Effects of lattice defects in dark matter direct detection experiments

Matti Heikinheimo

University of Helsinki, Finland Based on arXiv:1903.08654, 2103.08511, 2112.14495

February 23, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Contents

Introduction

Modulation experiments

Solar neutrino background

Energy loss

- The existence of dark matter is confirmed via multiple independent observations:
 - Galactic rotation curves and velocity dispersions.
 - Gravitational lensing of galaxy clusters.
 - CMB power spectrum.
 - Structure formation.
- All of these observations are based on the gravitational interactions between DM and visible matter.

- The existence of dark matter is confirmed via multiple independent observations:
 - Galactic rotation curves and velocity dispersions.
 - Gravitational lensing of galaxy clusters.
 - CMB power spectrum.
 - Structure formation.
- All of these observations are based on the gravitational interactions between DM and visible matter.

- The existence of dark matter is confirmed via multiple independent observations:
 - Galactic rotation curves and velocity dispersions.
 - Gravitational lensing of galaxy clusters.
 - CMB power spectrum.
 - Structure formation.
- All of these observations are based on the gravitational interactions between DM and visible matter.

500

- The existence of dark matter is confirmed via multiple independent observations:
 - Galactic rotation curves and velocity dispersions.
 - Gravitational lensing of galaxy clusters.
 - CMB power spectrum.
 - Structure formation.
- All of these observations are based on the gravitational interactions between DM and visible matter.

- To understand the role of the DM particle in the context of particle physics theory, we would like to know something about its non-gravitational interactions.
- A nice feature of WIMPs is that their abundance is determined via their scattering with the SM particles.
- Therefore WIMPs should be observable with direct detection, indirect detection and collider experiments.

Direct detection

- Direct detection experiments look for DM scattering off the atoms of the target material, by detecting the recoil event (typically via scintillation light, electric signal or phonons).
- The event rate depends on the DM-nucleus scattering cross section, and the velocity distribution of DM:

Direct detection experiments

Experiment	Type	Target	Mass [kg]	Laboratory
ANAIS-112	Crystal	NaI	112	Canfranc
CDEX-10	Crystal	Ge	10	CJPL
CDMSLite	Cryogenic	Ge	1.4	Soudan
COSINE-100	Crystal	NaI	106	YangYang
CRESST-II	Cryogenic	$CaWO_4$	5	LNGS
CRESST-III	Cryogenic	$CaWO_4$	0.024	LNGS
DAMA/LIBRA-II	Crystal	NaI	250	LNGS
DarkSide-50	TPC	Ar	46	LNGS
DEAP-3600	Single phase	Ar	3300	SNOLAB
DRIFT-II	Directional	CF_4	0.14	Boulby
EDELWEISS	Cryogenic	Ge	20	LSM
LUX	TPC	Xe	250	SURF
NEWS-G	Gas Counter	Ne	0.283	SNOLAB
PandaX-II	TPC	Xe	580	CJPL
PICASSO	Superheated Droplet	C_4F_{10}	3.0	SNOLAB
PICO-60	Bubble Chamber	C_3F_8	52	SNOLAB
SENSEI*	CCD	Si	9.5×10^{-5}	FNAL
$SuperCDMS^*$	Cryogenic	Si	$9.3{ imes}10^{-4}$	above ground
XENON100	TPC	Xe	62	LNGS
XENON1T	TPC	Xe	1995	LNGS
XMASS	Single phase	Xe	832	Kamioka

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Direct detection

- ► The exclusion limit is typically presented in the $(m_{\chi}, \sigma_{\chi n})$ -plane, where the cross section refers to a given scattering operator.
- The simplest operator is the scalar (Spin-Independent) operator. Arising from e.g. $\bar{\chi}\chi\bar{q}q$.

$$\frac{d\sigma}{dE_r} = \sigma_{\chi n} \frac{A^2 m_N}{2v^2 \mu_{n\chi}^2} F^2(E_r)$$

э

The neutrino floor

- Solar and cosmic neutrinos form an irreducible background for the standard direct detection experiments.
- DM-nucleon cross sections below the neutrino floor can not be probed with simple counting experiments.

Contents

Introduction

Modulation experiments

Solar neutrino background

Energy loss

Modulation experiments

- To reach below the neutrino floor, the DM signal must somehow be differentiated from the neutrino background.
- ▶ The separation can be achieved via the modulation of the DM scattering event rate due to the motion of the earth in the Galactic rest frame: $f(\vec{v}) \rightarrow f(\vec{v} + \vec{v}_{lab})$.

$$ec{v}_{\mathrm{lab}} = ec{v}_{\mathrm{circ}} + ec{v}_{\mathrm{sol}} + ec{v}_{\mathrm{rev}} + ec{v}_{\mathrm{rot}},$$

$$\label{eq:vcirc} \begin{split} v_{\rm circ} &\sim 220\,{\rm km\,s^{-1}}, \; v_{\rm sol} \sim 18\,{\rm km\,s^{-1}}, \; v_{\rm rev} \sim 30\,{\rm km\,s^{-1}}, \\ v_{\rm rot} &\sim 0.5\,{\rm km\,s^{-1}}. \end{split}$$

• Annual modulation (of order \sim 5%) is expected due to the variation in $v_{\rm lab}$ as $\vec{v}_{\rm rev}$ and $\vec{v}_{\rm circ}$ are aligned/antialigned during the year.

Daily modulation

- The rotation speed v_{rot} is small compared to the other components, and the daily modulation induced by the variation of v_{lab} due to v_{rot} is negligible.
- \blacktriangleright However, the rotation changes the direction of $\vec{v}_{\rm lab}$ significantly during the day.

- If the target material is anisotropic, the scattering propability becomes a function of the recoil direction.
- As the direction of the DM wind changes throughout the day, the event rate modulates correspondingly.
- This effect is not present in isotropic targets, such as liquid Xenon.

Ionization energy threshold in Germanium

- Germanium crystal has a diamond lattice structure.
- The threshold energy for creating a lattice defect depends on the recoil direction. (It costs more energy to kick a nucleus towards another nucleus.)
- Conjecture: The threshold for creating an electron-hole pair has a similar directional dependency.
- This idea is supported by time dependent density functional theory (TDDFT) calculations, observational confirmation in progress.

- In the experiment setup, the scattering events that fail to exite an electron-hole pair will not be detected.
- ► Thus the rate of observable events as a function of recoil direction is obtained by integrating the differential rate $d^2R/dEd\Omega$ over the recoil energy from $E_{\min} = E_{\text{Threshold}}(\theta, \phi)$ to the cut-off energy E_{\max} (or to infinity if no upper limit is set by the experimental setup).

$$\frac{dR}{d\Omega_q} = \frac{\rho_0}{2\pi m_{\rm DM}} \frac{1}{32\pi m_{\rm N}^2 m_{\rm DM}^2} \int_{E_{\rm min}(\Omega_q)}^{E_{\rm max}} \int_{d^3v} |\mathcal{M}|^2 f(\vec{v}) \delta(\vec{v} \cdot \hat{\vec{q}} - v_{\rm min})$$

In non-relativistic effective theory, the squared matrix element can be expanded as

$$|\mathcal{M}|^2 = a_1 1 + a_2 q^2 + a_3 q^4 + b_1 v_{\perp}^2 + b_2 q^2 v_{\perp}^2 + b_3 q^4 v_{\perp}^2 + \cdots$$

$$v_\perp^2 = v^2 - \frac{q^2}{4\mu_{\rm DM,N}^2}$$

▲□▶▲□▶▲□▶▲□▶ = のへの

The integral over the DM velocity v can be expressed in terms of the Radon transform and transverse Radon transform of f(v):

$$\hat{f}(v_{\min},\hat{q}) = \int d^3 v f(\vec{v}) \delta(\vec{v}\cdot\hat{\vec{q}}-v_{\min})$$

 $\hat{f}^{\mathrm{T}}(v_{\min},\hat{q}) = \int d^3 v f(\vec{v}) v_{\perp}^2 \delta(\vec{v}\cdot\hat{\vec{q}}-v_{\min})$

$$\frac{dR}{d\Omega_q} = \frac{\rho_0}{4\pi m_{\rm DM}} \frac{\sigma_0 A^2}{\mu_{\rm DM,n}^2} \int_{E_{\rm min}(\Omega_q)}^{E_{\rm max}} \int_{E_{\rm min}(\Omega_q)}^{E_{\rm max}} \left((a_1 + a_2 q^2 + \ldots) \hat{f}(v_{\rm min}, \hat{q}) + (b_1 + b_2 q^2 + \ldots) \hat{f}^{\rm T}(v_{\rm min}, \hat{q}) \right)$$

For the commonly used DM velocity distribution (the standard halo model) f_{SHM}(v) = N_e⁻¹(2πσ_v²)^{-3/2} exp(−v²/2σ_v²)Θ(v_e − v), these integrals can be performed analytically.

- The modulation signal is strong for light DM.
- A heavy DM particle will have enough kinetic energy to exite the electron-hole pair regardless of the recoil direction, therefore suppressing the modulation signal.

Identifying the DM-Nucleon coupling operator

The stucture of the daily modulation signal depends on the type of the DM-nucleon coupling via the squared matrix element: Recall:

$$|\mathcal{M}|^2 = a_1 1 + a_2 q^2 + a_3 q^4 + b_1 v_{\perp}^2 + b_2 q^2 v_{\perp}^2 + b_3 q^4 v_{\perp}^2 + \cdots$$

For small DM mass the directional scattering rate is similar for all operators, but for larger DM mass they begin to differ.

Identifying the DM-Nucleon coupling operator

The daily modulation of the event rate for the a_1 (unit) operator (black) and b_1 (v_{\perp}^2) operator (red):

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Identifying the DM-Nucleon coupling operator

The ratios of the Fourier-components for the v^0 -interaction (black line), v_{\perp}^2 -interaction (red line), q^{-4} -interaction (purple dashed line) and q^2 -interaction (blue dotted line):

With combination of the measurements of the recoil energy spectrum, the amplitude of the daily modulation, and the structure (Fourier-modes) of the daily modulation signal, both the DM mass and the type of DM-nucleon coupling could be determined.

Contents

Introduction

Modulation experiments

Solar neutrino background

Energy loss

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Solar neutrino background

- The solar neutrino flux consists of components from various reactions.
- Left: Neutrino flux, Right: Recoil spectrum in Germanium

Solar neutrino background

The event rate due to solar neutrinos is given by

$$\frac{d^2 R}{dE_r d\Omega_r} = \frac{1}{2\pi} \frac{A(t)}{\Delta t} \frac{\epsilon^2}{E_\nu^{\min}} \frac{d\sigma}{dE_r} (E_r, \epsilon) \frac{d\Phi}{dE_\nu} (\epsilon) \Theta(\cos\theta_{\odot})$$
$$\frac{d\sigma}{dE_r} (E_r, E_\nu) = \frac{G_F^2}{4\pi} Q_W^2 m_N \left(1 - \frac{m_N E_r}{2E_\nu^2}\right)$$
$$\epsilon = (\cos\theta_{\odot}/E_\nu^{\min} - 1/m_N)^{-1}, \quad E_\nu^{\min} = \sqrt{m_N E_r/2}$$

- The integral over the recoil energy E_r must again be performed from $E_{\min}(\theta, \phi)$ to E_{\max} .
- Since the neutrino flux has a preferred direction, also the neutrino event rate will exhibit daily modulation.
- The DM wind never points from the direction of the sun, therefore the modulation in DM event rate will have a different phase from the solar neutrino rate.

Solar neutrino background

Daily and annual modulation

- The dark matter event rate contains both daily and yearly modulation features.
- For low mass DM close to detection threshold, also the yearly modulation amplitude grows.

~ ~ ~ ~

Daily and annual modulation

- In a statistical analysis we find that the daily modulation feature does not significantly increase the sensitivity vs background.
- This is because the annual modulation already contains enough information to identify the signal.
- However, the daily modulation alone provides similar improvement over static background, as demonstrated by a parametric model R ~ (1 + A_a sin(Ωt))(1 + A_d sin(ωt)).

Discovery reach

The timing information becomes important for very large exposure, where the solar neutrino rate is significant.

Contents

Introduction

Modulation experiments

Solar neutrino background

Energy loss

Calorimetric detectors

- In the above we discussed the ionization detector, where the defect creation (and the induced ionization) acts as a threshold for observable signal.
- ► In calorimetric detectors the recoil events can in principle be always detected (obviously there is some instrumental noise that sets the threshold for observable energy. The current limits are ~ 10 eV.)
- These detectors measure the kinetic energy deposited to the target crystal via monitoring the heat flux from the crystal to the surrounding thermal bath.

Calorimetric detectors

- However, if some energy is stored in the crystal, it will not be measured.
- The amount of energy that is lost to lattice defects varies significantly between different target materials.
- Consequently, experiments using different targets will measure different spectrum from the same underlying source.
- Since this feature is expected for nuclear recoils, but not e.g. for electron-recoils, this effect can be used to confirm that the observed events are due to nuclear recoils.

Spectrum in different materials: low energy background

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Spectrum in different materials: dark matter

~ ~ ~ ~

æ

Conclusions

- For low-threshold solid state detectors, lattice defects play an important role in the formation of the signal.
- For ionization detectors, the ionization threshold is believed to correlate with the defect creation.
- The directional dependence of the threshold displacement energy then induces a daily modulation to the DM event rate for low mass DM.
- This can be used to identify the type of the DM-SM interaction, or to separate the DM signal from the neutrino background.
- For calorimetric detectors, defect creation modifies the observed energy spectrum.
- The shape and amplitude of the modification depends on the target material, comparing spectra measured with different targets can help to confirm that the events are due to nuclear recoils.