Standard model irreps as an extension of 4-momentum: our first attempt

N. Furey and B. Romano

Humboldt-Universität zu Berlin University of Oxford

Standard Model of Elementary Particles

Standard Model of Elementary Particles

Standard Model of Elementary Particles

 $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$

—

Symmetry:

Symmetry: SU(3)×SU(2)×U(1) / \mathbb{Z}_6

$G_{sm} \coloneqq$ SU(3)×SU(2)×U(1) / Z₆

$G_{sm} :=$ Particles: SU(3)×SU(2)×U(1) / Z₆ Irreps

Which?

$G_{sm} := \qquad Particles:$ SU(3)×SU(2)×U(1) / Z₆ \underbrace{Irreps}

TTT	•
	tormione
	fermions

$(\ u,\ d\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \ \right)_2$
$(\ c,\ s\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \ \right)_2$
$(t, b)_L$	$\left(\underline{3}, \ \underline{2}, \ \underline{1}_{6} \ \right)_{2}$

$$(\nu_{e}, e)_{L} (\underline{1}, \underline{2}, -\frac{1}{2})_{2} (\nu_{\mu}, \mu)_{L} (\underline{1}, \underline{2}, -\frac{1}{2})_{2} (\nu_{\tau}, \tau)_{L} (\underline{1}, \underline{2}, -\frac{1}{2})_{2}$$

Gauge bosons

$$G_{\mu} \quad (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$$
$$W_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$$
$$B_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$$

RH fermions

u_R	$\left(\ \underline{3}, \ \underline{1}, \ \underline{2} \ \right)_2$
c_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
t_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$

$$d_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$s_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$b_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$e_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

$$\mu_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

$$\tau_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

LH fermions

$(\ u,\ d\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \right)_2$
$(\ c,\ s\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \right)_2$
$(t, b)_L$	$\left(\underline{3}, \ \underline{2}, \ \underline{1}_{6} \right)_{2}$

$$(\nu_e, e)_L \qquad \left(\underline{1}, \underline{2}, -\frac{1}{2}\right)_2 \\ (\nu_\mu, \mu)_L \qquad \left(\underline{1}, \underline{2}, -\frac{1}{2}\right)_2 \\ (\nu_\tau, \tau)_L \qquad \left(\underline{1}, \underline{2}, -\frac{1}{2}\right)_2$$

Gauge bosons

$$G_{\mu} \quad (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$$
$$W_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$$
$$B_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$$

RH fermions

u_R	$\left(\underline{3}, \ \underline{1}, \ \underline{2} \ \right)_2$
c_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
t_R	$\left(\ \underline{3}, \ \underline{1}, \ \underline{2} \ \right)_2$

$$d_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$s_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$b_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$e_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

$$\mu_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

$$\tau_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

LH fermions

$(\ u,\ d\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \right)_2$
$(\ c,\ s\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \right)_2$
$(t, b)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \right)_2$

$$(\nu_e, e)_L \qquad \left(\underline{1}, \underline{2}, -\frac{1}{2}\right)_2 \\ (\nu_\mu, \mu)_L \qquad \left(\underline{1}, \underline{2}, -\frac{1}{2}\right)_2 \\ (\nu_\tau, \tau)_L \qquad \left(\underline{1}, \underline{2}, -\frac{1}{2}\right)_2$$

Gauge bosons

$$G_{\mu} \quad (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$$
$$W_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$$
$$B_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$$

RH fermions

u_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ ight)_2$
c_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ ight)_2$
t_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ ight)_2$

$$d_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$s_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$b_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$e_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

$$\mu_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

$$\tau_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

LH fermions

$(u, d)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \right)_2$
$(\ c,\ s\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \right)_2$
$(t, b)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \right)_2$

$$(\nu_e, e)_L \qquad (\underline{1}, \underline{2}, -\underline{1}_2)_2 (\nu_\mu, \mu)_L \qquad (\underline{1}, \underline{2}, -\underline{1}_2)_2 (\nu_\tau, \tau)_L \qquad (\underline{1}, \underline{2}, -\underline{1}_2)_2$$

Gauge bosons

$$G_{\mu} \quad (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$$
$$W_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$$
$$B_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$$

RH fermions

u_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
c_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
t_R	$\left(\ \underline{3}, \ \underline{1}, \ \underline{2} \ \right)_2$

$$d_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$s_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$b_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$e_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

$$\mu_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

$$\tau_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

TTT	•
	tormione
	fermions

$(\ u,\ d\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \ \right)_2$
$(\ c,\ s\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \ \right)_2$
$(t, b)_L$	$\left(\underline{3}, \ \underline{2}, \ \underline{1}_{6} \ \right)_{2}$

$$(\nu_{e}, e)_{L} (\underline{1}, \underline{2}, -\frac{1}{2})_{2} (\nu_{\mu}, \mu)_{L} (\underline{1}, \underline{2}, -\frac{1}{2})_{2} (\nu_{\tau}, \tau)_{L} (\underline{1}, \underline{2}, -\frac{1}{2})_{2}$$

Gauge bosons

$$G_{\mu} \quad (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$$
$$W_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$$
$$B_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$$

RH fermions

u_R	$\left(\ \underline{3}, \ \underline{1}, \ \underline{2} \ \right)_2$
c_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
t_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$

$$d_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$s_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$b_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$e_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

$$\mu_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

$$\tau_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

LH fermions

 $(u, d)_L \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_2$

LH fermions

 $(u, d)_L \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_2$

RH fermions

 $u_R \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_2$

LH fermions	RH fermions
$(u, d)_L$ $\left(\underline{3}, \underline{2}, \frac{1}{6}\right)_2$	$u_R \left(\underline{3}, \underline{1}, \frac{2}{3} \right)_2$
$(\nu_e, e)_L \left(\underline{1}, \underline{2}, -\frac{1}{2} \right)_2$	$d_R \left(\underline{3}, \ \underline{1}, \ -\frac{1}{3} \right)_2$
	e_R $(\underline{1}, \underline{1}, -1)_2$

LH fermions	RH fermions
$(u, d)_L$ $\left(\underline{3}, \underline{2}, \frac{1}{6}\right)_2$	$u_R \left(\underline{3}, \ \underline{1}, \ \frac{2}{3} \right)_2$
$(\nu_e, e)_L (\underline{1}, \underline{2}, -\frac{1}{2})_2$	$d_R \left(\underline{3}, \ \underline{1}, \ -\frac{1}{3} \right)_2$
	e_R (<u>1</u> , <u>1</u> , -1) ₂

1 generation

LH f	ermions	RH	fermions
	$\left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_2 \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_2 \end{array}$		$\left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_2 \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_2 \end{array}$
	$\left(\begin{array}{ccc} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} ight)_2 \ \left(\begin{array}{ccc} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} ight)_2 \end{array}$		$\left(\begin{array}{cc} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_2 \\ \left(\begin{array}{cc} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_2 \end{array}$
			$\left(\underline{1}, \underline{1}, -1 \right)_2$ $\left(\underline{1}, \underline{1}, -1 \right)_2$

2 generations

LH fe	ermions	
$(\ c,\ s\)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$	
$ u_{\mu},\ \mu\)_L$	$ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_{2} \end{array} $	

RH fermions

u_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
c_R	$\left(\underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
t_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$

$$d_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$s_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$b_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$e_R \qquad (\underline{1}, \underline{1}, -1)_2$$

$$\mu_R \qquad (\underline{1}, \underline{1}, -1)_2$$

$$\tau_R \qquad (\underline{1}, \underline{1}, -1)_2$$

3 generations

LH fe	ermions	
$(\ c,\ s\)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$	
$ u_{\mu},\ \mu\)_L$	$ \begin{pmatrix} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{pmatrix}_2 \\ (\ \underline{1}, \ \underline{2}, \ -\frac{1}{2})_2 \\ (\ \underline{1}, \ \underline{2}, \ -\frac{1}{2})_2 \end{cases} $	

RH fermions

u_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
c_R	$\left(\underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
t_R	$\left(\underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$

$$d_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$s_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$b_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$e_R \qquad (\underline{1}, \underline{1}, -1)_2$$

$$\mu_R \qquad (\underline{1}, \underline{1}, -1)_2$$

$$\tau_R \qquad (\underline{1}, \underline{1}, -1)_2$$

Fermion content

LH fermions

$(\ u,\ d\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \right)_2$
$(\ c,\ s\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \right)_2$
$(t, b)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \right)_2$

$$(\nu_e, e)_L \qquad \left(\underline{1}, \underline{2}, -\frac{1}{2}\right)_2 \\ (\nu_\mu, \mu)_L \qquad \left(\underline{1}, \underline{2}, -\frac{1}{2}\right)_2 \\ (\nu_\tau, \tau)_L \qquad \left(\underline{1}, \underline{2}, -\frac{1}{2}\right)_2$$

RH fermions

u_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
c_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
t_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$

$$d_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$s_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$b_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$e_R \qquad (\underline{1}, \underline{1}, -1)_2$$

$$\mu_R \qquad (\underline{1}, \underline{1}, -1)_2$$

$$\tau_R \qquad (\underline{1}, \underline{1}, -1)_2$$

LH fermions

$(\ u,\ d\)_L$	$(\underline{3}, \underline{2},$	$\left(\frac{1}{6}\right)_2$
$(\ c,\ s\)_L$	$\left(\underline{3}, \ \underline{2}, \right.$	$\left(\frac{1}{6}\right)_2$
$(t, b)_L$	$\left(\underline{3}, \ \underline{2}, \right.$	$\left(\frac{1}{6}\right)_2$

$$(\nu_e, e)_L \qquad (\underline{1}, \underline{2}, -\underline{1}_2)_2 (\nu_\mu, \mu)_L \qquad (\underline{1}, \underline{2}, -\underline{1}_2)_2 (\nu_\tau, \tau)_L \qquad (\underline{1}, \underline{2}, -\underline{1}_2)_2$$

Gauge bosons

$$G_{\mu} \quad (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$$
$$W_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$$
$$B_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$$

RH fermions

u_R	$\left(\ \underline{3}, \ \underline{1}, \ \underline{2} \ \right)_2$
c_R	$\left(\ \underline{3}, \ \underline{1}, \ \underline{2} \ \right)_2$
t_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$

$$d_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$s_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$b_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$e_R \qquad (\underline{1}, \underline{1}, -1)_2$$

$$\mu_R \qquad (\underline{1}, \underline{1}, -1)_2$$

$$\tau_R \qquad (\underline{1}, \underline{1}, -1)_2$$

TTT	•
	tormione
	fermions

$(\ u,\ d\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \ \right)_2$
$(\ c,\ s\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \ \right)_2$
$(t, b)_L$	$\left(\underline{3}, \ \underline{2}, \ \underline{1}_{6} \ \right)_{2}$

$$(\nu_{e}, e)_{L} (\underline{1}, \underline{2}, -\frac{1}{2})_{2} (\nu_{\mu}, \mu)_{L} (\underline{1}, \underline{2}, -\frac{1}{2})_{2} (\nu_{\tau}, \tau)_{L} (\underline{1}, \underline{2}, -\frac{1}{2})_{2}$$

Gauge bosons

$$G_{\mu} \quad (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$$
$$W_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$$
$$B_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$$

RH fermions

u_R	$\left(\ \underline{3}, \ \underline{1}, \ \underline{2} \ \right)_2$
c_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
t_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$

$$d_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$s_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$b_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$e_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

$$\mu_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

$$\tau_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

LH fermions		
$(\ c,\ s\)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$	
$(u_\mu,\mu)_L$	$ig(egin{array}{cccccccccccccccccccccccccccccccccccc$	
Gauge bosons		
G_{μ}	$(\underline{8}, \underline{1}, 0)_4$	
W_{μ}	$(\underline{1}, \underline{3}, 0)_4$	
B_{μ}	$(\underline{1}, \underline{1}, 0)_4$	

RH fermions

u_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ ight)_2$
c_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
t_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$

$$d_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$s_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$b_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$e_R \qquad (\underline{1}, \underline{1}, -1)_2$$

$$\mu_R \qquad (\underline{1}, \underline{1}, -1)_2$$

$$\tau_R \qquad (\underline{1}, \underline{1}, -1)_2$$

Higgs $+ 3\nu_R$ $H \quad (\underline{1}, \underline{2}, -\frac{1}{2})_1 \implies 244 \mathbb{R}$

R, C, H, O

everywhere

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

$\mathbb{R}\otimes\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}$

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O} = \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O} = \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ G. Dixon

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

$\mathbb{R}\otimes\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}$

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ $64 \mathbb{R}$

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ $64 \mathbb{R}$

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ $64 \ \mathbb{R}$

1 generation

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O} \quad \longleftrightarrow \quad 1 \text{ generation}$ $64 \mathbb{R}$

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O} \quad \longleftrightarrow \quad 1 \text{ generation}$ $64 \mathbb{R}$

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

Standard Model Irreps ($SU(3)_C$, $SU(2)_L$, $U(1)_Y$)

LH fermions	RH fermions
$(u, d)_L$ $\left(\underline{3}, \underline{2}, \frac{1}{6}\right)_2$	$u_R \left(\underline{3}, \ \underline{1}, \ \frac{2}{3} \right)_2$
$(\nu_e, e)_L (\underline{1}, \underline{2}, -\frac{1}{2})_2$	$d_R \left(\underline{3}, \ \underline{1}, \ -\frac{1}{3} \right)_2$
	e_R $(\underline{1}, \underline{1}, -1)_2$

1 generation

Standard Model Irreps ($SU(3)_C$, $SU(2)_L$, $U(1)_Y$)

LH fermions		
$(\ c,\ s\)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$	
$ u_{\mu},\ \mu\)_L$	$ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_{2} \end{array} $	

RH fermions

u_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
c_R	$\left(\underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
t_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$

$$d_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$s_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$b_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$e_R \qquad (\underline{1}, \underline{1}, -1)_2$$

$$\mu_R \qquad (\underline{1}, \underline{1}, -1)_2$$

$$\tau_R \qquad (\underline{1}, \underline{1}, -1)_2$$

3 generations

Standard Model Irreps ($SU(3)_C$, $SU(2)_L$, $U(1)_Y$)

TTT	•
	tormione
	fermions

$(\ u,\ d\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \ \right)_2$
$(\ c,\ s\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \ \right)_2$
$(t, b)_L$	$\left(\underline{3}, \ \underline{2}, \ \underline{1}_{6} \ \right)_{2}$

$$(\nu_{e}, e)_{L} (\underline{1}, \underline{2}, -\frac{1}{2})_{2} (\nu_{\mu}, \mu)_{L} (\underline{1}, \underline{2}, -\frac{1}{2})_{2} (\nu_{\tau}, \tau)_{L} (\underline{1}, \underline{2}, -\frac{1}{2})_{2}$$

Gauge bosons

$$G_{\mu} \quad (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$$
$$W_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$$
$$B_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$$

RH fermions

u_R	$\left(\ \underline{3}, \ \underline{1}, \ \underline{2} \ \right)_2$
c_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
t_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$

$$d_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$s_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$b_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$e_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

$$\mu_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

$$\tau_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

Higgs $H \quad \left(\underline{\mathbf{1}}, \ \underline{\mathbf{2}}, \ -\frac{1}{2} \right)_1$

sequence

$w,x,y,z \ \in \ \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

encode particles?

$w, x, y, z \ \in \ \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

 $\mathbb{R}\otimes\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}'s$ left-multiplication algebra

encode particles?

 $w, x, y, z \in \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

 $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra

 $``L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}}"$

encode particles?

 $w, x, y, z \in \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

 $\mathbb{R}\otimes\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}\text{'s}$ left-multiplication algebra

" $L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}}$ "

 $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra

" $L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}}$ "

w(x(yz))

 $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra

" $L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}}$ "

operator w(x(yz)) $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra

 $``L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}}"$

operator w(x(yz))tate $\mathbb{R}\otimes\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}\text{'s}$ left-multiplication algebra

" $L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}}$ "

 $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra " $L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}}$ "

 $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra " $L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}}$ "

yz $y,z \in \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ operator state

$yz \qquad \qquad y,z \in \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

 $L_y(z) \coloneqq yz \qquad \qquad y,z \in \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

 $L_y(z) \coloneqq yz \qquad \qquad y,z \in \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

 $L_y \in End_{\mathbb{C}}(\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O})$

 $\mathbb{R}\otimes\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}\text{'s}$ left-multiplication algebra

" $L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}}$ "

 $(L_x \circ L_y)(z)$

 $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra

 $``L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}}"$

 $(L_x \circ L_y)(z) = L_x(L_y(z))$

 $(L_x \circ L_y)(z) = L_x(L_y(z)) = x(yz)$

Multiplication:

 $(L_x \circ L_y)(z) = L_x(L_y(z)) = x(yz)$

 $\mathbb{R}\otimes\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}\text{'s}$ left-multiplication algebra

" $L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}}$ "

 $L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}} := \text{ subalgebra of } End_{\mathbb{C}}(\mathbb{R}\otimes\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O})$ generated by $\{L_y \mid y \in \mathbb{R}\otimes\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}\}$ $\mathbb{R}\otimes\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}\text{'s}$ left-multiplication algebra

" $L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}}$ "

 $L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}} \simeq M_{16\times 16}(\mathbb{C})$

> $L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}} \simeq M_{16\times16}(\mathbb{C})$ $\simeq \mathbb{C}l(8)$

> $L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}} \simeq M_{16\times16}(\mathbb{C})$ $\simeq \mathbb{C}l(8)$

8 γ_j generate $\mathbb{C}l(8)$

Standard Model Irreps ($SU(3)_C$, $SU(2)_L$, $U(1)_Y$)

TTT	•
	tormione
	fermions

$(\ u,\ d\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \ \right)_2$
$(\ c,\ s\)_L$	$\left(\underline{3}, \ \underline{2}, \ \frac{1}{6} \ \right)_2$
$(t, b)_L$	$\left(\underline{3}, \ \underline{2}, \ \underline{1}_{6} \ \right)_{2}$

$$(\nu_{e}, e)_{L} (\underline{1}, \underline{2}, -\frac{1}{2})_{2} (\nu_{\mu}, \mu)_{L} (\underline{1}, \underline{2}, -\frac{1}{2})_{2} (\nu_{\tau}, \tau)_{L} (\underline{1}, \underline{2}, -\frac{1}{2})_{2}$$

Gauge bosons

$$G_{\mu} \quad (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$$
$$W_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$$
$$B_{\mu} \quad (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$$

RH fermions

u_R	$\left(\ \underline{3}, \ \underline{1}, \ \underline{2} \ \right)_2$
c_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$
t_R	$\left(\ \underline{3}, \ \underline{1}, \ \frac{2}{3} \ \right)_2$

$$d_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$s_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$b_{R} \quad \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_{2}$$

$$e_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

$$\mu_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

$$\tau_{R} \quad (\underline{1}, \underline{1}, -1)_{2}$$

Higgs $H \quad \left(\underline{\mathbf{1}}, \ \underline{\mathbf{2}}, \ -\frac{1}{2} \right)_1$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O} \quad \longleftrightarrow \quad 1 \text{ generation}$ $64 \mathbb{R}$

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

sequence

$w,x,y,z \ \in \ \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

 $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra

" $L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}}$ "

sequence

 $w, x, y, z \ \in \ \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

$L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}}\simeq\mathbb{C}l(8)$

$L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}}\simeq\mathbb{C}l(8)$

$L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}} \simeq \mathbb{C}l(8)$

$L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}} \simeq \mathbb{C}l(8)$ $256 \mathbb{C}$

$L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}}\simeq\mathbb{C}l(8)$ $256\mathbb{C}$

Need

$L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}} \simeq \mathbb{C}l(8) \qquad \text{Need}$ $256 \mathbb{C} \qquad 244 \mathbb{R}$

 $(\mathbb{C} \text{ imaginary }) \quad i \mapsto -i$

 $(\mathbb{C} \text{ imaginary }) \qquad i \mapsto -i$ $(\mathbb{H} \text{ imaginaries }) \qquad \epsilon_j \mapsto -\epsilon_j \qquad j \in \{1, 2, 3\}$

 $(\mathbb{C} \text{ imaginary }) \qquad i \mapsto -i$ $(\mathbb{H} \text{ imaginaries }) \qquad \epsilon_j \mapsto -\epsilon_j \qquad j \in \{1, 2, 3\}$ $(\mathbb{O} \text{ imaginaries }) \qquad e_k \mapsto -e_k \qquad k \in \{1, 2, \dots, 7\}$

"Hermitian conjugate"

 $\dagger: \quad L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}} \rightarrow L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}}$

 $(\mathbb{C} \text{ imaginary }) \qquad i \mapsto -i$ $(\mathbb{H} \text{ imaginaries }) \qquad \epsilon_j \mapsto -\epsilon_j \qquad j \in \{1, 2, 3\}$ $(\mathbb{O} \text{ imaginaries }) \qquad e_k \mapsto -e_k \qquad k \in \{1, 2, \dots, 7\}$

• Important applications in physics

• Important applications in physics $p \in \mathcal{H}_2(\mathbb{C}) \to \mathcal{H}_{16}(\mathbb{C})$

- Important applications in physics $p \in \mathcal{H}_2(\mathbb{C}) \to \mathcal{H}_{16}(\mathbb{C})$
- $256 \mathbb{R} \gtrsim 244 \mathbb{R}$

- Important applications in physics $p \in \mathcal{H}_2(\mathbb{C}) \to \mathcal{H}_{16}(\mathbb{C})$
- $256 \mathbb{R} \gtrsim 244 \mathbb{R}$

- Important applications in physics $p \in \mathcal{H}_2(\mathbb{C}) \to \mathcal{H}_{16}(\mathbb{C})$
- $256 \mathbb{R} \gtrsim 244 \mathbb{R}$

Idempotents

Idempotents

$$s \coloneqq \frac{1}{2} (1 + iL_{e_7}) \qquad S \coloneqq \frac{1}{2} (1 + iR_{e_7})$$
$$s^* \coloneqq \frac{1}{2} (1 - iL_{e_7}) \qquad S^* \coloneqq \frac{1}{2} (1 - iR_{e_7})$$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

"Peirce decomposition"

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

 $\mathcal{H}_{16}(\mathbb{C})$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \; \mathcal{H}_{16}(\mathbb{C}) \; s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_ au, \ au \)_L$	$ig(egin{array}{cccccccccccccccccccccccccccccccccccc$
$egin{array}{l} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
d_R s_R b_R	$ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2$
$ u_{eR} $ $ u_{\mu R} $ $ u_{ au R}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$e_R \ \mu_R \ au_R$	$\begin{array}{l}(\underline{1}, \underline{1}, -1)_2\\(\underline{1}, \underline{1}, -1)_2\\(\underline{1}, \underline{1}, -1)_2\end{array}$
$p_{\mu} \ p_{\mu}^{\prime}$	$(\underline{1}, \ \underline{1}, \ 0)_4$ $(\underline{1}, \ \underline{1}, \ 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$(\underline{8}, \underline{1}, 0)_4$ $(\underline{1}, \underline{3}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$

\mathcal{H}_{16}	(\mathbb{C})
1010	(\cup)

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \; \mathcal{H}_{16}(\mathbb{C}) \; s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

Generic element of G_{sm} 's Lie algebra

Generic element of G_{sm} 's Lie algebra

$$\mathfrak{su}(3)_{C} \quad \mathfrak{su}(2)_{L} \quad \mathfrak{u}(1)_{Y} \\
\ell_{sm} \coloneqq ir'_{n}\Lambda_{n}s + r_{k}L_{\epsilon_{k}}s^{*}S + \frac{r}{2}(\frac{i}{3}sS^{*} - isS - L_{\epsilon_{3}}s^{*}S^{*}) \\
n \in \{1, 2, \dots 8\} \\
k \in \{1, 2, 3\}$$

Generic element of G_{sm} 's Lie algebra

$$\mathfrak{su}(3)_C \quad \mathfrak{su}(2)_L \quad \mathfrak{u}(1)_Y$$

$$\ell_{sm} \coloneqq ir'_n \Lambda_n s + r_k L_{\epsilon_k} s^* S + \frac{r}{2} (\frac{i}{3} s S^* - is S - L_{\epsilon_3} s^* S^*)$$

$$\stackrel{\uparrow}{\in} \mathfrak{der}(\mathbb{O}) \quad n \in \{1, 2, \dots 8\}$$

$$k \in \{1, 2, 3\}$$

$$\delta b = \ell_{sm} b + b \, \ell_{sm}^{\dagger}$$

diagonal

$$\delta b = \ell_{sm} b + b \,\ell_{sm}^{\dagger}$$
$$\delta f_0 = \ell_{sm} s f_0 s^* + s f_0 s^* \ell_{sm} + h.c.$$

diagonal

outer off-diagonal

$$\begin{split} \delta b &= \ell_{sm} b + b \, \ell_{sm}^{\dagger} & \text{diagonal} \\ \delta f_0 &= \ell_{sm} s f_0 s^* + s f_0 s^* \ell_{sm} + h.c. & \text{outer off-diagonal} \\ \delta f_+ &= \ell_{sm} (s S^* f_+ s S + s^* S^* f_+ s^* S) \\ &+ (s S^* f_+ s S + s^* S^* f_+ s^* S) \ell_{sm}^{\dagger *} + h.c. & \text{inner off-diagonal} \end{split}$$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_ au, \ au \)_L$	$ig(egin{array}{cccccccccccccccccccccccccccccccccccc$
$egin{array}{l} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
d_R s_R b_R	$ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2$
$ u_{eR} $ $ u_{\mu R} $ $ u_{ au R}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$e_R \ \mu_R \ au_R$	$\begin{array}{l}(\underline{1}, \underline{1}, -1)_2\\(\underline{1}, \underline{1}, -1)_2\\(\underline{1}, \underline{1}, -1)_2\end{array}$
$p_{\mu} \ p_{\mu}^{\prime}$	$(\underline{1}, \ \underline{1}, \ 0)_4$ $(\underline{1}, \ \underline{1}, \ 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$(\underline{8}, \underline{1}, 0)_4$ $(\underline{1}, \underline{3}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$

\mathcal{H}_{16}	(\mathbb{C})
1010	(\cup)

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \; \mathcal{H}_{16}(\mathbb{C}) \; s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_\tau, \ au \)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$egin{array}{l} u_R \ c_R \ t_R \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$d_R \ s_R \ b_R$	$ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2$
$ u_{eR} $ $ u_{\mu R} $ $ u_{ au R}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$e_R \ \mu_R \ au_R$	$(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$
$p_{\mu} \ p'_{\mu}$	$(\underline{1}, \ \underline{1}, \ 0)_4$ $(\underline{1}, \ \underline{1}, \ 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_\tau, \ au \)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \end{array} $
$ u_{eR} $ $ u_{\mu R} $ $ u_{ au R}$	$(\underline{1}, \underline{1}, 0)_2$ $(\underline{1}, \underline{1}, 0)_2$ $(\underline{1}, \underline{1}, 0)_2$
$e_R \ \mu_R \ au_R$	$(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$
$p_\mu \ p'_\mu$	$\left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ 0 \end{array}\right)_4$ $\left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ 0 \end{array}\right)_4$
$G_{\mu} \ W_{\mu} \ B_{\mu}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$\left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_2 \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_2 \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_2 \end{array}$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_ au, \ au \)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_2 \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_2 \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_2 \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_2 \end{array} $
$d_R \ s_R \ b_R$	$ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2$
$ u_{eR} $ $ u_{\mu R} $ $ u_{ au R}$	$(\underline{1}, \underline{1}, 0)_{2} (\underline{1}, \underline{1}, 0)_{2} (\underline{1}, \underline{1}, 0)_{2} $
$e_R \ \mu_R \ au_R$	$\begin{array}{cccc}(\underline{1},\ \underline{1},\ -1\)_2\\(\underline{1},\ \underline{1},\ -1\)_2\\(\underline{1},\ \underline{1},\ -1\)_2\end{array}$
$p_\mu \ p'_\mu$	$\begin{array}{cccccccccc} (\ \underline{1},\ \underline{1},\ 0\)_{4} \\ (\ \underline{1},\ \underline{1},\ 0\)_{4} \end{array}$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig({ { { { { 3 } } } , { { { 2 } } , { { { 1 \over 6 } } } } }_2 } })_2 \ ({ { { { 3 } , { { 2 } , { { 1 \over 6 } } } } }_2 })_2 \ ({ { { 3 } , { { 2 } , { { 1 \over 6 } } } } }_2 \)_2 \ ({ { { 3 } , { 2 } , { { 1 \over 6 } } } })_2 \)_2 \ ({ { 3 } , { 2 } , { { 1 \over 6 } } })_2 \)_2 \)_2 \ ({ { 3 } , { 2 } , { 1 \over 6 } })_2 \)_2 \)_2 \)_2 \ ({ 3 } , { 2 } , { 1 \over 6 })_2 \)_2$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_ au, \ au \)_L$	$ \begin{pmatrix} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{pmatrix}_2 \\ (\ \underline{1}, \ \underline{2}, \ -\frac{1}{2})_2 \\ (\ \underline{1}, \ \underline{2}, \ -\frac{1}{2})_2 \end{cases} $
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_2 \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_2 \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_2 \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_2 \end{array} $
$d_R \ s_R \ b_R$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_2 \end{array} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_2 \end{array} $
$egin{array}{l} u_{eR} \ u_{\mu R} \ u_{ au R} \end{array}$	$\begin{array}{ccccccccc} (\underline{1}, \underline{1}, 0)_2 \\ (\underline{1}, \underline{1}, 0)_2 \\ (\underline{1}, \underline{1}, 0)_2 \end{array}$
$e_R \ \mu_R \ au_R$	$ \begin{array}{c} (\underline{1}, \underline{1}, -1)_2 \\ (\underline{1}, \underline{1}, -1)_2 \\ (\underline{1}, \underline{1}, -1)_2 \end{array} \\ \end{array} $
$p_{\mu} \ p'_{\mu}$	$\begin{array}{ccccccccc} (\ \underline{1},\ \underline{1},\ 0\)_{4} \\ (\ \underline{1},\ \underline{1},\ 0\)_{4} \end{array}$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$(\underline{8}, \ \underline{1}, \ 0)_4$ $(\underline{1}, \ \underline{3}, \ 0)_4$ $(\underline{1}, \ \underline{1}, \ 0)_4$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^*S \mathcal{H}_{16}(\mathbb{C}) sS^*$	$s^{\star}S \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$(\ u, \ d \)_L \ (\ c, \ s \)_L \ (\ t, \ b \)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$(\ u_e, \ e \)_L \ (\ u_{\mu}, \ \mu \)_L \ (\ u_{\tau}, \ au \)_L$	$ig(\ \underline{1}, \ \underline{2}, \ -\frac{1}{2} \ ig)_2 \ ig(\ \underline{1}, \ \underline{2}, \ -\frac{1}{2} \ ig)_2 \ ig(\ \underline{1}, \ \underline{2}, \ -\frac{1}{2} \ ig)_2 \ ig(\ \underline{1}, \ \underline{2}, \ -\frac{1}{2} \ ig)_2$
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$egin{array}{l} u_{eR} \ u_{\mu R} \ u_{ au R} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$e_R \ \mu_R \ au_R$	$\begin{array}{cccc} (\underline{1}, \underline{1}, -1)_2 \\ (\underline{1}, \underline{1}, -1)_2 \\ (\underline{1}, \underline{1}, -1)_2 \end{array}$
$p_\mu \ p'_\mu$	$\left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ 0 \end{array}\right)_4 \\ \left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ 0 \end{array}\right)_4 \end{array}$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$\left(\begin{array}{ccc} \underline{8}, \ \underline{1}, \ 0 \end{array}\right)_4 \\ \left(\begin{array}{ccc} \underline{1}, \ \underline{3}, \ 0 \end{array}\right)_4 \\ \left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ 0 \end{array}\right)_4 \end{array}$

	$\mathcal{H}_{16}(\mathbb{C})$			\downarrow \downarrow
	$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
* *	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_ au, \ au \)_L$	$ \begin{pmatrix} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{pmatrix}_2 \\ (\ \underline{1}, \ \underline{2}, \ -\frac{1}{2})_2 \\ (\ \underline{1}, \ \underline{2}, \ -\frac{1}{2})_2 \end{cases} $
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
d_R s_R b_R	$egin{array}{llllllllllllllllllllllllllllllllllll$
$ u_{eR} $ $ u_{\mu R}$	$\left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ 0 \end{array} \right)_2 \ \left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ 0 \end{array} \right)_2 \end{array}$
$ u_{ au R}$	$(\underline{1}, \underline{1}, 0)_2$
$ \begin{array}{c} \nu_{\tau R} \\ e_R \\ \mu_R \\ \tau_R \end{array} $	$(\underline{1}, \underline{1}, 0)_2$ $(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$
$e_R \ \mu_R$	$ (\underline{1}, \underline{1}, -1)_2 (\underline{1}, \underline{1}, -1)_2 $

	$\mathcal{H}_{16}(\mathbb{C})$			$\downarrow\downarrow\downarrow$
	$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
	$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^*S \mathcal{H}_{16}(\mathbb{C}) s^*S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
* *	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

($egin{array}{llllllllllllllllllllllllllllllllllll$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array}\right)_{2} \end{array} $	
(1	$(egin{array}{c} \psi_{e}, \; e \;)_{L} \ (eta_{\mu}, \; \mu \;)_{L} \ (eta_{ au}, \; au \;)_{L} \end{array}$	$ \begin{array}{c} \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \end{array} \\ \end{array} $	
	$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	
	$d_R \ s_R \ b_R$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \end{array} \right. $	
	$egin{array}{c} u_{eR} u_{\mu R} u_{ au R} u_{ au R} \end{array}$	$\begin{array}{cccc} \left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ 0 \end{array} \right)_2 \\ \left(\begin{array}{cccc} \underline{1}, \ \underline{1}, \ 0 \end{array} \right)_2 \\ \left(\begin{array}{ccccc} \underline{1}, \ \underline{1}, \ 0 \end{array} \right)_2 \end{array}$	++
	$e_R \ \mu_R \ au_R$		++
	$p_\mu \ p'_\mu$	$(\underline{1}, \ \underline{1}, \ 0)_4$ $(\underline{1}, \ \underline{1}, \ 0)_4$	
	W_{μ}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

 $\mathcal{H}_{16}(\mathbb{C})$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig(\ {\underline{3}}, \ {\underline{2}}, \ {\frac{1}{6}} \ ig)_2 \ (\ {\underline{3}}, \ {\underline{2}}, \ {\frac{1}{6}} \ ig)_2 \ (\ {\underline{3}}, \ {\underline{2}}, \ {\frac{1}{6}} \ ig)_2$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_ au, \ au \)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_2 \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_2 \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_2 \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_2 \end{array} $
$d_R \ s_R \ b_R$	$ig(\ {\underline{3}}, \ {\underline{1}}, \ -{1\over 3} \ ig)_2 \ ig(\ {\underline{3}}, \ {\underline{1}}, \ -{1\over 3} \ ig)_2 \ ig(\ {\underline{3}}, \ {\underline{1}}, \ -{1\over 3} \ ig)_2 \ ig(\ {\underline{3}}, \ {\underline{1}}, \ -{1\over 3} \ ig)_2$
$ u_{eR}$	$(\underline{1}, \underline{1}, 0)_2$
$ u_{\mu R} u_{ au R}$	$(\underline{1}, \underline{1}, 0)_2 (\underline{1}, \underline{1}, 0)_2$
e_R	$(\underline{1}, \underline{1}, -1)_2$
$\mu_R \ au_R$	$\left(\begin{array}{cc} \underline{1}, \ \underline{1}, \ -1 \end{array} \right)_2 \\ \left(\begin{array}{cc} \underline{1}, \ \underline{1}, \ -1 \end{array} \right)_2 \end{array}$
$p_\mu \ p'_\mu$	$(\underline{1}, \ \underline{1}, \ 0)_4$ $(\underline{1}, \ \underline{1}, \ 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_{2} \end{array} $
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_\tau, \ au \)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2$
$ u_{eR} $ $ u_{\mu R}$	$(\underline{1}, \underline{1}, 0)_2$ $(\underline{1}, \underline{1}, 0)_2$
$ u_{ au R} $ $ e_R $ $ \mu_R $	$(\underline{1}, \underline{1}, 0)_2$ $(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$
$ au_R$	$ (\underline{1}, \underline{1}, -1)_2 $ $ (\underline{1}, \underline{1}, 0)_4 $
$p'_{\mu} \ G_{\mu} \ W_{\mu} \ B_{\mu}$	$(\underline{1}, \underline{1}, 0)_{4}$ $(\underline{8}, \underline{1}, 0)_{4}$ $(\underline{1}, \underline{3}, 0)_{4}$ $(\underline{1}, \underline{1}, 0)_{4}$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2$
$(\nu_e, e)_L \ (\nu_\mu, \mu)_L \ (\nu_\tau, \tau)_L $	$ig({f 1}, {f 2}, -{f 1}_2 ig)_2 \ ig({f 1}, {f 2}, -{f 1}_2 ig)_2 \ ig({f 1}, {f 2}, -{f 1}_2 ig)_2 \ ig({f 1}, {f 2}, -{f 1}_2 ig)_2 \ ig)_2$
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$ig(\ {\underline{3}}, \ {\underline{1}}, \ -{1\over 3} \ ig)_2 \ ig(\ {\underline{3}}, \ {\underline{1}}, \ -{1\over 3} \ ig)_2 \ ig(\ {\underline{3}}, \ {\underline{1}}, \ -{1\over 3} \ ig)_2 \ ig(\ {\underline{3}}, \ {\underline{1}}, \ -{1\over 3} \ ig)_2$
$ u_{eR}$	$(\underline{1}, \underline{1}, 0)_2$
$ u_{\mu R} u_{ au R}$	$(\underline{1}, \underline{1}, 0)_2$ $(\underline{1}, \underline{1}, 0)_2$
e_R	$(\underline{1}, \underline{1}, -1)_2$
$\mu_R \ au_R$	$\left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ -1 \end{array} \right)_2$ $\left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ -1 \end{array} \right)_2$
$p_{\mu} \ p'_{\mu}$	$\begin{array}{cccc} (\underline{1}, \ \underline{1}, \ 0 \)_4 \\ (\underline{1}, \ \underline{1}, \ 0 \)_4 \end{array}$
G_{μ}	$(\underline{8}, \underline{1}, 0)_4$
$W_{\mu} \ B_{\mu}$	$(\underline{1}, \underline{3}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig({ { { { { 3 } } } , { { { 2 } } , { { { 1 \over 6 } } } } } } ig)_2 \ ig({ { { 3 } , { { 2 } , { { 1 \over 6 } } } } ig)_2 \ ig({ { { 3 } , { 2 } , { { 1 \over 6 } } } ig)_2 \ ig({ { 3 , { 2 } , { 1 \over 6 } } ig)_2 \ ig)_2 \ ig)_2$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_\tau, \ au \)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array} \right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$ u_{eR}$	$(\underline{1}, \underline{1}, 0)_2$
$ u_{\mu R} u_{ au R}$	$\begin{array}{cccc}(\underline{1},\ \underline{1},\ 0\)_{2}\\(\underline{1},\ \underline{1},\ 0\)_{2}\end{array}$
e_R	$(\underline{1}, \underline{1}, -1)_2$
$\mu_R \ au_R$	$\left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ -1 \end{array}\right)_2$ $\left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ -1 \end{array}\right)_2$
$p_{\mu} \ p'_{\mu}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$\begin{array}{c} (\underline{8}, \underline{1}, 0)_4 \\ (\underline{1}, \underline{3}, 0)_4 \\ (\underline{1}, \underline{1}, 0)_4 \end{array}$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^*S \mathcal{H}_{16}(\mathbb{C}) s^*S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig({ { { { { 3 } } } , { { { 2 } } , { { { 1 \over 6 } } } } } } ig)_2 \ {ig({ { { 3 } , { { 2 } , { { 1 \over 6 } } } } ig)_2 \ {ig({ { 3 , { 2 } , { { 1 \over 6 } } } ig)_2 \ {ig({ { 3 , { 2 } , { 1 \over 6 } } ig)_2 \ {ig)_2 } } ig)_2 }$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_ au, \ au \)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$ u_{eR} $ $ u_{\mu R} $ $ u_{ au R}$	$\begin{array}{c} (\underline{1}, \underline{1}, 0)_{2} \\ (\underline{1}, \underline{1}, 0)_{2} \\ (\underline{1}, \underline{1}, 0)_{2} \end{array}$
$e_R \ \mu_R \ au_R$	$\begin{array}{c}(\underline{1}, \underline{1}, -1)_2\\(\underline{1}, \underline{1}, -1)_2\\(\underline{1}, \underline{1}, -1)_2\end{array}$
$p_{\mu} \ p'_{\mu} \ G_{\mu}$	$(\underline{1}, \underline{1}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$ $(\underline{8}, \underline{1}, 0)_4$
$W_{\mu} \ B_{\mu}$	$(\underline{1}, \underline{3}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	s*S H₁6(ℂ) s*S too many here	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig({ { { { { 3 } } } , { { { 2 } } , { { { 1 \over 6 } } } } } } ig)_2 \ ig({ { { 3 } , { { 2 } , { { 1 \over 6 } } } } ig)_2 \ ig({ { { 3 } , { 2 } , { { 1 \over 6 } } } ig)_2 \ ig({ { 3 , { 2 } , { 1 \over 6 } } ig)_2 \ ig)_2 \ ig)_2$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_\tau, \ au \)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array} \right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$ u_{eR}$	$(\underline{1}, \underline{1}, 0)_2$
$ u_{\mu R} u_{ au R}$	$\begin{array}{cccc}(\underline{1},\ \underline{1},\ 0\)_{2}\\(\underline{1},\ \underline{1},\ 0\)_{2}\end{array}$
e_R	$(\underline{1}, \underline{1}, -1)_2$
$\mu_R \ au_R$	$\left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ -1 \end{array}\right)_2$ $\left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ -1 \end{array}\right)_2$
$p_{\mu} \ p'_{\mu}$	$(\underline{1}, \underline{1}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$\begin{array}{c} (\underline{8}, \underline{1}, 0)_4 \\ (\underline{1}, \underline{3}, 0)_4 \\ (\underline{1}, \underline{1}, 0)_4 \end{array}$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^*S \mathcal{H}_{16}(\mathbb{C}) s^*S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$\left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_2 \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_2 \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_2 \end{array}$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_\tau, \ au \)_L$	$ \begin{array}{c} \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \end{array} \\ \end{array} $
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$ u_{eR} $ $ u_{\mu R} $ $ u_{ au R}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$e_R \ \mu_R \ au_R$	$(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$
$p_{\mu} \ p_{\mu}^{\prime}$	$(\underline{1}, \underline{1}, 0)_4 \\ (\underline{1}, \underline{1}, 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$(\underline{8}, \underline{1}, 0)_4$ $(\underline{1}, \underline{3}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$

$232~\mathbb{R}$	\mathcal{H}_{16}	$_{\mathrm{S}}(\mathbb{C})$	
$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^*S \mathcal{H}_{16}(\mathbb{C}) sS^*$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

 $\left(\underline{\mathbf{3}}, \ \underline{\mathbf{2}}, \ \frac{1}{6} \ \right)_2$ $(\ u,\ d\)_L$ $(c, s)_L (\underline{3}, \underline{2}, \frac{1}{6})_2$ $(t, b)_L$ $\left(\underline{\mathbf{3}}, \ \underline{\mathbf{2}}, \ \frac{1}{6} \right)_2$ $\left(\ \underline{\mathbf{1}}, \ \underline{\mathbf{2}}, \ -\frac{1}{2} \
ight)_2$ $(\nu_e, e)_L$ $(\nu_{\mu}, \mu)_L \quad \left(\underline{1}, \underline{2}, -\frac{1}{2}\right)_2$ $(\nu_{\tau}, \tau)_L \quad \left(\underline{\mathbf{1}}, \underline{\mathbf{2}}, -\frac{1}{2}\right)_2$ $\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_2$ u_R $\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_2$ c_R $\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_2$ t_R $\left(\underline{\mathbf{3}}, \ \underline{\mathbf{1}}, \ -\frac{1}{3} \right)_2$ d_R $\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_2$ s_R b_R $\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -\frac{1}{3}\right)_2$ $(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_2$ ν_{eR} $(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_2$ $u_{\mu R}$ $(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_2$ $\nu_{\tau R}$ $(\underline{\mathbf{1}}, \underline{\mathbf{1}}, -1)_2$ e_R $(\underline{\mathbf{1}}, \underline{\mathbf{1}}, -1)_2$ μ_R $(\underline{\mathbf{1}}, \underline{\mathbf{1}}, -1)_2$ au_R $(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_4$ p_{μ} p'_{μ} $(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_4$ G_{μ} $(\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_4$ W_{μ} $(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_4$ B_{μ} $(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_4$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^*S \mathcal{H}_{16}(\mathbb{C}) s^*S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_{2} \end{array} $
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_\tau, \ au \)_L$	$ \begin{array}{c} \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \end{array} \end{array} $
$egin{array}{l} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \end{array} \right. $
$ u_{eR} $ $ u_{\mu R} $ $ u_{ au R}$	$(\underline{1}, \underline{1}, 0)_2$ $(\underline{1}, \underline{1}, 0)_2$ $(\underline{1}, \underline{1}, 0)_2$
$e_R \ \mu_R \ au_R$	$(\underline{1}, \underline{1}, -1)_2 (\underline{1}, \underline{1}, -1)_2 (\underline{1}, \underline{1}, -1)_2$
$p_{\mu} \ p'_{\mu}$	$(\underline{1}, \underline{1}, 0)_4 \\ (\underline{1}, \underline{1}, 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$(\underline{8}, \underline{1}, 0)_4$ $(\underline{1}, \underline{3}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$

Covariant derivative

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig({ { { { { 3 } } } , { { { 2 } } , { { { 1 \over 6 } } } } } } ig)_2 \ {ig({ { { 3 } , { { 2 } , { { 1 \over 6 } } } } ig)_2 \ {ig({ { 3 , { 2 } , { 1 \over 6 } } } ig)_2 \ {ig({ { 3 , { 2 } , { 1 \over 6 } } } ig)_2 \ {ig)_2 \ ig)_2 \$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_\tau, \ au \)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$ u_{eR}$	$(\underline{1}, \underline{1}, 0)_2$
$ u_{\mu R} u_{ au R}$	$\begin{array}{cccc}(\underline{1},\ \underline{1},\ 0\)_{2}\\(\underline{1},\ \underline{1},\ 0\)_{2}\end{array}$
e_R	$(\underline{1}, \underline{1}, -1)_2$
$\mu_R \ au_R$	$\left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ -1 \end{array}\right)_2$ $\left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ -1 \end{array}\right)_2$
$p_{\mu} \ p'_{\mu}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$\begin{array}{c} (\underline{8}, \underline{1}, 0)_4 \\ (\underline{1}, \underline{3}, 0)_4 \\ (\underline{1}, \underline{1}, 0)_4 \end{array}$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^*S \mathcal{H}_{16}(\mathbb{C}) s^*S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_{2} \end{array} $
$(\ u_e, \ e \)_L \ (\ u_{\mu}, \ \mu \)_L \ (\ u_{\tau}, \ au \)_L$	$ \begin{array}{c} \left(\underline{1}, \ \underline{2}, \ -\frac{1}{2} \ \right)_2 \\ \left(\ \underline{1}, \ \underline{2}, \ -\frac{1}{2} \right)_2 \\ \left(\ \underline{1}, \ \underline{2}, \ -\frac{1}{2} \right)_2 \end{array} $
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2 \ ig(\ \underline{3}, \ \underline{1}, \ -\frac{1}{3} \ ig)_2$
$ u_{eR} $ $ u_{\mu R} $ $ u_{ au R}$	$(\underline{1}, \underline{1}, 0)_2$ $(\underline{1}, \underline{1}, 0)_2$ $(\underline{1}, \underline{1}, 0)_2$
$e_R \ \mu_R \ au_R$	$(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$
$p_{\mu} \ p_{\mu}^{\prime}$	$(\underline{1}, \ \underline{1}, \ 0)_4$ $(\underline{1}, \ \underline{1}, \ 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

 $sS \mathcal{H}_{16}(\mathbb{C}) sS$

 $sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$

 $s^*S \mathcal{H}_{16}(\mathbb{C}) sS$

 $s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$

 $s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2$
$(\ u_e, \ e \)_L \ (\ u_{\mu}, \ \mu \)_L \ (\ u_{\tau}, \ au \)_L$	$ \begin{array}{c} \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \end{array} \\ \end{array} $
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$ u_{eR} $ $ u_{\mu R} $ $ u_{ au R}$	$\begin{array}{c} (\underline{1}, \underline{1}, 0)_{2} \\ (\underline{1}, \underline{1}, 0)_{2} \\ (\underline{1}, \underline{1}, 0)_{2} \end{array}$
$e_R \ \mu_R \ au_R$	$(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$
$p_{\mu} \ p'_{\mu}$	$(\underline{1}, \underline{1}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$(\underline{8}, \ \underline{1}, \ 0 \)_4$ $(\ \underline{1}, \ \underline{3}, \ 0 \)_4$ $(\ \underline{1}, \ \underline{1}, \ 0 \)_4$

$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$ $sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$ $sS \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$ $sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$ $sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$ $sS^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$ $s^{\star}S \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$ $s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$ $s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$

 $s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$

Fermions

 $s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig({ { { { { 3 } } } , { { { 2 } } , { { { 1 \over 6 } } } } } } ig)_2 \ ig({ { { 3 } , { { 2 } , { { 1 \over 6 } } } } ig)_2 \ ig({ { { 3 } , { 2 } , { { 1 \over 6 } } } ig)_2 \ ig({ { 3 , { 2 } , { 1 \over 6 } } ig)_2 \ ig)_2 \ ig)_2$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_\tau, \ au \)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array} \right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$ u_{eR}$	$(\underline{1}, \underline{1}, 0)_2$
$ u_{\mu R} u_{ au R}$	$\begin{array}{cccc}(\underline{1},\ \underline{1},\ 0\)_{2}\\(\underline{1},\ \underline{1},\ 0\)_{2}\end{array}$
e_R	$(\underline{1}, \underline{1}, -1)_2$
$\mu_R \ au_R$	$\left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ -1 \end{array}\right)_2$ $\left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ -1 \end{array}\right)_2$
$p_{\mu} \ p'_{\mu}$	$(\underline{1}, \underline{1}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$\begin{array}{c} (\underline{8}, \underline{1}, 0)_4 \\ (\underline{1}, \underline{3}, 0)_4 \\ (\underline{1}, \underline{1}, 0)_4 \end{array}$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^*S \mathcal{H}_{16}(\mathbb{C}) s^*S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$\left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_2 \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_2 \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_2 \end{array}$	
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_ au, \ au \)_L$	$ \begin{pmatrix} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{pmatrix}_2 \\ \left(\ \underline{1}, \ \underline{2}, \ -\frac{1}{2} \right)_2 \\ \left(\ \underline{1}, \ \underline{2}, \ -\frac{1}{2} \right)_2 $	
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{cccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $	
d_R s_R b_R	$egin{array}{llllllllllllllllllllllllllllllllllll$	
$egin{array}{c} u_{eR} u_{\mu R} u_{ au R} u_{ au R} \end{array}$	$\left(\underline{1}, \underline{1}, 0\right)_2$	++
e_R μ_R $ au_R$	$\begin{array}{c}(\underline{1}, \underline{1}, -1)_2\\(\underline{1}, \underline{1}, -1)_2\\(\underline{1}, \underline{1}, -1)_2\end{array}$	++
$p_{\mu} \ p'_{\mu}$	$\begin{array}{cccc} (\underline{1}, \underline{1}, 0)_4 \\ (\underline{1}, \underline{1}, 0)_4 \end{array}$	
W_{μ}	$(\underline{8}, \underline{1}, 0)_4$ $(\underline{1}, \underline{3}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$	

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^*S \mathcal{H}_{16}(\mathbb{C}) s^*S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig({ { { { { 3 } } } , { { { 2 } } , { { { 1 \over 6 } } } } } } ig)_2 \ {ig({ { { 3 } , { { 2 } , { { 1 \over 6 } } } } ig)_2 \ {ig({ { 3 , { 2 } , { { 1 \over 6 } } } ig)_2 \ {ig({ { 3 , { 2 } , { 1 \over 6 } } ig)_2 \ {ig)_2 } } ig)_2 }$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_ au, \ au \)_L$	$ \begin{array}{c} \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \end{array} \end{array} $
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$ u_{eR} $ $ u_{\mu R} $ $ u_{ au R}$	$\begin{array}{c} (\underline{1}, \underline{1}, 0)_{2} \\ (\underline{1}, \underline{1}, 0)_{2} \\ (\underline{1}, \underline{1}, 0)_{2} \end{array}$
$e_R \ \mu_R \ au_R$	$\begin{array}{c}(\underline{1}, \underline{1}, -1)_2\\(\underline{1}, \underline{1}, -1)_2\\(\underline{1}, \underline{1}, -1)_2\end{array}$
$p_{\mu} \ p'_{\mu} \ G_{\mu}$	$(\underline{1}, \underline{1}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$ $(\underline{8}, \underline{1}, 0)_4$
$W_{\mu} \ B_{\mu}$	$(\underline{1}, \underline{3}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	s*S H₁6(ℂ) s*S too many here	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

End of the line?

End of the line? Maybe, maybe not.

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig({ { { { { 3 } } } , { { { 2 } } , { { { 1 \over 6 } } } } } } ig)_2 \ {ig({ { { 3 } , { { 2 } , { { 1 \over 6 } } } } ig)_2 \ {ig({ { 3 , { 2 } , { 1 \over 6 } } } ig)_2 \ {ig({ { 3 , { 2 } , { 1 \over 6 } } } ig)_2 \ {ig)_2 \ ig)_2 \$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_\tau, \ au \)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$ u_{eR}$	$(\underline{1}, \underline{1}, 0)_2$
$ u_{\mu R} u_{ au R}$	$\begin{array}{cccc}(\underline{1},\ \underline{1},\ 0\)_{2}\\(\underline{1},\ \underline{1},\ 0\)_{2}\end{array}$
e_R	$(\underline{1}, \underline{1}, -1)_2$
$\mu_R \ au_R$	$\left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ -1 \end{array}\right)_2$ $\left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ -1 \end{array}\right)_2$
$p_{\mu} \ p'_{\mu}$	$(\underline{1}, \underline{1}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$\begin{array}{c} (\underline{8}, \underline{1}, 0)_4 \\ (\underline{1}, \underline{3}, 0)_4 \\ (\underline{1}, \underline{1}, 0)_4 \end{array}$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^*S \mathcal{H}_{16}(\mathbb{C}) s^*S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_ au, \ au \)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$egin{array}{c} u_R \ c_R \ t_R \ d_R \ s_R \ b_R \end{array}$	$ \begin{pmatrix} \underline{3}, \underline{1}, \frac{2}{3} \end{pmatrix}_{2} \\ (\underline{3}, \underline{1}, \frac{2}{3})_{2} \\ (\underline{3}, \underline{1}, \frac{2}{3})_{2} \\ (\underline{3}, \underline{1}, -\frac{1}{3})_{2} \end{cases} $
$egin{aligned} u_{eR} \ u_{\mu R} \ u_{ au R} \ u_{ a$	$(\underline{1}, \underline{1}, 0)_{2}$ $(\underline{1}, \underline{1}, 0)_{2}$ $(\underline{1}, \underline{1}, 0)_{2}$ $(\underline{1}, \underline{1}, 0)_{2}$ $(\underline{1}, \underline{1}, -1)_{2}$ $(\underline{1}, \underline{1}, -1)_{2}$ $(\underline{1}, \underline{1}, -1)_{2}$
$p_\mu \ p'_\mu \ G_\mu \ W_\mu \ B_\mu$	$(\underline{1}, \underline{1}, 0)_{4}$ $(\underline{1}, \underline{1}, 0)_{4}$ $(\underline{8}, \underline{1}, 0)_{4}$ $(\underline{1}, \underline{3}, 0)_{4}$ $(\underline{1}, \underline{1}, 0)_{4}$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \; \mathcal{H}_{16}(\mathbb{C}) \; s^{\star}S$	$s^*S \mathcal{H}_{16}(\mathbb{C}) s^*S^*$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig({ { { { { 3 } } } , { { { 2 } } , { { { 1 \over 6 } } } } } } ig)_2 \ {ig({ { { 3 } , { 2 } , { { 1 \over 6 } } } ig)_2 \ {ig({ { 3 } , { 2 } , { { 1 \over 6 } } } ig)_2 \ {ig({ { 3 } , { 2 } , { { 1 \over 6 } } } ig)_2 \ {ig)_2 \ {i$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_\tau, \ au \)_L$	$ \begin{pmatrix} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{pmatrix}_{2} \\ (\ \underline{1}, \ \underline{2}, \ -\frac{1}{2})_{2} \\ (\ \underline{1}, \ \underline{2}, \ -\frac{1}{2})_{2} \end{cases} $
$egin{array}{c} u_R \ c_R \ t_R \ d_R \ s_R \ b_R \end{array}$	$ \begin{array}{c} \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \end{array} $
$egin{array}{c} u_{eR} \ u_{\mu R} \ u_{ au R} \ u_{ $	$(\underline{1}, \underline{1}, 0)_{2}$ $(\underline{1}, \underline{1}, 0)_{2}$ $(\underline{1}, \underline{1}, 0)_{2}$ $(\underline{1}, \underline{1}, 0)_{2}$ $(\underline{1}, \underline{1}, -1)_{2}$ $(\underline{1}, \underline{1}, -1)_{2}$ $(\underline{1}, \underline{1}, -1)_{2}$
$p_{\mu} \ p_{\mu}^{\prime} \ G_{\mu}$	$(\underline{1}, \underline{1}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$ $(\underline{8}, \underline{1}, 0)_4$
$W_{\mu} \ B_{\mu}$	$\left(\begin{array}{ccc} \underline{1}, \ \underline{3}, \ 0 \end{array}\right)_4 \\ \left(\begin{array}{ccc} \underline{1}, \ \underline{1}, \ 0 \end{array}\right)_4 \end{array}$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$s^{\star}S \; \mathcal{H}_{16}(\mathbb{C}) \; s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_ au, \ au \)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$egin{array}{c} u_R \ c_R \ t_R \ d_R \ s_R \ b_R \end{array}$	$ \begin{pmatrix} \underline{3}, \underline{1}, \frac{2}{3} \end{pmatrix}_{2} \\ (\underline{3}, \underline{1}, \frac{2}{3})_{2} \\ (\underline{3}, \underline{1}, \frac{2}{3})_{2} \\ (\underline{3}, \underline{1}, -\frac{1}{3})_{2} \end{cases} $
$egin{aligned} u_{eR} \ u_{\mu R} \ u_{ au R} \ u_{ a$	$(\underline{1}, \underline{1}, 0)_{2}$ $(\underline{1}, \underline{1}, 0)_{2}$ $(\underline{1}, \underline{1}, 0)_{2}$ $(\underline{1}, \underline{1}, 0)_{2}$ $(\underline{1}, \underline{1}, -1)_{2}$ $(\underline{1}, \underline{1}, -1)_{2}$ $(\underline{1}, \underline{1}, -1)_{2}$
$p_\mu \ p'_\mu \ G_\mu \ W_\mu \ B_\mu$	$(\underline{1}, \underline{1}, 0)_{4} \\ (\underline{1}, \underline{1}, 0)_{4} \\ (\underline{8}, \underline{1}, 0)_{4} \\ (\underline{1}, \underline{3}, 0)_{4} \\ (\underline{1}, \underline{1}, 0)_{4} \\ (\underline{1}, \underline{1}, 0)_{4} $

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \; \mathcal{H}_{16}(\mathbb{C}) \; s^{\star}S$	$s^*S \mathcal{H}_{16}(\mathbb{C}) s^*S^*$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig({ { { { { 3 } } } , { { { 2 } } , { { { 1 \over 6 } } } } } } ig)_2 \ {ig({ { { 3 } , { { 2 } , { { 1 \over 6 } } } } ig)_2 \ {ig({ { { 3 } , { 2 } , { { 1 \over 6 } } } ig)_2 \ {ig({ { 3 } , { 2 } , { { 1 \over 6 } } ig)_2 \ {ig)_2 } } ig)_2 }$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_ au, \ au \)_L$	$ \begin{pmatrix} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{pmatrix}_{2} \\ (\ \underline{1}, \ \underline{2}, \ -\frac{1}{2})_{2} \\ (\ \underline{1}, \ \underline{2}, \ -\frac{1}{2})_{2} \end{cases} $
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$ u_{eR}$	$(\underline{1}, \underline{1}, 0)_2$
$ u_{\mu R} $ $ u_{ au R}$	$(\underline{1}, \underline{1}, 0)_2$ $(\underline{1}, \underline{1}, 0)_2$
e_R	$(\underline{1}, \underline{1}, -1)_2$
$\mu_R \ au_R$	$\begin{array}{c} (\underline{1}, \underline{1}, -1)_2 \\ (\underline{1}, \underline{1}, -1)_2 \end{array}$
$p_\mu \ p'_\mu$	$(\underline{1}, \underline{1}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$\begin{array}{c}(\underline{8},\underline{1},0)_{4}\\(\underline{1},\underline{3},0)_{4}\\(\underline{1},\underline{1},0)_{4}\end{array}$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \; \mathcal{H}_{16}(\mathbb{C}) \; s^{\star} \; S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_ au, \ au \)_L$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$egin{array}{c} u_R \ c_R \ t_R \ d_R \ s_R \ b_R \end{array}$	$ \begin{pmatrix} \underline{3}, \underline{1}, \frac{2}{3} \end{pmatrix}_{2} \\ (\underline{3}, \underline{1}, \frac{2}{3})_{2} \\ (\underline{3}, \underline{1}, \frac{2}{3})_{2} \\ (\underline{3}, \underline{1}, -\frac{1}{3})_{2} \end{cases} $
$egin{aligned} u_{eR} \ u_{\mu R} \ u_{ au R} \ u_{ a$	$(\underline{1}, \underline{1}, 0)_{2}$ $(\underline{1}, \underline{1}, 0)_{2}$ $(\underline{1}, \underline{1}, 0)_{2}$ $(\underline{1}, \underline{1}, 0)_{2}$ $(\underline{1}, \underline{1}, -1)_{2}$ $(\underline{1}, \underline{1}, -1)_{2}$ $(\underline{1}, \underline{1}, -1)_{2}$
$p_\mu \ p'_\mu \ G_\mu \ W_\mu \ B_\mu$	$(\underline{1}, \underline{1}, 0)_{4} \\ (\underline{1}, \underline{1}, 0)_{4} \\ (\underline{8}, \underline{1}, 0)_{4} \\ (\underline{1}, \underline{3}, 0)_{4} \\ (\underline{1}, \underline{1}, 0)_{4} \\ (\underline{1}, \underline{1}, 0)_{4} $

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \; \mathcal{H}_{16}(\mathbb{C}) \; s^{\star}S$	$s^*S \mathcal{H}_{16}(\mathbb{C}) s^*S^*$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

To be continued ...

Colour and projective measurements

$\mathbb O$ multiplication algebra

Idempotents

$$s \coloneqq \frac{1}{2} (1 + iL_{e_7}) \qquad S \coloneqq \frac{1}{2} (1 + iR_{e_7})$$
$$s^* \coloneqq \frac{1}{2} (1 - iL_{e_7}) \qquad S^* \coloneqq \frac{1}{2} (1 - iR_{e_7})$$

Octonion Left multiplication

 (e_{j_1}) 1

 (e_{j_1}) 1

 (e_{j_1}) $(e_{j_2} \cdot)$ 1

 (e_{j_1}) (e_{j_2}) ••• 1

$\mathbb O$ multiplication algebra

Idempotents

$$s \coloneqq \frac{1}{2} (1 + iL_{e_7}) \qquad S \coloneqq \frac{1}{2} (1 + iR_{e_7})$$
$$s^* \coloneqq \frac{1}{2} (1 - iL_{e_7}) \qquad S^* \coloneqq \frac{1}{2} (1 - iR_{e_7})$$

$\mathbb O$ multiplication algebra

Idempotents

$$s \coloneqq \frac{1}{2}(1 + iL_{e_7}) \qquad S \coloneqq \frac{1}{2}(1 + iR_{e_7})$$
$$s^* \coloneqq \frac{1}{2}(1 - iL_{e_7}) \qquad S^* \coloneqq \frac{1}{2}(1 - iR_{e_7})$$

Left multiplication

Left multiplication

1

 $(\cdot e_{j_1})$ 1

 $(\cdot e_{j_1})$ $(\cdot e_{j_2})$ 1

Right multiplication

Right multiplication

$$(\cdot e_7) = 1/2 \left(e_1(e_3 \cdot) + e_2(e_6 \cdot) + e_4(e_5 \cdot) - (e_7 \cdot) \right)$$

$\mathbb O$ multiplication algebra

Idempotents

$$s \coloneqq \frac{1}{2} (1 + iL_{e_7}) \qquad S \coloneqq \frac{1}{2} (1 + iR_{e_7})$$
$$s^* \coloneqq \frac{1}{2} (1 - iL_{e_7}) \qquad S^* \coloneqq \frac{1}{2} (1 - iR_{e_7})$$

Quaternion Left and Right multiplication

$$s \coloneqq \frac{1}{2} (1 + iL_{e_7}) \qquad S \coloneqq \frac{1}{2} (1 + iR_{e_7})$$
$$s^* \coloneqq \frac{1}{2} (1 - iL_{e_7}) \qquad S^* \coloneqq \frac{1}{2} (1 - iR_{e_7})$$

$$s \coloneqq \frac{1}{2} (1 + iL_{e_7}) \qquad S \coloneqq \frac{1}{2} (1 + iR_{e_7})$$
$$s^* \coloneqq \frac{1}{2} (1 - iL_{e_7}) \qquad S^* \coloneqq \frac{1}{2} (1 - iR_{e_7})$$

$$t := \frac{1}{2} (1 + iL_{\epsilon_3}) \qquad T := \frac{1}{2} (1 + iR_{\epsilon_3})$$
$$t^* := \frac{1}{2} (1 - iL_{\epsilon_3}) \qquad T^* := \frac{1}{2} (1 - iR_{\epsilon_3})$$

$$s \coloneqq \frac{1}{2}(1 + iL_{e_7}) \qquad S \coloneqq \frac{1}{2}(1 + iR_{e_7})$$
$$s^* \coloneqq \frac{1}{2}(1 - iL_{e_7}) \qquad S^* \coloneqq \frac{1}{2}(1 - iR_{e_7})$$

$$t := \frac{1}{2} (1 + iL_{\epsilon_3}) \qquad T := \frac{1}{2} (1 + iR_{\epsilon_3})$$
$$t^* := \frac{1}{2} (1 - iL_{\epsilon_3}) \qquad T^* := \frac{1}{2} (1 - iR_{\epsilon_3})$$

sSt
sSt^*
$sS^{*}t$
$sS^{*}t^{*}$
s^*St
s^*St^*
s^*S^*t
$s^*S^*t^*$

sSt	helicity \uparrow	lepton
sSt^*	helicity \downarrow	lepton
$sS^{*}t$	helicity \uparrow	baryon
$sS^{*}t^{*}$	helicity \downarrow	baryon
s^*St	isospin \uparrow	LH
s^*St^*	isospin \downarrow	LH
s^*S^*t	isospin \uparrow	RH
$s^*S^*t^*$	isospin \downarrow	RH

sSt	helicity \uparrow	lepton
sSt^*	helicity \downarrow	lepton
$sS^{*}t$	helicity \uparrow	baryon
$sS^{*}t^{*}$	helicity \downarrow	baryon
s^*St	isospin \uparrow	LH
s^*St^*	isospin \downarrow	LH
s^*S^*t	isospin \uparrow	RH
$s^*S^*t^*$	isospin \downarrow	RH

Observation: no projections on colour.

Consider hermitian parts of

Consider hermitian parts of

Left:

Consider hermitian parts of

Left: $L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}} \simeq \mathbb{C}l(8)$

Consider hermitian parts of

Left: $L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}} \simeq \mathbb{C}l(8)$

Left and right:

Consider hermitian parts of

Left: $L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}} \simeq \mathbb{C}l(8)$

Left and right: $M_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}} \simeq \mathbb{C}l(8) \otimes_{\mathbb{C}} \mathbb{C}l(2)$

Consider hermitian parts of

Left: $L_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}} \simeq \mathbb{C}l(8)$

Left and right: $M_{\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}} \simeq \mathbb{C}l(8) \otimes_{\mathbb{C}} \mathbb{C}l(2) \simeq \mathbb{C}l(10)$

Summary

Action of ℓ_{sm} on $\mathcal{H}_{16}(\mathbb{C})$

$$\begin{split} \delta b &= \ell_{sm} b + b \, \ell_{sm}^{\dagger} & \text{diagonal} \\ \delta f_0 &= \ell_{sm} s f_0 s^* + s f_0 s^* \ell_{sm} + h.c. & \text{outer off-diagonal} \\ \delta f_+ &= \ell_{sm} (s S^* f_+ s S + s^* S^* f_+ s^* S) \\ &+ (s S^* f_+ s S + s^* S^* f_+ s^* S) \ell_{sm}^{\dagger *} + h.c. & \text{inner off-diagonal} \end{split}$$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$\left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_2 \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_2 \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_2 \end{array}$
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_\tau, \ au \)_L$	$ \begin{array}{c} \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \end{array} \\ \end{array} $
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$ u_{eR} $ $ u_{\mu R} $ $ u_{ au R}$	$\begin{array}{c} (\underline{1}, \underline{1}, 0)_{2} \\ (\underline{1}, \underline{1}, 0)_{2} \\ (\underline{1}, \underline{1}, 0)_{2} \end{array}$
$e_R \ \mu_R \ au_R$	$(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$
$p_{\mu} \ p_{\mu}^{\prime}$	$(\underline{1}, \underline{1}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$(\underline{8}, \underline{1}, 0)_4$ $(\underline{1}, \underline{3}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$

$232~\mathbb{R}$	\mathcal{H}_{16}	$_{\mathrm{S}}(\mathbb{C})$	
$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^*S \mathcal{H}_{16}(\mathbb{C}) sS^*$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$\mathcal{H}_{16}(\mathbb{C})$

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$s^{\star}S \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

"Peirce decomposition"

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_{2} \end{array} $
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_\tau, \ au \)_L$	$ \begin{array}{c} \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \end{array} \end{array} $
$egin{array}{l} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \end{array} \right. $
$ u_{eR} $ $ u_{\mu R} $ $ u_{ au R}$	$(\underline{1}, \underline{1}, 0)_2$ $(\underline{1}, \underline{1}, 0)_2$ $(\underline{1}, \underline{1}, 0)_2$
$e_R \ \mu_R \ au_R$	$(\underline{1}, \underline{1}, -1)_2 (\underline{1}, \underline{1}, -1)_2 (\underline{1}, \underline{1}, -1)_2$
$p_{\mu} \ p'_{\mu}$	$(\underline{1}, \underline{1}, 0)_4 \\ (\underline{1}, \underline{1}, 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$(\underline{8}, \underline{1}, 0)_4$ $(\underline{1}, \underline{3}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$

Covariant derivative

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

 $sS \mathcal{H}_{16}(\mathbb{C}) sS$

 $sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$

 $s^*S \mathcal{H}_{16}(\mathbb{C}) sS$

 $s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$

 $s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2$
$(\ u_e, \ e \)_L \ (\ u_{\mu}, \ \mu \)_L \ (\ u_{\tau}, \ au \)_L$	$ \begin{pmatrix} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{pmatrix}_{2} \\ (\ \underline{1}, \ \underline{2}, \ -\frac{1}{2})_{2} \\ (\ \underline{1}, \ \underline{2}, \ -\frac{1}{2})_{2} \end{cases} $
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$ u_{eR} $ $ u_{\mu R} $ $ u_{ au R}$	$\begin{array}{c} (\underline{1}, \underline{1}, 0)_{2} \\ (\underline{1}, \underline{1}, 0)_{2} \\ (\underline{1}, \underline{1}, 0)_{2} \end{array}$
$e_R \ \mu_R \ au_R$	$(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$
$p_{\mu} \ p'_{\mu}$	$(\underline{1}, \underline{1}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$(\underline{8}, \ \underline{1}, \ 0 \)_4$ $(\ \underline{1}, \ \underline{3}, \ 0 \)_4$ $(\ \underline{1}, \ \underline{1}, \ 0 \)_4$

$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$ $sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$ $sS \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$ $sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$ $sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$ $sS^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$ $s^{\star}S \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$ $s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$ $s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$

 $s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$

Fermions

 $s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{2}, \ \frac{1}{6} \end{array} \right)_{2} \end{array} $
$(\ u_e, \ e \)_L \ (\ u_\mu, \ \mu \)_L \ (\ u_\tau, \ au \)_L$	$ \begin{array}{c} \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \\ \left(\begin{array}{c} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{array} \right)_2 \end{array} \end{array} $
$egin{array}{l} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{ccc} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ -\frac{1}{3} \end{array} \right)_{2} \end{array} \right. $
$ u_{eR} $ $ u_{\mu R} $ $ u_{ au R}$	$(\underline{1}, \underline{1}, 0)_2$ $(\underline{1}, \underline{1}, 0)_2$ $(\underline{1}, \underline{1}, 0)_2$
$e_R \ \mu_R \ au_R$	$(\underline{1}, \underline{1}, -1)_2 (\underline{1}, \underline{1}, -1)_2 (\underline{1}, \underline{1}, -1)_2$
$p_{\mu} \ p'_{\mu}$	$(\underline{1}, \underline{1}, 0)_4 \\ (\underline{1}, \underline{1}, 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$(\underline{8}, \underline{1}, 0)_4$ $(\underline{1}, \underline{3}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$

Covariant derivative

$sS \mathcal{H}_{16}(\mathbb{C}) sS$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ sS^{\star}$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$	$sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$
$s^*S \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$
$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$	$s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$

 $sS \mathcal{H}_{16}(\mathbb{C}) sS$

 $sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$

 $s^*S \mathcal{H}_{16}(\mathbb{C}) sS$

 $s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS$

 $s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$

$(\ u,\ d\)_L$ $(\ c,\ s\)_L$ $(\ t,\ b\)_L$	$ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2 \ ig(\ \underline{3}, \ \underline{2}, \ \frac{1}{6} \ ig)_2$
$(\ u_e, \ e \)_L \ (\ u_{\mu}, \ \mu \)_L \ (\ u_{\tau}, \ au \)_L$	$ \begin{pmatrix} \underline{1}, \ \underline{2}, \ -\frac{1}{2} \end{pmatrix}_{2} \\ (\ \underline{1}, \ \underline{2}, \ -\frac{1}{2})_{2} \\ (\ \underline{1}, \ \underline{2}, \ -\frac{1}{2})_{2} \end{cases} $
$egin{array}{c} u_R \ c_R \ t_R \end{array}$	$ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \\ \left(\begin{array}{c} \underline{3}, \ \underline{1}, \ \frac{2}{3} \end{array}\right)_{2} \end{array} $
$d_R \ s_R \ b_R$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$ u_{eR} $ $ u_{\mu R} $ $ u_{ au R}$	$\begin{array}{c} (\underline{1}, \underline{1}, 0)_{2} \\ (\underline{1}, \underline{1}, 0)_{2} \\ (\underline{1}, \underline{1}, 0)_{2} \end{array}$
$e_R \ \mu_R \ au_R$	$(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$ $(\underline{1}, \underline{1}, -1)_2$
$p_{\mu} \ p'_{\mu}$	$(\underline{1}, \underline{1}, 0)_4$ $(\underline{1}, \underline{1}, 0)_4$
$egin{array}{c} G_\mu \ W_\mu \ B_\mu \end{array}$	$(\underline{8}, \ \underline{1}, \ 0 \)_4$ $(\ \underline{1}, \ \underline{3}, \ 0 \)_4$ $(\ \underline{1}, \ \underline{1}, \ 0 \)_4$

$sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$ $sS \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$ $sS \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$ $sS^{\star} \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$ $sS^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S$ $sS^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S^{\star}$ $s^{\star}S \ \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$ $s^{\star}S \mathcal{H}_{16}(\mathbb{C}) sS^{\star}$ $s^{\star}S \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$

 $s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star}S$

Fermions

 $s^{\star}S^{\star} \mathcal{H}_{16}(\mathbb{C}) \ s^{\star}S^{\star}$

Standard model irreps as an extension of 4-momentum: our first attempt

N. Furey and B. Romano

Humboldt-Universität zu Berlin University of Oxford