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SM: Fantastically successful, glaringly incomplete
mh = 125 GeV

ATLAS, Phys. Lett. B 784 (2018); 1806.00242

SM-like couplings

ATLAS, Phys. Rev. D 101 (2020); 1909.02845
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SM: Fantastically successful, glaringly incomplete

▶ Origin of EW scale?
▶ Dark matter?
▶ Strong CP violation?
▶ Baryogenesis?

▶ Patterns of fermion masses?
▶ Why three generations?
▶ Why one Higgs doublet?

Beyond the Standard model?

• How well do we understand gauge theory dynamics?

• i.e. given a theory, how does it look like at large length scales?

• i.e. what is its vacuum phase?
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The bedrock: QCD vacuum

’QCD lite’:
L = −1

4(F
a
µν)

2 + q̄L(i /D)qL + q̄R(i /D)qR.

▶ Gc = SU(3) gauge, Nf = 3 massless Dirac fermions.
▶ Asymptotic freedom. Weak coupling at short distances.
▶ G = SU(3)L × SU(3)R × U(1)V global symmetry.
▶ Vacuum condensate, strong coupling at large distances:

⟨q̄F
LqF′

R ⟩ ∼ ∆δFF′

breaks G to SU(3)V × U(1)V. Approximation for QCD with 3 light flavors.
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The bedrock: QCD vacuum

Vacuum spectrum with 2+1 flavors:

Aoki et al. (2009) Phys. Rev. D73, Durr et al. (2008) Science 322.

6 / 28



The bedrock: QCD vacuum
In QCD all bits fall nicely together, but what happens for other Gc and G?

We will focus on:
▶ Gc =SU(Nc).
▶ Nf massless Dirac fermions
▶ in single representation R of Gc.

and aim to determine the vacuum phase as a function of Nc, Nf and R.

First, seek guidance from perturbation theory.
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Nf -dependence: Small Nf

Strongly coupled in IR, asymptotically free in UV:

Aoki et al. (2009) Phys. Rev. D73

g2

β

Small Nf
β0 > 0,β1 > 0
Confining,χSB

QCD-like

β(g) = − β0
(4π)2 g3 − β1

(4π)4 g5 + . . .
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Nf -dependence: Large (enough) Nf

The beta function:

β(g) = µ
dg
dµ = − β0

(4π)2 g3 − β1
(4π)4 g5 + . . . , β0 =

11
3 C2(G)−

4
3T(R)Nf,

Interplay between screening (matter) and antiscreening (gauge).

e.g. R =Fund.: β0 = 11
3 Nc − 2

3Nf, so asymptotic freedom is lost above Nas
f = 11

2 Nc.

QED-like for Nf > Nas
f

V(r) ∼ 1
r ln(rΛUV)

.

g2

β

Large Nf
β0 < 0,β1 < 0

Asymptotic freedom lost
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Nf -dependence: Intermediate Nf
The beta function: β(g) = µ dg

dµ = − β0
(4π)2 g3 − β1

(4π)4 g5 + . . . ,

β0 =
11
3 C2(G)−

4
3T(R)Nf, β1 =

34
3 C2

2(G)−
20
3 C2(G)T(R)Nf − 4C2(R)T(R)Nf.

β0 > 0 and β1 < 0 between

Nas
f =

11C2(G)
4T(R) > Nf >

34C2(G)2

(20C2(G) + 12C2(R))T(R)
= N∗

f .

⇒ fixed point g2
∗ = −

β0
β1
(4π)2,

g2

β

IRFP

Intermediate Nf
β0 > 0,β1 < 0

Conformal, Scale Invariant

10 / 28



Nf -dependence: Intermediate Nf
The beta function: β(g) = µ dg

dµ = − β0
(4π)2 g3 − β1

(4π)4 g5 + . . . ,

β0 =
11
3 C2(G)−

4
3T(R)Nf, β1 =

34
3 C2

2(G)−
20
3 C2(G)T(R)Nf − 4C2(R)T(R)Nf.

β0 > 0 and β1 < 0 between

Nas
f =

11C2(G)
4T(R) > Nf >

34C2(G)2

(20C2(G) + 12C2(R))T(R)
= N∗

f .

⇒ fixed point g2
∗ = −

β0
β1
(4π)2,

g2

β

IRFP

Intermediate Nf
β0 > 0,β1 < 0

Conformal, Scale Invariant

10 / 28



Nf -dependence: Intermediate Nf
The beta function: β(g) = µ dg

dµ = − β0
(4π)2 g3 − β1

(4π)4 g5 + . . . ,

β0 =
11
3 C2(G)−

4
3T(R)Nf, β1 =

34
3 C2

2(G)−
20
3 C2(G)T(R)Nf − 4C2(R)T(R)Nf.

β0 > 0 and β1 < 0 between

Nas
f =

11C2(G)
4T(R) > Nf >

34C2(G)2

(20C2(G) + 12C2(R))T(R)
= N∗

f .

⇒ fixed point g2
∗ = −

β0
β1
(4π)2,

g2

β

IRFP

Intermediate Nf
β0 > 0,β1 < 0

Conformal, Scale Invariant
10 / 28



Nf -dependence

Estimate the onset of chiral symmetry breaking by the gap equation:

α ≥ αc =
π

3C2(R)
. Appelquist & Terning, (1996) PRL77.

Compare with α∗ = g2
∗/(4π2) to determine the lower boundary of the conformal window:

αc ≥ α∗ ⇒ Ncrit
f =

(66C2(R) + 17C2(G))C2(G)
10T(R)(3C2(R) + C2(G))

Only few relevant representations: R = F, G, 2S and 2AS.
F. Sannino & K. Tuominen, (2005) Phys. Rev. D71
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Nf and R dependence

2 3 4 5
Nc

5

10

15

Nf

2 3 4 5
Nc

1

2

3

4

Nf

▶ Left: R = F (purple) and R = 2AS (cyan)

▶ Right: R = G (green) and R = 2S (magenta)

▶ Upper boundary, β0 = 0, Dashed: β1 = 0
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Motivations: summary
▶ SU(Nc) dynamics at strong coupling?
▶ Draw phase diagrams with ink.
▶ Phenomenology motivation: light composite Higgs from near conformal dynamics.
▶ Phenomenology motivation: composite dark sectors.

g2

β

IRFP

QCD-like

QED-like

Walking
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Motivations: summary

g2

β

IRFP

QCD-like

QED-like

Walking

▶ Lower boundary of conformal window at strong coupling: first principle methods.

▶ Established a new field: Lattice-BSM.

▶ Currently an international effort involving O(50− 100) scientists.
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Lattice: general remarks
Compute observables: ⟨O⟩ =

∫
[dϕ]Oe−S.

Discretize spacetime, generate field configurations to evaluate the path integral.

▶ Hypercubic grid, lattice spacing a.
▶ Extrapolate a→ 0.
▶ Lattice size

(L
a
)4, L = 10, 20, . . .

▶ Computational grand challenge.

▶ Gauge fields → ”link variables” Uµ(x) = exp iaAµ(x).
▶ Fermions: many realizations. We will consider Wilson fermions.
▶ Lots of methodology/ intuition developed for QCD over past 30+ years. 15 / 28



Lattice: action

t=0, U=1, ψ=0

t=L, U=1, ψ=0

periodic

periodic

L

a

▶ HEX-smearing and mixing: cg
▶ Chiral limit: tune m0.
▶ Clover improvement: csw = 1.

The ”plaquette” action: (β = 2Nc/g2
0)

SG=β
∑
□

(1−1
2Tr□(x)) ∼ 1

4g2
0

∑
x

∑
µ>ν

a4F2
µν +O(a2)

Wilson fermion action: SF=a4
∑
Nf

∑
x
(ψ̄(iD+m0)ψ︸ ︷︷ ︸

O(a) lattice artifacts

Clover: SSW =
∑

Nf

∑
x

ai
4 cswψ̄σµνFµνψ

S=(1−cg)SG(U)+cgSG(V)+SF(V) +SSW(V)

16 / 28



Lattice: challenges ahead
We aim to measure the coupling. This can be a very different task than in QCD.

Coupling is large here

But small here

QCD

▶ Precocious onset of as.
freedom:

1
g2(s)−

1
g2(1) = − β1

8π2 ln(s)

▶ s = L/L0 = µ0/µ = 10 to
get from weak (0.1 fm) to
strong (1 fm) coupling.

▶ Access by L = 20− 40.
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.1

0.2

0.3

0.4

ln(L0 /L)

1

g2
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Lattice: challenges ahead
We aim to measure the coupling. This can be a very different task than in QCD.

Coupling is large here

and here

IRFP?

▶ A linear zero,

g2(µ)−g2
∗ = (g2(µ0)−g2

∗)

(
µ

µ0

)yg

▶ Need to learn to live at
strong coupling.

▶ Continuum limit?
0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.05

0.10

0.15

0.20

ln(L0 /L)

1

g2
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Lattice: Definition of the coupling

Using the gradient flow method:

∂tBt,µ = −δSYM
δB = Dt,µGt,µν ,

Gt,µν = ∂µBt,ν − ∂νBt,µ + [Bt,µ,Bt,ν ] .

B0,µ = Aµ ← the original gauge field

√
8t

▶ Introduce fictitious time coordinate t and evolve the gauge field
▶ Smoothens the initial gauge field within radius

√
8t

19 / 28



Lattice: Definition of the coupling

Using the gradient flow method:

⟨E(t)⟩ = 1
4 ⟨Gµν(t)Gµν(t)⟩

=
3(N2 − 1)g2

0
128π2t2 +O(g4

0) ,

g2
GF(µ) = N−1t2 ⟨E(t)⟩ |x0=L/2 , t=1/8µ2 ,

√
8t

▶ To make scale free of lattice artifacts and finite volume effects: µ−1 = cL (c ∼ 0.3).
▶ Evolve the flow equation to time t
▶ Coupling is at scale µ−1 =

√
8t

20 / 28



Lattice: Raw couplings, SU(2) with Nf = 6 & 8

8 10 12 16 18 20 24 30

L/a

0

3

6

9

12

15

18

21

24

27

30
g

2 G
F

Nf = 6

6 8 10 12 16 20 24 32

L/a

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

g
2 G

F

Nf = 8

▶ Different symbols/ colors: different values of β = 0.5 . . . 8
▶ Strong finite size effects on small lattices → Only use lattices of size 10 or bigger.
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Quantifying running: Step scaling idea

L=4 L=8

u=g2(β) u=g2(β′)

β

β

β′

β′

Σ(2, u, 1
4)=g2(β) Σ(2, u, 1

8)=g2(β′)

same

▶ Choose β = 4/g2
0 and L, measure u = g2

GF(L). Then choose stepsize s = 2.
▶ Double L, and measure Σ(u, 1/L) = g2

GF(sL). Take a bigger lattice, L′.
▶ Tune β′ such that g2

GF(L′) = u. Double the lattice and measure Σ(u, 1/L′) = g2
GF(sL′)

▶ Do for all lattice sizes, change u and repeat. (Difficult if running is slow!)
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Quantifying running: Step scaling theory
▶ Step scaling function in the lattice and continuum:

Σ(s, u, a/L) = g2
GF(g0, s

L
a )

∣∣∣∣
g2

GF(g0,
L
a )=u

, σ(u, s) = lim
a/L→0

Σ(u, s, a/L)

▶ Interpolate g2
GF(g0, L/a) for consistent u and do the limit as:

Σ(u, s, a/L) = σ(u, s) + c(u)(L
a )

−2

▶ At fixed point σ(u)/u = 1
▶ Related to beta function:

−2 ln(s) =
∫ √σ(u,s)

√u

dx
β(x) , β(g) ≃ g

2 ln(s)

(
1− σ(g2, s)

g2

)
▶ For Nf = 8 we use s = 2, Pairs: 8− 16 , 10− 20 , 12− 24 , 16− 32
▶ For Nf = 6 we use s = 1.5, Pairs: 8− 12 , 12− 18 , 16− 24 , 20− 30
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Lattice: Raw step scaling function

0 2 4 6 8 10 12 14 16 18 20 22 24
g2

GF

0.65

0.70

0.75
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3 2
)/

g
2 G

F

2− loop

3− loop MS

4− loop MS

L=8-12

L=12-18

L=16-24

L=20-30

Nf = 6
s = 3/2, c = 0.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13
g2

GF

0.76

0.80

0.84
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)/
g

2 G
F

2− loop

3− loop MS

4− loop MS

L=8-16
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L=12-24

L=16-32

Nf = 8
s = 2, c = 0.4
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Results: SU(2) gauge + Nf fundamental fermions

Nf = 6, V. Leino et al. (2018) Phys. Rev. D97
Slope of β(g): y∗g = 0.65

Nf = 8, V. Leino et al. (2017) Phys. Rev. D95
Slope of β(g): y∗g = 0.20
V. Leino et al. (2018) PRD 98

Nf = 2, 4 χsymmetry breaking, Nf = 10 has a fixed pointT. Karavirta et al. (2012) JHEP 05
25 / 28



Results: SU(2) gauge + 2 adjoint fermions
A. Hietanen, K. Rummukainen and K. Tuominen, (2009) Phys. Rev. D80

First observation of an IRFP in (non-susy) gauge theory. 26 / 28



Summary: drawing phase diagrams with ink
Fundamental:

2 3 4 5
Nc

5

10

15

Nf

Adjoint:

2 3 4 5
Nc

1

2

3

4

Nf

2-index symm.

2 3 4 5
Nc

1

2

3

4

Nf

(Compilation of results from several collaborations)

In addition: determination of anomalous dimensions γ∗q & yg and measurement of spectra.
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Outlook
Nf γ∗q SU(2) + adj.
1 0.72 Athenodorou et al. 2103.10485
2 0.2 Rantaharju et al. 1510.03335

Nf γ∗q SU(2)+fund.
6 0.283 Leino et al. Phys. Rev. D95 (2017)
8 0.15 Leino et al. Phys. Rev. D97 (2018)
10 0.08 Banks-Zaks

.

Nf γ∗q SU(3)+fund
10 1.10 Appelquist et al. 1204.6000
12 0.13 Appelquist et al. 0901.3766
13 0.197 Fodor et al. 1811.05024
16 0.03 Banks-Zaks

Some further TODOs:
▶ CW boundary:

▶ SU(3) Nf = 10 and Nf = 12
fundamentals.

▶ Nf = 2 adjoints for Nc > 2.
▶ Multiple fermion representations
▶ Non-asymptotically free theories

▶ SU(2)+24 (or 48) fundamentals
V. Leino et al. (2020) PRD101
J. Rantaharju et al (2021) PRD104

▶ Adding scalars, asymptotic safety?
Litim and Sannino, JHEP 12 (2014)
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