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Kibble-Zurek m
echanism

 (KZM
) predicts the universal 

relation betw
een the m

ean value of the num
ber density of 

topological defects n and the quench tim
e 

:                                       
τQ

n
∼

(1/τQ )
dν

1+
νz

O
ur w

ork investigates the statistical properties of vortices 
(point defects in 2-dim

) beyond KZM
: 

1.
The effect of periodic boundary conditions (PBC); 

2.
Probability density function (PDF) and the large 
fluctuations aw

ay from
 the m

ean of vortices num
ber. 



KZM
: In a phase transition induced by a finite quench, 

due to the causality, the system
 can only be correlated in 

a finite size 
.ξ

From
 the view

point of sym
m

etry, the previous higher 
sym

m
etry is broken to a low

er sym
m

etry. 

Exam
ple: U(1) sym

m
etry breaking in superconductor 

system
 during a quench, vortices w

ill turn out.



The sym
m

etry broken dom
ains are random

ly distributed. 
System

 size: A;  
Sym

m
etry broken dom

ain size: 
 ;  

Num
ber of defects is 

ξ
d

n
≈

A/ξ
d

A



This relation holds in a relatively slow
 quench (

 is bigger) 
τQ

n
∼

τ 1/2
Q

Finite size effect

For fast quench (
 is sm

aller), due to the finite size effect 
of the vortices, the num

ber is alm
ost constant.  

τQ
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H
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H
olographic Principle 

ℒ
=

−
14 F

μν F
μν−

|∂Ψ
−

iAΨ
| 2−

m
2|Ψ

| 2.

ds 2=
L

2z 2 (−
f(z)dt 2−

2dtdz+
dx 2+

dy 2)

where
f(z)=

1−
z 3.

•
Lagrangian:

•
Eddington-Finkelstein coordinates:



G
o Beyond K

ZM



del Cam
po (PRL 122, 014103 (2019)) studied the kink 

form
ation in a ‘transverse field quantum

 Ising m
odel’. 

Kinks statistics satisfy the Poisson binom
ial distribution, and 

all cum
ulants exhibiting a universal pow

er-law
 scaling w

ith 
the quench rate. 



It describes the num
ber of successes in a sequence of n 

independent yes/no experim
ent w

ith success probabilities 
p1, p2, …

, pn. 

The ordinary binom
ial distribution is a special case of the 

Poisson binom
ial distribution, w

hen all the success 
probabilities are the sam

e, that is p1=p2=…
=pn. 

A binom
ial distribution w

ith N independent `trial’ and ‘success 

probability’ p: P(n)∼
B(n,N,p)=(

Nn )
p

n(1−
p) N−n

N: num
ber of sym

m
etry breaking dom

ain 
; 

p: probability succeeds to form
 one defect; 

1-p: probability fails to form
 one defect.

N
∼

A/ξ
d



Therefore, in KZM
, the m

ean value of defects num
ber is: 

n
∼

pA/ξ
d

How
ever, for a Poisson binom

ial distribution, things get 
com

plicated since each probability p_i m
ay not be identical

p1

p2

The PDF of Poisson binom
ial 

distribution is  

P(n)=
∑A∈F

n ∏i∈
A pi∏j∈

A
c (1−

pj )

W
here, 

 is all subsets of n integers 
chosen from

 N
. Therefore, 

 
contains 

 elem
ents.

F
n

F
n

C
Nn

 is the com
plem

ent of A, i.e., 
A

c

A
c=

{1,2,⋯
,N}\A



Com
plicated! O

ne can transform
 the PDF into its 

‘m
om

entum
’ space by 

.  

 
 is the ‘characteristic function’ of Poisson binom

ial 
function. 

P(n)=
12π ∫

π−π dθP̃(θ)e −iθn

P̃(θ)

Finally,  
,  k is the k-th level 

of the eigenenergy. 

P̃(θ)=∏
k ( (1−

pk )+
pk e

iθ)

From
 probability theory, expansions of 

 can 
generate the cum

ulants 
 of the distribution: 

logP̃(θ)
{κq }

logP̃(θ)=
∞∑q=1 (iθ) q

q!
κq



Finally,  one gets 
. Indeed, all the 

cum
ulants are proportional to 

 .  

The distribution is not ‘norm
al distribution’ as previously 

thought, since higher cum
ulants 

 of ‘norm
al 

distribution’ is vanishing. 

κ1 ∝
κ2 ∝

κ3 ∝
1/τQ

1/τQ

(q
≥

3)

Physically,  
 

 is the m
ean; 

 
 is the variance; 

 
 represents the skew

ness through the 
identity 

κ1 =
⟨n⟩

κ2 =
⟨n

2⟩−
⟨n⟩ 2

κ3 =
⟨( n−

⟨n⟩) 3⟩
κ3 =

Skew(n)κ 3/2
2



This theory w
as tested in various w

ays. 

del C
am

po (PRL 122, 014103 (2019)) 
Jing-M

in C
ui, et.al.  

C
om

m
unications Physics, (2020) 3:44



Y. B
ando, et al. PR

 R
esearch 2, 033369 (2020)

F. J. G
om

ez-R
uiz, et al. PR

L 124 240602 (2020)



Extensions:  
1). From

 1-dim
 to 2-dim

; 
2). They indeed study the num

ber of pairs of the kinks, 
rather than the individual num

ber of kinks;  
3). W

ith strong couplings. 

Holographic vortices in 2-dim
 boundary, w

ith periodic 
boundary conditions (2-torus).  JHEP06(2021)061



A 2-torus 
 has zeros Euler characteristic, i.e., 

, g is the num
ber of genus. As a result of 

Poincare-Hopf theorem
, the total vorticity of superconductor 

equals 
. ҁ

Laver, Forgan, N
at. Com

m
un. 1 (2010) 45.҂

 

T
2

χ(T
2)=

2−
2g

=
0

χ

Thus, the net vorticity on the 2-torus should be vanishing. 
Besides, in real sim

ulations w
e never found any vortices w

ith 
vorticity 

. Thus, the positive and negative vortices 
have the sam

e num
ber, i.e, there are alw

ays even num
ber of 

vortices. |V
|>

1

Averagely, w
e can assum

e the successful probability for a 
vortex as p, w

hile failure to form
 a vortex as 1-p. (Please note 

that here w
e have sim

plified the com
plicated Poisson binom

ial 
distribution to binom

ial distribution w
ith reasonable 

assum
ptions). 



The distribution of the vortices is binom
ial distributions 

restricted to even outcom
es. W

e call it as ‘even-
binom

ial’ (EB) distributions. 

Assum
e p+

q
=

1,
(p,q

≥
0)



The first three cum
ulants are: 



They satisfy the recursion relation w
hich is typical for 

binom
ial distributions: κq+1 =

p(1−
p)dκq /dp

W
e call this as ‘even-Poisson’ (EP) distribution. 

 is the 
average success tim

es, or equivalently, the average num
ber 

of vortices 
.

λ

⟨n⟩

Besides, the first 
three cum

ulants 
in these lim

its w
ill 

becom
e,



Plots of 
 for even-Poisson 

κq

λ≥
5

C
um

ulants are alm
ost 

identical ! 



Num
erical results (1): PDF

R
ed lines are the theoretical even-Poisson distribution



Num
erical results (2): P(n=even)



Num
erical results (3): first three cum

ulants

D
eviations of 

 im
plies 

that w
e need m

ore 
sim

ulations. C
urrently, 

for each 
 w

e have 
1000 trajectories, due 
to the running tim

e.

κ3

τQ



Num
erical results (4): rare events

N
o vortices at all is a rare event aw

ay from
 adiabatic lim

it, P
EP (n

=
0)=

sech(⟨n⟩)

The prefactor decreases 
as w

e increase the 
sam

plings. Therefore, w
e 

expect a better fitting of 
P_EP(n=0) if w

e have 
enough tim

es of 
sim

ulations. 



 Cum
ulative distribution function (CDF)

in w
hich

 is a hypergeom
etric function; 

 is the floor. 
1 F

2
⌊.⌋

Num
erical results (5): CDF



Num
erical results (5):CDF



Extrem
al distribution: large deviation and the m

axim
a in long 

sequences of realizations. 

Fisher-Tippett-G
nedenko theorem

: the extrem
e m

axim
al 

values of the independently and identically distributed (iid) 
variables satisfy the generalized extrem

e value (G
EV) 

distribution, ҁ
de H

aan, Ferreira, `Extrem
e quantile and tail estim

ation, in 

Extrem
e Value Theory: An Introduction, Springer New

 York, U.S.A. (2006)҂

 is the location param
eter, 

 is the scale param
eter and 

 is 
the shape param

eter. N
ote: 

 and zero 
otherw

ise 

μ
σ

ξ
ξ(x−

μ)/σ+
1

>
0



G
EV distribution function 

 is the CDF, its PDF is
G(x;μ,σ,ξ)

•
, W

eibull distribution 
w

hich is upper bounded;  
•

, G
um

bel distribution 
w

hich has a light tail;  
•

, Fréchet distribution 
w

hich has a heavy tail and a 
low

er bound.

ξ<
0

ξ=
0

ξ>
0



In practice, to analyze the extrem
e value distributions for 

iid variables, it is custom
ary to separate the data into 

several groups (or blocks), and then proceed to identify 
the m

axim
um

 in each group.

W
e adopt the ‘Block M

axim
a’ m

ethod to study the 
m

axim
um

 value distributions for the vortex num
bers in 

num
erical sim

ulations.

There are som
e arbitrary choices in the partition of the data. 

W
e partition the data into m

ore than 100 groups, w
hich is 

sufficient for the observed vortex-num
ber m

axim
a 

distribution to be identified w
ith the G

EV.

The final list of m
axim

a w
ill tend to satisfy the above G

EV 
distribution. This m

ethod is called ‘Block M
axim

a’ m
ethod.



Fast quench τQ
=

20

Num
erical results (6): fast quench

μ
=

36.558

W
e have 11655 num

erical data of the vortex 
num

ber. Both PD
F and C

D
F are show

n as a 
function of the variable 

. 
y=

(x−
μ)/σ

μ
=

32.841
σ

=
2.382

ξ=
−

0.113

σ
=

2.114
ξ=

−
0.09

W
eibull distribution,  

there is an upper bound. 



Num
erical results (6): slow

 quench

Slow
 quench τQ

=
1000

μ
=

13.056
σ

=
1.666

ξ=
−

0.149

μ
=

11.892
σ

=
1.943

ξ=
−

0.184

Also W
eibull distribution



Chernoff bound: exponentially decreasing bounds on the tail 
distributions of vortex num

bers. (M
olloy, Reed, ‘The Chernoff bound, 

in G
raph Colouring and the Probabilistic M

ethod’, Springer Berlin Heidelberg, 
G

erm
any (2002))

In its looser form
, Chernoff bound can be w

ritten as

In w
hich, 

 can be any positive real num
ber. 

δ



Num
erical results (7): Chernoff boundLow

er tail
U

pper tail



Sum
m

aries
•

I have talked about various aspects of statistics of vortices 
from

 holographic realization; 

•
M

ean and large fluctuations distributions;  

•
M

ean num
ber is Even-Poisson distributions (PD

F); Its 
corresponding C

D
F is also verified num

erically;  

•
M

axim
al values distribution is W

eibull, has an upper bound; 

•
The tail distributions has a bound satisfying C

hernoff 
bound.



Thanks!
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