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Introduction

I The existence of dark matter is confirmed via multiple independent
observations:
I Galactic rotation curves and velocity dispersions.
I Gravitational lensing of galaxy clusters.
I CMB power spectrum.
I Structure formation.

I All of these observations are based on the gravitational interactions
between DM and visible matter.
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Introduction

I To understand the role of the DM particle in the context of particle
physics theory, we would like to know something about its
non-gravitational interactions.

I A nice feature of WIMPs is that their abundance is determined via
their scattering with the SM particles.

I Therefore WIMPs should be observable with direct detection,
indirect detection and collider experiments.



Direct detection

I Direct detection experiments look for DM scattering off the atoms
of the target material, by detecting the recoil event (typically via
scintillation light, electric signal or phonons).

I The event rate depends on the DM-nucleus scattering cross section,
and the velocity distribution of DM:
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Direct detection experiments



Direct detection

I The exclusion limit is typically presented in the (mχ, σχn)-plane,
where the cross section refers to a given scattering operator.

I The simplest operator is the scalar (Spin-Independent) operator.
Arising from e.g. χ̄χq̄q.
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The neutrino floor

I Solar and cosmic neutrinos form an irreducible background for the
standard direct detection experiments.

I DM-nucleon cross sections below the neutrino floor can not be
probed with simple counting experiments.
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Modulation experiments

I To reach below the neutrino floor, the DM signal must somehow be
differentiated from the neutrino background.

I The separation can be achieved via the modulation of the DM
scattering event rate due to the motion of the earth in the Galactic
rest frame: f (~v)→ f (~v + ~vlab).

~vlab = ~vcirc + ~vsol + ~vrev + ~vrot,

vcirc ∼ 220 km s−1, vsol ∼ 18 km s−1, vrev ∼ 30 km s−1,
vrot ∼ 0.5 km s−1.

I Annual modulation (of order ∼ 5%) is expected due to the variation
in vlab as ~vrev and ~vcirc are aligned/antialigned during the year.



Daily modulation

I The rotation speed vrot is small compared to the other components,
and the daily modulation induced by the variation of vlab due to vrot
is negligible.

I However, the rotation changes the direction of ~vlab significantly
during the day.

I If the target material is anisotropic, the scattering propability
becomes a function of the recoil direction.

I As the direction of the DM wind changes throughout the day, the
event rate modulates correspondingly.

I This effect is not present in isotropic targets, such as liquid Xenon.



Ionization energy threshold in Germanium

I Germanium crystal has a diamond lattice structure.

I The threshold energy for creating a lattice defect depends on the
recoil direction. (It costs more energy to kick a nucleus towards
another nucleus.)

I Conjecture: The threshold for creating an electron-hole pair has a
similar directional dependency.

I This idea is supported by time dependent density functional theory
(TDDFT) calculations, observational confirmation in progress.



DM event rate in Germanium

I In the experiment setup, the scattering events that fail to exite an
electron-hole pair will not be detected.

I Thus the rate of observable events as a function of recoil direction is
obtained by integrating the differential rate d2R/dEdΩ over the
recoil energy from Emin = EThreshold(θ, φ) to the cut-off energy
Emax (or to infinity if no upper limit is set by the experimental
setup).
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DM event rate in Germanium

I The integral over the DM velocity ~v can be expressed in terms of
the Radon transform and transverse Radon transform of f (~v):
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DM event rate in Germanium
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DM event rate in Germanium

I The modulation signal is strong for light DM.

I A heavy DM particle will have enough kinetic energy to exite the
electron-hole pair regardless of the recoil direction, therefore
suppressing the modulation signal.

500 1000 1500 2000

0.001

0.010

0.100

1

MDM /MeV

R
R

M
S



Identifying the DM-Nucleon coupling operator

I The stucture of the daily modulation signal depends on the type of
the DM-nucleon coupling via the squared matrix element: Recall:

|M|2 = a11 + a2q
2 + a3q

4 + b1v
2
⊥ + b2q

2v2
⊥ + b3q

4v2
⊥ + · · ·

I For small DM mass the directional scattering rate is similar for all
operators, but for larger DM mass they begin to differ.
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Identifying the DM-Nucleon coupling operator

The daily modulation of the event rate for the a1 (unit) operator (black)
and b1 (v2

⊥) operator (red):
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Identifying the DM-Nucleon coupling operator

The ratios of the Fourier-components for the v0-interaction (black line),
v2
⊥-interaction (red line), q−4-interaction (purple dashed line) and
q2-interaction (blue dotted line):
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I With combination of the measurements of the recoil energy
spectrum, the amplitude of the daily modulation, and the structure
(Fourier-modes) of the daily modulation signal, both the DM mass
and the type of DM-nucleon coupling could be determined.
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Solar neutrino background

I The solar neutrino flux consists of components from various
reactions.

I Left: Neutrino flux, Right: Recoil spectrum in Germanium
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Solar neutrino background

I The event rate due to solar neutrinos is given by
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I The integral over the recoil energy Er must again be performed from
Emin(θ, φ) to Emax.

I Since the neutrino flux has a preferred direction, also the neutrino
event rate will exhibit daily modulation.

I The DM wind never points from the direction of the sun, therefore
the modulation in DM event rate will have a different phase from
the solar neutrino rate.



Solar neutrino background
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Daily and annual modulation

I The dark matter event rate contains both daily and yearly
modulation features.

I For low mass DM close to detection threshold, also the yearly
modulation amplitude grows.
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Daily and annual modulation

I In a statistical analysis we find that the daily modulation feature
does not significantly increase the sensitivity vs background.

I This is because the annual modulation already contains enough
information to identify the signal.

I However, the daily modulation alone provides similar improvement
over static background, as demonstrated by a parametric model
R ∼ (1 + Aa sin(Ωt))(1 + Ad sin(ωt)).
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Discovery reach

I The timing information becomes important for very large exposure,
where the solar neutrino rate is significant.
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Calorimetric detectors

I In the above we discussed the ionization detector, where the defect
creation (and the induced ionization) acts as a threshold for
observable signal.

I In calorimetric detectors the recoil events can in principle be always
detected (obviously there is some instrumental noise that sets the
threshold for observable energy. The current limits are ∼ 10 eV.)

I These detectors measure the kinetic energy deposited to the target
crystal via monitoring the heat flux from the crystal to the
surrounding thermal bath.



Calorimetric detectors

I However, if some energy is stored in the crystal, it will not be
measured.

I The amount of energy that is lost to lattice defects varies
significantly between different target materials.

I Consequently, experiments using different targets will measure
different spectrum from the same underlying source.

I Since this feature is expected for nuclear recoils, but not e.g. for
electron-recoils, this effect can be used to confirm that the observed
events are due to nuclear recoils.
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Spectrum in different materials: low energy background
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Spectrum in different materials: dark matter
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Conclusions

I For low-threshold solid state detectors, lattice defects play an
important role in the formation of the signal.

I For ionization detectors, the ionization threshold is believed to
correlate with the defect creation.

I The directional dependence of the threshold displacement energy
then induces a daily modulation to the DM event rate for low mass
DM.

I This can be used to identify the type of the DM-SM interaction, or
to separate the DM signal from the neutrino background.

I For calorimetric detectors, defect creation modifies the observed
energy spectrum.

I The shape and amplitude of the modification depends on the target
material, comparing spectra measured with different targets can help
to confirm that the events are due to nuclear recoils.
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