
amount � to the right, so that the spacings are in turns given by a +� and a��. Determine
the period and the range of k values in terms of a. Sketch the band structure qualitatively and
indicate the location of the Fermi energy.

The location of the Fermi energy with respect to the band structure is crucial for the optical and
electrical properties of the crystal. If the Fermi energy is located within one band (or several
overlapping bands), the solid is a metal. If on the other hand the Fermi energy is located in a
band gap between the uppermost entirely filled band (the valence band) and the next entirely
empty band (the conduction band), the material is either a semiconductor or an insulator (for
larger band gaps), where the di↵erentiation is however not sharp.

Note that the presence of extra charges, such as replacing some atoms by others with a di↵erent
nuclear charge (doping) or electric potentials at interfaces (e.g. field e↵ect transistors) allow
for a (slight) manipulation of the total number of electrons. While the corresponding change
in Fermi energy is negligible for metals, in semiconductors any extra electron occupies the
conduction band, while any missing electron provides an empty state (called hole) in the valence
band. Thus the conductivity of semiconductors can be easily modified, which is the basis for
most electronic applications of these materials.
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Floquet charts

We can read off the regions
where the Floquet chart

leads to amplification
χk(t) ∼ eµk t .

Kofman, Linde, Starobinsky [9704452]

Exponentially growing
mode-function
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Non-adiabaticity

χ̈+ ω2(t)χ = 0

For ω2 � 1/T and ω̇
ω2 � 1

χ ' 1√
ω

exp

[
±i

∫
ωdt

]

When the adiabaticity
condition is violated,

we get a sudden
burst of particle production.

Adiabaticity violation:
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Expanding Universe

χ̈k + 3Hχ̇k +

(
k2

a2
+ 2gφ2

)
χk = 0

Stochastic resonance:
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Quantitative differences and qualitative similarities
⇒ Floquet theory is still useful
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Anticipating upcoming data

The time of horizon-exit is being constrained,
begging for a better understanding of reheating.
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General Model-building

At high energies, we expect

multiple fields and

more complicated couplings, e.g.
L ⊂ f (φ)(∂χ)2 + f̃ (χ)(∂φ)2

leading to interesting inflationary dynamics.

Figure 2: The figure shows schematically the relation between the tangent vector T a, the normal vector Na and

the radius of curvature .

T a, Na and the radius of curvature . Using (2.10) and comparing the last two equations we

find the following relation between  and ⌘?:

�1 =
H|⌘?|
�̇0

. (2.21)

By definition any geodesic curve �(�0) in M satisfies the relation D�̇a/dt / �̇a, which cor-

responds to the case �1 = 0, or alternatively, to the case ⌘? = 0. Thus, we see that the

dimensionless parameter ⌘? is a useful quantity that parameterises the bending of the inflation-

ary trajectory with respect to geodesics in M. It is interesting to rewrite the previous relation

by replacing �̇0 =
p

2✏HMPl coming from the definition of ✏ presented in (2.15). One obtains:

|⌘?| =
p

2✏
MPl


. (2.22)

Then, if the radius of curvature is such that ⌧MPl, one already sees that ⌘2
? � 2✏. We shall

come back to this result later when we study curved trajectories in the slow-roll regime ✏ ⌧ 1.

To continue, we may further characterise the variation of Na as:

DNa

dt
= H⌘?T a +

1

H⌘?
P abr�Vb , (2.23)

where we have defined the projector tensor P ab ⌘ �ab�T aT b�NaN b along the space orthogonal

to the subspace spanned by the unit vectors T a and Na. That is, PabN
b = 0 and PabT

b = 0.

Details on how to obtain the previous relation can be found in Appendix A. Observe that in the

8

During inflation, field-space features
received significant attention (van Tent
et al 2003, Achucarro et al 2010, ...).

Recent novel trajectories supported by
field-space curvature reveal interesting
connections to the Swampland program

(a whole other talk !)
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“Family tree” of this work

inflation (80’s)

⇓

preheating (late 90’s)

⇓

field-space effects (2000’s - ...)

⇓

Higgs inflation (2008) + α-attractors (2010’s)

⇓

Field-space effects in multi-field preheating,
focusing on Higgs(-like) inflation & α-attractors
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Hyperbolic manifolds & α-attractors

Hyperbolic space on
an “Escher disk” 5

sented by the Escher’s picture Circle Limit IV, see Fig. 5.
The boundary circle (which is not part of the hyperbolic
plane) is called the absolute. One can place an infinite
amount of angels and devils, of the size which looks decreas-
ing, towards the boundary in this circle, as Escher did. How-
ever, in fact, the correct understanding of hyperbolic geom-
etry means that the angels and devils close to the boundary
are of the same ‘physical’ size as the ones near the centrum
of the circle. How do we explain this? As always in a curved
space the concept of a distance (or size) depends on the
geometry and there is a di↵erence between the coordinate
distance and physical distance.

The moduli space metric of these models, associated with
the kinetic term of the scalars field is

ds2 =
1

2

@�2

(1� �2

6↵ )2
=

dr2

(1� r2

3↵ )2
. (4.6)

Here r = �/
p

2. It may be viewed as a slice at a fixed angular
direction of the 2d metric of the Poincaré disk:

ds2 =
dr2 + r2d✓2

(1� r2

3↵ )2
, r2 < 3↵ . (4.7)

A Poincaré disk is a space with a constant negative curva-
ture RH2 = � 2

3↵ . At ✓=const this is a slice of the Escher’s
picture, at fixed angular direction. Note that the physical
distance on the hyperbolic disk is

d⇢ =
dr

1� r2

3↵

. (4.8)

When ⇢ ! 1, r ! 3↵, towards the absolute, towards the
boundary. When ✓ is not fixed (not stabilized by a dynam-
ical mechanism during the cosmological evolution) the su-
pergravity ↵-attractor models actually have a kinetic term
for scalars presenting a Poincaré disk model of a hyperbolic
geometry in eq. (4.7), as we will show in a more technical
Sec. 5.

At this point a cosmologist might ask a question: why do
we have to start with the complicated inflaton kinetic term
shown in (3.2), (3.5) which we call here a moduli space? A
simple answer to this question is: we have assumed that our
↵-models have a certain symmetry, called Möbius symmetry.
It is a generic symmetry of superconformal theories. We
show the picture associated with this symmetry, in Fig. 6,
Escher’s type picture of Circle Limit III.

5. RELATION TO NEGATIVELY CURVED
3-GEOMETRIES IN FRW METRIC

It is important to stress here that the metric of the moduli
space in (3.2), where the scalar fields are coordinates of the
manifold, is not a metric of the space-time. In (4.6) we name

the coordinate r instead of �/
p

2 only for the purpose of
inviting an intuition gained in general relativity with regard

FIG. 6. A computer generated picture inspired by Escher’s picture Cir-
cle Limit III http://www.math-art.eu/Documents/pdfs/Dunham.pdf.
It presents a Poincaré disk model of a hyperbolic geometry. The sym-
metries of the geometry are shown here via configuration of fishes and
how these configurations are mapped into other parts of a space. Math-
ematically, we will explain the symmetry in Sec. 7.

to space-time geometry, to be used for the geometry of the
moduli space, where coordinates are scalar fields.1

In fact, the space of a constant negative curvature,
which is a Poincaré disk model of a hyperbolic geom-
etry, reminds the 3d slice at constant time of the fa-
miliar FWR geometry in case of the open universe with
k = �1. It is known that the 2d slice of the open
FRW universe is related to Escher’s picture Circle Limit
IV, see for example the cosmology lecture by L. Susskind
https://www.youtube.com/watch?v=H3D5HGZIP4s where
after the 59 minutes into the class, the relation to Escher
paintings is explained. Observationally at present our 3d ge-
ometry is very close to flat with k = 0. The corresponding
parameter ⌦K is given by [2],

⌦K = 0.000 ± 0.005 . (5.9)

It appears that at present there is no indication that in our
universe with the FWR model there is a negatively curved
3-geometry. However, more precise observations will take
place in the future.

Meanwhile, the ↵-models suggest a possibility of mea-
suring the value of the curvature of a negatively curved 2-
geometry not of a FWR model of a space and time but of the
moduli space of scalars, which form a non-trivial geometry.

1 The importance of moduli spaces of a constant negative curvature
in type IIA compactification of string theory for constructions of de
Sitter vacua and cosmological inflationary models was stressed in
[45].

L =
α

2

(∂r)2 + r 2(∂θ)2

(1− r 2)2
+ V (r , θ)

=
1

2
(∂Φ)2 + Ṽ (Φ) + [...θ...]

where

V (r) =
1

2
m2r 2+...⇒ Ṽ (Φ) ∼ tanh2(Φ/

√
α)+...

α-attractors lead to
“universal” predictions

ns ' 1− 2

N
, r ' 12α

N2 -10 -5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

ϕ / α1/2

V
(ϕ
)
/α
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α-attractors and geodesics

String theory
compactifications:
Fibre inflation

Supergravity,
e.g. E- and T-model

3.3 Comparison with other models

Fibre Inflation, as well as the original Kähler [18] and polyinstanton [19] inflation scenarios,

can be seen as stringy realisations of a general class of potentials of the form V ⇠ V0 �
V1 e�(�/f)n

+ · · · ; and (as argued earlier) because this class includes exponential potentials it

also includes the Starobinsky model and what have come to be called ‘↵-attractors’. Models

in this class with n = 1 have V 0 ⇠ V 00 and so ✏ ⇠ ⌘2 which gives the r-ns relation:

r = 3↵ (ns � 1)2 , (3.40)

with ↵ given as in the introduction in terms of f/Mp. Models with larger n do not quite so

simply relate V 0 and V 00, but usually predict smaller values for r. Fig. 3.3 — adapted from

[49] — plots these predictions in the r-ns plane, showing the range of r that would have to

be probed to distinguish several benchmark models.

Figure 3: Fibre inflation fits in the ↵ attractors class of models corresponding to ↵ = 2 and can be

seen as a stringy realisation of ↵ attractors (figure adapted from [49]). Other string scenarios such

as Kähler moduli inflation and Poly-instanton inflation are also in this class but with much smaller

values of r and then unobservable tensor modes.

Stringy realisations identified to date only cover a relatively small range of values of ns

and r in this plot, since arbitrary values of ↵ are not (yet) available from string constructions.

So far two general classes of stringy models have emerged: in one r is essentially zero and

never within observational reach; for the other — which includes Fibre Inflation [17] (for

which ↵ = 2 and r is predicted to be r ⇠ 6 ⇥ 10�3) — fits precisely in the observationally

interesting region that will be testable in the next few years. Observation of tensor modes

(and the measurement of r) could therefore provide a good way to distinguish amongst the

various proposals.

– 23 –

Burgess et al. 2016

“Usual” behavior for m2 > 0 & m2 < 0

Geodesics diverge, similarly to a m2 < 0
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Equations of motion

Background fields:

Dt φ̇
I + 3Hφ̇I + GIKV,K = 0

where DtA
I ≡ ȦI for our choice of variables

Fluctuations:

Q̈ I
k + 3HQ̇ I

k +

[
k2

a2
δIJ +MI

J

]
Q I

k = 0

where

MI
J = GIKDJDKV−RI

LMJ φ̇
Lφ̇M− 1

M2
Pla

3
Dt

(
a3

H
φ̇I φ̇J

)

Evangelos Sfakianakis Field-space Surprises in Preheating 26/41



Effective Mass-squared: Ingredients

For motion along a single-field attractor φ,
quantization is simple for the second field χ

χ̈k + 3Hχ̇k

(
k2

a2
+ m2

eff,χ

)
χk = 0

m2
eff,χ ' m2

1,χ + m2
2,χ

m2
1,χ ≡ GχK (DχDKV ) ←→ potential gradient− “traditional” mass

m2
2,χ ≡

1

2
Rφ̇2 ←→ non-trivial field-space manifold
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α-attractors: the two-field T-model

Complex fields in supergravity lead to the 2-field Lagrangian

L = −1

2

(
∂µχ∂

µχ+ e2b(χ)∂µφ∂
µφ
)
− V (φ, χ)

For single-field motion χ = 0

V (φ, χ = 0) = µ2α
∣∣∣tanh(φ/

√
6α)
∣∣∣
2

The field-space Ricci scalar is

R = − 4

3α

Smaller α ⇒ highly curved manifold -10 -5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

ϕ / α1/2

V
(ϕ
)
/α
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Lattice simulations

Figure 4: The evolution of the barotropic parameter w for ↵ = 10�4 based on single-field
(left panel) and two-field (right panel) simulations. N is the number of e-folds after the
end of inflation. The dashed line on the right plot signifies the point when the artificial
upper bound on the field values and their canonical momenta is imposed for the first
time.

Figure 5: The power spectrum of the spectator perturbations for ↵ = 10�3 (left panel)
and ↵ = 10�4 (right panel) for di↵erent number of e-folds N after the end of inflation.

4.2 Results

Lattice simulations of preheating for a single field ↵-attractor T-models (i.e. without the
perturbations of �) have been already performed by the authors of Ref. [9]. As one of the
tests of our code, we repeated these simulations and our results are in agreement with
those shown in [9]. We show the plot of barotropic parameter w coming from single-field
simulations for n = 3

2 and ↵ = 10�4 on the left panel in Figure 4. We can see that
even with no spectator included the inhomogeneities become significant after less than
one and a half e-fold after the end of inflation, since the computed parameter w exceeds
considerably the value 0.2 characteristic for the homogeneous solution in this case. After
about 2 e-folds w approaches the radiation domination value 1/3.

If perturbations of the inflaton become so important in single-field simulations, it
is quite reasonable to expect, that the more strongly amplified perturbations of the
spectator may be the main force that drives the Universe towards a radiation-like state.
Indeed, in two-field simulations, the growth of spectator perturbations for the values
of parameters that gave e↵ective reheating in the single-field case is so strong that we

10

Lattice simulations
(Krajewski et al, 2018)

showed
very efficient preheating

for α� 1

Figure 6: Real-space amplitude of the spectator perturbations for ↵ = 10�3 for N = 0.2
(left panel) and N = 1.29 (right panel) e-folds after the end of inflation.

typically run into significant numerical instabilities. We handle this problem by imposing
artificial upper bounds on field values and their associated canonical momenta. This
happens already around 0.2 e-folds after the end of inflation. The physical significance of
any results obtained after this bound was first imposed cannot be fully trusted. However
for earlier times, our determination of the barotropic parameter w is physically relevant
and we are allowed to conclude that tachyonic instability of the spectator causes a very
fast growth of the barotropic parameter just after the end of inflation. In this sense,
reheating may be completed much faster than it follows from single-field simulations.

The growth of spectator perturbations can be investigated further with Fourier anal-
ysis. In Figure 5, we show the plots of the power spectrum of the spectator field for
di↵erent moments after the end of inflation for ↵ = 10�3 and ↵ = 10�4. The strong
growth of modes which fall into Floquet instability bounds is clearly visible. After initial
growth these modes backreact and cause the growth of modes with larger wavenumber k.
The obtained initial growth of small-k modes is consistent with the approximation ob-
tained from the linear Floquet analysis 1. The fact that the growth of these modes is
faster for ↵ = 10�4 then for ↵ = 10�3 can be easily understood, since the smaller ↵ is,
the stronger tachyonic instability the spectator exhibits.

A gradual growth of higher frequency modes cannot be predicted by the Floquet
theory, since it is a purely nonlinear e↵ect. However, this e↵ect plays a very important
role in reheating, since it leads to the fragmentation of fields. This fragmentation can
be very clearly seen in three-dimensional plots of the spectator amplitude shown in Fig-

1For a back-of-the-envelope estimate, we can consider as an example values of the spectator power
spectrum for ↵ = 10�4 and ke↵ = 60M2/MP at two di↵erent moments: N = 0.01, N = 0.09 efolds after
inflation. Then from the Floquet analysis, we obtain:

|�N=0.09|2
|�N=0.01|2

⇡
 

exp

✓
hµkeff i

�N

H

◆!2

⇡ exp

✓
25

M2

MP

p
3
MP

M2
· 0.08 · 2

◆
⇡ 103 (23)

This value is in agreement with results shown on the right panel in Figure 5.
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Effective frequency
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= −O(1)

During each background oscillation
the χ field undergoes tachyonic amplification.

⇒ Preheating is faster for larger curvature.
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Higgs(-like) inflation
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The Standard Model Higgs boson as the inflaton
Fedor Bezrukov a,b, Mikhail Shaposhnikov a
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Abstract

We argue that the Higgs boson of the Standard Model can lead to inflation and produce cosmological perturbations in accordance
with observations. An essential requirement is the non-minimal coupling of the Higgs scalar field to gravity; no new particle
besides already present in the electroweak theory is required.

Key words: Inflation, Higgs field, Standard Model, Variable Planck mass, Non-minimal coupling
PACS: 98.80.Cq, 14.80.Bn

1. Introduction

The fact that our universe is almost flat, homoge-
neous and isotropic is often considered as a strong
indication that the Standard Model (SM) of elemen-
tary particles is not complete. Indeed, these puzzles,
together with the problem of generation of (almost)
scale invariant spectrum of perturbations, necessary for
structure formation, are most elegantly solved by in-
flation [1, 2, 3, 4, 5, 6]. The majority of present mod-
els of inflation require an introduction of an additional
scalar—the “inflaton”. This hypothetical particle may
appear in a natural or not so natural way in different
extensions of the SM, involving Grand Unified The-
ories (GUTs), supersymmetry, string theory, extra di-
mensions, etc. Inflaton properties are constrained by the
observations of fluctuations of the Cosmic Microwave
Background (CMB) and the matter distribution in the
universe. Though the mass and the interaction of the in-
flaton with matter fields are not fixed, the well known
considerations prefer a heavy scalar field with a mass
∼ 1013 GeV and extremely small self-interacting quar-

Email addresses: Fedor.Bezrukov@epfl.ch (Fedor
Bezrukov), Mikhail.Shaposhnikov@epfl.ch (Mikhail
Shaposhnikov).

tic coupling constant λ ∼ 10−13 [7]. This value of the
mass is close to the GUT scale, which is often con-
sidered as an argument in favour of existence of new
physics between the electroweak and Planck scales.

The aim of the present Letter is to demonstrate that
the SM itself can give rise to inflation. The spectral
index and the amplitude of tensor perturbations can be
predicted and be used to distinguish this possibility from
other models for inflation; these parameters for the SM
fall within the 1σ confidence contours of the WMAP-3
observations [8].

To explain our main idea, consider Lagrangian of the
SM non-minimally coupled to gravity,

Ltot = LSM − M2

2
R − ξH†HR , (1)

where LSM is the SM part, M is some mass parameter,
R is the scalar curvature, H is the Higgs field, and ξ is an
unknown constant to be fixed later. 1 The third term in
(1) is in fact required by the renormalization properties
of the scalar field in a curved space-time background
[9]. If ξ = 0, the coupling of the Higgs field to gravity
is said to be “minimal”. Then M can be identified with
Planck scale MP related to the Newton’s constant as

1 In our notations the conformal coupling is ξ = −1/6.

Preprint submitted to Elsevier 4 December 2007

L ⊂ 1

2
M2

PlR →
1

2
M2

PlR + ξH†HR ∼ 1

2
M2

PlR + ξh2R

The conformal transformation from
the Jordan to the Einstein frame
leads to a flat potential.
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Multiple fields necessarily lead to

L ⊂ GIJ∂µφI∂µφJ → Rfield−space

ns ' 1− 2

N
, r ' 12

N2
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Higgs-like inflation

SJordan =

∫
d4x

√
−g̃

[
f (φI )R̃ − 1

2
δIJ g̃µν∂µφ

I∂νφ
J − Ṽ (φI )

]

⇓ gµν(x) ∝ f (φI (x)) g̃µν(x) ⇓ f (φI ) ⊂ ξφ2

SEinstein =

∫
d4x
√−g

[
M2

Pl

2
R − 1

2
GIJgµν∂µφ

I∂νφ
J − V (φI )

]

1
2GIJ∂µφI∂µφJ leads to a locally curved manifold.

The potential has flat directions, where inflation proceeds.
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Non-minimal couplings and multiple fields

Non-minimal couplings L ⊂ ξφ2R are expected at high energies.
How does their existence affect multi-field models?

Kaiser & EIS 2014

Non-minimal couplings lead to
strong single-field attractors

Robust Starobinsky-like predictions

Evangelos Sfakianakis Field-space Surprises in Preheating 33/41



Effective Mass-squared reminder

χ̈k + 3Hχ̇k +

(
k2

a2
+ m2

eff,χ

)
χk = 0 m2

eff,χ ' m2
1,χ + m2

2,χ

m2
1,χ ≡ GχK (DχDKV ) ←→ potential gradient− “traditional” mass

m2
2,χ ≡

1

2
Rφ̇2 ←→ non-trivial field-space manifold

The field-space Ricci R
“spikes” at the origin.
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Effective Mass-squared for χ fluctuations

ξ = 0.1� 1 ξ = 10

���×��� ���×��� ���×��� ���×��� ���×���
�

���

����

����

����

����

����

�����χ
�/��

������ ������ ������ ������
�

����

����

����

����

�����χ
�/��

m2
eff ≈ m2

1 + m2
2 + m3

3

m2
eff ≈ potential + fieldspace + metric
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Effective Mass-squared: ξ � 1

An “unusual” way for adiabaticity violation for m2
2,χ ∝ Rφ̇2

������ ������ ������ ������ ������ ������
�

�����

������

������

������

������

������

�����χ
�/��

We define

A ≡ Ω′

Ω2

where

Ω2 = k2 + a2m2
eff,χ

Adiabaticity is violated for Ω′ � Ω2, rather than Ω ≈ 0.

A broad range of wavenumbers is excited k . ξHend
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Linear analysis (VERY briefly)

ξ = 0 ξ = 10 ξ = 100

Dense instability bands hint at
efficient particle production

Need for
lattice simulations
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Lattice results

Linear ξϕ=10

Lattice ξϕ=10

Linear ξϕ=100

Lattice ξϕ=100
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|� Non-minimal couplings

quickly lead to a
thermal radiation bath

while preserving
CMB predictions
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Energy transfer and e.o.s.

(A) ξϕ=1

(A) ξϕ=10

(A) ξϕ=100

(B) ξϕ=1

(B) ξϕ=10

(B) ξϕ=100
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We see complete preheating
and a quick approach to radiation dominated expansion
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Finally: Higgs inflation

Higgs inflation is a multi-field non-minimally coupled model with
known SM couplings ⇒ the inflaton decays into W, Z bosons.

mspike ∼ ξHend

mB ∼
105

√
ξ

Hend

For ξ & 103 preheating completes
within ONE oscillation
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Thank you . . .
Planck Collaboration: Constraints on Inflation
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Fig. 8. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck alone and in combination with
BK14 or BK14 plus BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized
joint 68 % and 95 % CL regions assume dns/d ln k = 0.

limits obtained from a ⇤CDM-plus-tensor fit. We refer the inter-
ested reader to PCI15 for a concise description of the inflationary
models studied here and we limit ourselves here to a summary
of the main results of this analysis.

– The inflationary predictions (Mukhanov & Chibisov 1981;
Starobinsky 1983) originally computed for the R2 model
(Starobinsky 1980) to lowest order,

ns � 1 ' � 2
N
, r ' 12

N2 , (48)

are in good agreement with Planck 2018 data, confirm-
ing the previous 2013 and 2015 results. The 95 % CL al-
lowed range 49 < N⇤ < 58 is compatible with the R2 ba-
sic predictions N⇤ = 54, corresponding to Treh ⇠ 109 GeV
(Bezrukov & Gorbunov 2012). A higher reheating temper-
ature Treh ⇠ 1013 GeV, as predicted in Higgs inflation
(Bezrukov & Shaposhnikov 2008), is also compatible with
the Planck data.

– Monomial potentials (Linde 1983) V(�) = �M4
Pl (�/MPl)p

with p � 2 are strongly disfavoured with respect to the
R2 model. For these values the Bayesian evidence is worse
than in 2015 because of the smaller level of tensor modes
allowed by BK14. Models with p = 1 or p = 2/3
(Silverstein & Westphal 2008; McAllister et al. 2010, 2014)
are more compatible with the data.

– There are several mechanisms which could lower the pre-
dictions for the tensor-to-scalar ratio for a given potential
V(�) in single-field inflationary models. Important exam-
ples are a subluminal inflaton speed of sound due to a non-
standard kinetic term (Garriga & Mukhanov 1999), a non-
minimal coupling to gravity (Spokoiny 1984; Lucchin et al.

1986; Salopek et al. 1989; Fakir & Unruh 1990), or an ad-
ditional damping term for the inflaton due to dissipation in
other degrees of freedom, as in warm inflation (Berera 1995;
Bastero-Gil et al. 2016). In the following we report on the
constraints for a non-minimal coupling to gravity of the type
F(�)R with F(�) = M2

Pl + ⇠�
2. To be more specific, a quartic

potential, which would be excluded at high statistical signif-
icance for a minimally-coupled scalar inflaton as seen from
Table 5, can be reconciled with Planck and BK14 data for
⇠ > 0: we obtain a 95 % CL lower limit log10 ⇠ > �1.6 with
ln B = �1.6.

– Natural inflation (Freese et al. 1990; Adams et al. 1993) is
disfavoured by the Planck 2018 plus BK14 data with a Bayes
factor ln B = �4.2.

– Within the class of hilltop inflationary models
(Boubekeur & Lyth 2005) we find that a quartic poten-
tial provides a better fit than a quadratic one. In the quartic
case we find the 95 % CL lower limit log10(µ2/MPl) > 1.1.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; Garcı́a-Bellido et al. 2002) provide a good fit to
Planck and BK14 data for a large portion of their parame-
ter space.

– For the simple one parameter class of inflationary potentials
with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
2009) we find ln B = �1.0.

– Planck 2018 data strongly disfavour the hybrid model driven
by logarithmic quantum corrections in spontaneously broken
supersymmetric (SUSY) theories (Dvali et al. 1994), with
ln B = �5.0.

18

Understanding preheating in major plateau models
reduces theoretical error-bars of the ns − r plot

& allows for comparison of Higgs inflation models
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