Vacuum Phases of Gauge Theories

10.03.2022, DIAS

Table of contents

1. Introduction \& Motivation
2. A brief review of lattice methods
3. Results from simulations
4. Summary \& Outlook

SM: Fantastically successful, glaringly incomplete

$$
m_{h}=125 \mathrm{GeV}
$$

SM-like couplings

[^0]
SM: Fantastically successful, glaringly incomplete

- Origin of EW scale?
- Dark matter?
- Strong CP violation?
- Baryogenesis?
- Patterns of fermion masses?
- Why three generations?
- Why one Higgs doublet?

Beyond the Standard model?

SM: Fantastically successful, glaringly incomplete

- Origin of EW scale?
- Dark matter?
- Strong CP violation?
- Baryogenesis?
- Patterns of fermion masses?
- Why three generations?
- Why one Higgs doublet?

Beyond the Standard model?

- How well do we understand gauge theory dynamics?
- i.e. given a theory, how does it look like at large length scales?
- i.e. what is its vacuum phase?

The bedrock: QCD vacuum

'QCD lite':

$$
\mathcal{L}=-\frac{1}{4}\left(F_{\mu \nu}^{a}\right)^{2}+\bar{q}_{L}(i \not D) q_{L}+\bar{q}_{R}(i \not D) q_{R}
$$

- $G_{c}=S U(3)$ gauge, $N_{f}=3$ massless Dirac fermions.
- Asymptotic freedom. Weak coupling at short distances.
- $G=S U(3)_{L} \times S U(3)_{R} \times U(1)_{V}$ global symmetry.
- Vacuum condensate, strong coupling at large distances:

$$
\left\langle\bar{q}_{L}^{F} q_{R}^{F^{\prime}}\right\rangle \sim \Delta \delta^{F F^{\prime}}
$$

breaks G to $S U(3)_{v} \times U(1)_{v}$. Approximation for QCD with 3 light flavors.

The bedrock: QCD vacuum

Vacuum spectrum with $2+1$ flavors:

Aoki et al. (2009) Phys. Rev. D73,

Durr et al. (2008) Science 322.

The bedrock: QCD vacuum

In QCD all bits fall nicely together, but what happens for other G_{c} and G ?

The bedrock: QCD vacuum

In QCD all bits fall nicely together, but what happens for other G_{c} and G ?

We will focus on:

- $G_{c}=\operatorname{SU}\left(N_{c}\right)$.
- N_{f} massless Dirac fermions
- in single representation R of G_{c}.

The bedrock: QCD vacuum

In QCD all bits fall nicely together, but what happens for other G_{c} and G ?

We will focus on:

- $G_{c}=\operatorname{SU}\left(N_{c}\right)$.
- N_{f} massless Dirac fermions
- in single representation R of G_{c}.
and aim to determine the vacuum phase as a function of N_{c}, N_{f} and R.

The bedrock: QCD vacuum

In QCD all bits fall nicely together, but what happens for other G_{c} and G ?

We will focus on:

- $G_{c}=\operatorname{SU}\left(N_{c}\right)$.
- N_{f} massless Dirac fermions
- in single representation R of G_{c}.
and aim to determine the vacuum phase as a function of N_{c}, N_{f} and R.

First, seek guidance from perturbation theory.

N_{f}-dependence: Small N_{f}

Strongly coupled in IR, asymptotically free in UV:

Aoki et al. (2009) Phys. Rev. D73

N_{f}-dependence: Large (enough) N_{f}

The beta function:

$$
\beta(g)=\mu \frac{d g}{d \mu}=-\frac{\beta_{0}}{(4 \pi)^{2}} g^{3}-\frac{\beta_{1}}{(4 \pi)^{4}} g^{5}+\ldots, \quad \beta_{0}=\frac{11}{3} C_{2}(G)-\frac{4}{3} T(R) N_{f},
$$

Interplay between screening (matter) and antiscreening (gauge).
e.g. $R=$ Fund.: $\beta_{0}=\frac{11}{3} N_{c}-\frac{2}{3} N_{f}$, so asymptotic freedom is lost above $N_{f}^{\text {as }}=\frac{11}{2} N_{c}$.

N_{f}-dependence: Large (enough) N_{f}

The beta function:

$$
\beta(g)=\mu \frac{d g}{d \mu}=-\frac{\beta_{0}}{(4 \pi)^{2}} g^{3}-\frac{\beta_{1}}{(4 \pi)^{4}} g^{5}+\ldots, \quad \beta_{0}=\frac{11}{3} C_{2}(G)-\frac{4}{3} T(R) N_{f},
$$

Interplay between screening (matter) and antiscreening (gauge).
e.g. $R=$ Fund.: $\beta_{0}=\frac{11}{3} N_{c}-\frac{2}{3} N_{f}$, so asymptotic freedom is lost above $N_{f}^{\text {as }}=\frac{11}{2} N_{c}$.

QED-like for $N_{f}>N_{f}^{\text {as }}$

$$
V(r) \sim \frac{1}{r \ln \left(r \Lambda_{\mathrm{UV}}\right)}
$$

N_{f}-dependence: Intermediate N_{f}

The beta function: $\beta(g)=\mu \frac{d g}{d \mu}=-\frac{\beta_{0}}{(4 \pi)^{2}} g^{3}-\frac{\beta_{1}}{(4 \pi)^{4}} g^{5}+\ldots$,

$$
\beta_{0}=\frac{11}{3} C_{2}(G)-\frac{4}{3} T(R) N_{f}, \quad \beta_{1}=\frac{34}{3} C_{2}^{2}(G)-\frac{20}{3} C_{2}(G) T(R) N_{f}-4 C_{2}(R) T(R) N_{f}
$$

N_{f}-dependence: Intermediate N_{f}

The beta function: $\beta(g)=\mu \frac{d g}{d \mu}=-\frac{\beta_{0}}{(4 \pi)^{2}} g^{3}-\frac{\beta_{1}}{(4 \pi)^{4}} g^{5}+\ldots$,

$$
\beta_{0}=\frac{11}{3} C_{2}(G)-\frac{4}{3} T(R) N_{f}, \quad \beta_{1}=\frac{34}{3} C_{2}^{2}(G)-\frac{20}{3} C_{2}(G) T(R) N_{f}-4 C_{2}(R) T(R) N_{f}
$$

$\beta_{0}>0$ and $\beta_{1}<0$ between

$$
N_{f}^{\text {as }}=\frac{11 C_{2}(G)}{4 T(R)}>N_{f}>\frac{34 C_{2}(G)^{2}}{\left(20 C_{2}(G)+12 C_{2}(R)\right) T(R)}=N_{f}^{*} .
$$

N_{f}-dependence: Intermediate N_{f}

The beta function: $\beta(g)=\mu \frac{d g}{d \mu}=-\frac{\beta_{0}}{(4 \pi)^{2}} g^{3}-\frac{\beta_{1}}{(4 \pi)^{4}} g^{5}+\ldots$,

$$
\beta_{0}=\frac{11}{3} C_{2}(G)-\frac{4}{3} T(R) N_{f}, \quad \beta_{1}=\frac{34}{3} C_{2}^{2}(G)-\frac{20}{3} C_{2}(G) T(R) N_{f}-4 C_{2}(R) T(R) N_{f}
$$

$\beta_{0}>0$ and $\beta_{1}<0$ between

$$
N_{f}^{\mathrm{as}}=\frac{11 C_{2}(G)}{4 T(R)}>N_{f}>\frac{34 C_{2}(G)^{2}}{\left(20 C_{2}(G)+12 C_{2}(R)\right) T(R)}=N_{f}^{*}
$$

\Rightarrow fixed point $g_{*}^{2}=-\frac{\beta_{0}}{\beta_{1}}(4 \pi)^{2}$,

N_{f}-dependence

Estimate the onset of chiral symmetry breaking by the gap equation:

$$
\alpha \geq \alpha_{c}=\frac{\pi}{3 C_{2}(R)} . \quad \text { Appelquist \& Terning, (1996) PRL77. }
$$

Compare with $\alpha_{*}=g_{*}^{2} /\left(4 \pi^{2}\right)$ to determine the lower boundary of the conformal window:

$$
\alpha_{c} \geq \alpha_{*} \Rightarrow N_{f}^{\text {crit }}=\frac{\left(66 C_{2}(R)+17 C_{2}(G)\right) C_{2}(G)}{10 T(R)\left(3 C_{2}(R)+C_{2}(G)\right)}
$$

N_{f}-dependence

Estimate the onset of chiral symmetry breaking by the gap equation:

$$
\alpha \geq \alpha_{c}=\frac{\pi}{3 C_{2}(R)} . \quad \text { Appelquist \& Terning, (1996) PRL77. }
$$

Compare with $\alpha_{*}=g_{*}^{2} /\left(4 \pi^{2}\right)$ to determine the lower boundary of the conformal window:

$$
\alpha_{c} \geq \alpha_{*} \Rightarrow N_{f}^{\text {crit }}=\frac{\left(66 C_{2}(R)+17 C_{2}(G)\right) C_{2}(G)}{10 T(R)\left(3 C_{2}(R)+C_{2}(G)\right)}
$$

Only few relevant representations: $R=F, G, 2 S$ and $2 A S$.

F. Sannino \& K. Tuominen, (2005) Phys. Rev. D71

N_{f} and R dependence

- Left: $R=F$ (purple) and $R=2 A S$ (cyan)
- Upper boundary, $\beta_{0}=0$, Dashed: $\beta_{1}=0$

N_{f} and R dependence

- Left: $R=F$ (purple) and $R=2 A S$ (cyan)
- Right: $R=G$ (green) and $R=2 S$ (magenta)
- Upper boundary, $\beta_{0}=0$, Dashed: $\beta_{1}=0$

Motivations: summary

- $\mathrm{SU}\left(N_{c}\right)$ dynamics at strong coupling?
- Draw phase diagrams with ink.
- Phenomenology motivation: light composite Higgs from near conformal dynamics.
- Phenomenology motivation: composite dark sectors.

Motivations: summary

- Lower boundary of conformal window at strong coupling: first principle methods.
- Established a new field: Lattice-BSM.
- Currently an international effort involving $\mathcal{O}(50-100)$ scientists.

Lattice: general remarks

Compute observables: $\langle\mathcal{O}\rangle=\int[d \phi] \mathcal{O} e^{-S}$.
Discretize spacetime, generate field configurations to evaluate the path integral.

- Hypercubic grid, lattice spacing a.
- Extrapolate $a \rightarrow 0$.
- Lattice size $\left(\frac{L}{a}\right)^{4}, L=10,20, \ldots$
- Computational grand challenge.
- Gauge fields \rightarrow "link variables" $U_{\mu}(x)=\exp$ ia $A_{\mu}(x)$.
- Fermions: many realizations. We will consider Wilson fermions.
- Lots of methodology/ intuition developed for QCD over past 30+ years.

Lattice: action

- HEX-smearing and mixing: c_{g}
- Chiral limit: tune m_{0}.
- Clover improvement: $c_{S W}=1$.

The "plaquette" action: $\left(\beta=2 N_{c} / g_{0}^{2}\right)$
$S_{G}=\beta \sum_{\square}\left(1-\frac{1}{2} \operatorname{Tr} \square(x)\right) \sim \frac{1}{4 g_{0}^{2}} \sum_{x} \sum_{\mu>\nu} a^{4} F_{\mu \nu}^{2}+\mathcal{O}\left(a^{2}\right)$
Wilson fermion action: $S_{F}=a^{4} \sum_{N_{f}} \sum_{x}\left(\bar{\psi}\left(i D+m_{0}\right) \psi\right.$ \mathcal{O} (a) lattice artifacts
Clover: $S_{S W}=\sum_{N_{f}} \sum_{x} \frac{a i}{4} c_{S W} \bar{\psi} \sigma_{\mu \nu} F_{\mu \nu} \psi$

$$
S=\left(1-c_{g}\right) S_{G}(U)+c_{g} S_{G}(V)+S_{F}(V)+S_{S W}(V)
$$

Lattice: challenges ahead

We aim to measure the coupling. This can be a very different task than in QCD.

$$
\begin{aligned}
& \text { Coupling is large here } \\
& \leftrightarrow \text { But small here } \\
& \text { - Precocious onset of as. } \\
& \text { freedom: } \\
& \frac{1}{g^{2}(s)}-\frac{1}{g^{2}(1)}=-\frac{\beta_{1}}{8 \pi^{2}} \ln (s) \\
& \text { - } s=L / L_{0}=\mu_{0} / \mu=10 \text { to } \\
& \text { get from weak (} 0.1 \mathrm{fm} \text {) to } \\
& \text { strong (} 1 \mathrm{fm} \text {) coupling. } \\
& \text { - Access by } L=20-40 \text {. }
\end{aligned}
$$

Lattice: challenges ahead

We aim to measure the coupling. This can be a very different task than in QCD.

Coupling is large here

$\leftrightarrow \quad$ and here

- A linear zero,

$$
g^{2}(\mu)-g_{*}^{2}=\left(g^{2}\left(\mu_{0}\right)-g_{*}^{2}\right)\left(\frac{\mu}{\mu_{0}}\right)^{y_{g}}
$$

- Need to learn to live at strong coupling.
- Continuum limit?

Lattice: Definition of the coupling

Using the gradient flow method:

$$
\begin{aligned}
\partial_{t} B_{t, \mu} & =-\frac{\delta S_{Y M}}{\delta B}=D_{t, \mu} G_{t, \mu \nu} \\
G_{t, \mu \nu} & =\partial_{\mu} B_{t, \nu}-\partial_{\nu} B_{t, \mu}+\left[B_{t, \mu}, B_{t, \nu}\right] . \\
B_{0, \mu} & =A_{\mu} \leftarrow \text { the original gauge field }
\end{aligned}
$$

- Introduce fictitious time coordinate t and evolve the gauge field
- Smoothens the initial gauge field within radius $\sqrt{8 t}$

Lattice: Definition of the coupling

Using the gradient flow method:

$$
\begin{aligned}
\langle E(t)\rangle & =\frac{1}{4}\left\langle G_{\mu \nu}(t) G_{\mu \nu}(t)\right\rangle \\
& =\frac{3\left(N^{2}-1\right) g_{0}^{2}}{128 \pi^{2} t^{2}}+\mathcal{O}\left(g_{0}^{4}\right), \\
g_{G F}^{2}(\mu) & =\left.\mathcal{N}^{-1} t^{2}\langle E(t)\rangle\right|_{x_{0}=L / 2, t=1 / 8 \mu^{2}},
\end{aligned}
$$

- To make scale free of lattice artifacts and finite volume effects: $\mu^{-1}=c L(c \sim 0.3)$.
- Evolve the flow equation to time t
- Coupling is at scale $\mu^{-1}=\sqrt{8 t}$

Lattice: Raw couplings, SU(2) with $N_{f}=6$ \& 8

- Different symbols/ colors: different values of $\beta=0.5 \ldots 8$
- Strong finite size effects on small lattices \rightarrow Only use lattices of size 10 or bigger.

Quantifying running: Step scaling idea

$u=g^{2}(\beta)$

$L=4$

$\Sigma\left(2, u, \frac{1}{4}\right)=g^{2}(\beta)$

$L=8$

$\Sigma\left(2, u, \frac{1}{8}\right)=g^{2}\left(\beta^{\prime}\right)$

Quantifying running: Step scaling idea

$u=g^{2}(\beta)$

$$
\Sigma\left(2, u, \frac{1}{4}\right)=g^{2}(\beta)
$$

$u=g^{2}\left(\beta^{\prime}\right)$

$L=8$

$\Sigma\left(2, u, \frac{1}{8}\right)=g^{2}\left(\beta^{\prime}\right)$

- Choose $\beta=4 / g_{0}^{2}$ and L, measure $u=g_{G F}^{2}(L)$. Then choose stepsize $s=2$.
- Double L, and measure $\Sigma(u, 1 / L)=g_{G F}^{2}(s L)$. Take a bigger lattice, L^{\prime}.
- Tune β^{\prime} such that $g_{G F}^{2}\left(L^{\prime}\right)=u$. Double the lattice and measure $\Sigma\left(u, 1 / L^{\prime}\right)=g_{G F}^{2}\left(s L^{\prime}\right)$
- Do for all lattice sizes, change u and repeat. (Difficult if running is slow!)

Quantifying running: Step scaling theory

- Step scaling function in the lattice and continuum:

$$
\Sigma(s, u, a / L)=\left.g_{G F}^{2}\left(g_{0}, s \frac{L}{a}\right)\right|_{g_{G F}^{2}\left(g_{0}, \frac{L}{a}\right)=u}, \quad \sigma(u, s)=\lim _{a / L \rightarrow 0} \Sigma(u, s, a / L)
$$

- Interpolate $g_{G F}^{2}\left(g_{0}, L / a\right)$ for consistent u and do the limit as:

$$
\Sigma(u, s, a / L)=\sigma(u, s)+c(u)\left(\frac{L}{a}\right)^{-2}
$$

- At fixed point $\sigma(u) / u=1$
- Related to beta function:

$$
-2 \ln (s)=\int_{\sqrt{u}}^{\sqrt{\sigma(u, s)}} \frac{\mathrm{d} x}{\beta(x)}, \quad \beta(g) \simeq \frac{g}{2 \ln (s)}\left(1-\frac{\sigma\left(g^{2}, s\right)}{g^{2}}\right)
$$

- For $N_{f}=8$ we use $s=2$, Pairs: $8-16,10-20,12-24,16-32$
- For $N_{f}=6$ we use $s=1.5$, Pairs: $8-12,12-18,16-24,20-30$

Lattice: Raw step scaling function

$$
\begin{gathered}
N_{f}=6 \\
s=3 / 2, c=0.3
\end{gathered}
$$

$$
\begin{gathered}
N_{f}=8 \\
s=2, c=0.4
\end{gathered}
$$

Results: $\mathbf{S U (2)}$ gauge $+N_{f}$ fundamental fermions

$N_{f}=6$, V. Leino et al. (2018) Phys. Rev. D97 Slope of $\beta(g): y_{g}^{*}=0.65$

$N_{f}=8$, V. Leino et al. (2017) Phys. Rev. D95
Slope of $\beta(g): y_{g}^{*}=0.20$
V. Leino et al. (2018) PRD 98
$N_{f}=2,4 \chi$ symmetry breaking, $N_{f}=10$ has a fixed pointT. Karavirta et al. (2012) JHEP 05

Results: SU(2) gauge +2 adjoint fermions

A. Hietanen, K. Rummukainen and K. Tuominen, (2009) Phys. Rev. D80

First observation of an IRFP in (non-susy) gauge theory.

Summary: drawing phase diagrams with ink

Adjoint:

2-index symm.

(Compilation of results from several collaborations)

In addition: determination of anomalous dimensions $\gamma_{q}^{*} \& y_{g}$ and measurement of spectra.

Outlook

N_{f}	γ_{q}^{*}	$\mathrm{SU}(2)+$ adj.
1	0.72	Athenodorou et al. 2103.10485
2	0.2	Rantaharju et al. 1510.03335
N_{f}	γ_{q}^{*}	$\mathrm{SU}(2)+$ fund.
6	0.283	Leino et al. Phys. Rev. D95 (2017)
8	0.15	Leino et al. Phys. Rev. D97 (2018)
10	0.08	Banks-Zaks
N_{f}	γ_{q}^{*}	$\mathrm{SU}(3)+$ fund
10	1.10	Appelquist et al. 1204.6000
12	0.13	Appelquist et al. 0901.3766
13	0.197	Fodor et al. 1811.05024
16	0.03	Banks-Zaks

Outlook

N_{f}	γ_{G}^{*}	$\mathrm{SU}(2)+$ adj.
1	0.72	Athenodorou et al. 2103.10485
2	0.2	Rantaharju et al. 1510.03335
N_{f}	γ_{q}^{*}	$\mathrm{SU}(2)+$ fund.
6	0.283	Leino et al. Phys. Rev. D95 (2017)
8	0.15	Leino et al. Phys. Rev. D97 (2018)
10	0.08	Banks-Zaks
N_{f}	γ_{q}^{*}	$\mathrm{SU}(3)+$ fund
10	1.10	Appelquist et al. 1204.6000
12	0.13	Appelquist et al. 0901.3766
13	0.197	Fodor et al. 1811.05024
16	0.03	Banks-Zaks

Some further TODOs:

- CW boundary:
- SU(3) $N_{f}=10$ and $N_{f}=12$ fundamentals.
- $N_{f}=2$ adjoints for $N_{c}>2$.
- Multiple fermion representations
- Non-asymptotically free theories
- $\operatorname{SU}(2)+24$ (or 48) fundamentals
V. Leino et al. (2020) PRD101
J. Rantaharju et al (2021) PRD104
- Adding scalars, asymptotic safety?

Litim and Sannino, JHEP 12 (2014)

[^0]: ATLAS, Phys. Rev. D 101 (2020); 1909.02845

