
N. Furey and B. Romano 
Humboldt-Universität zu Berlin 

University of Oxford

Standard model irreps  
as an extension of 4-momentum:  

our first attempt









12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-

counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein
familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock
space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.
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multiply
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† ∶ LC⊗H⊗O → LC⊗H⊗O

(C imaginary ) i� −i
(H imaginaries ) ✏j � −✏j j ∈ {1,2,3}
(O imaginaries ) ek � −ek k ∈ {1,2, . . .7}

“Hermitian conjugate”

Consider hermitian subspace
of LC⊗H⊗O � H16(C)

⋅ Important applications in physics

⋅ 256R � 244R

Standard model’s particle content

as a

Jordan algebraic mosaic

Symmetry:

SU(3)×SU(2)×U(1) / Z6

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

The authors are grateful for discussions with and feed-
back from Latham Boyle, Brage Gording, Mia Hughes,
Alessio Marrani, Agostino Patella, Jan Plefka, Mike Rios,
Shadi Tahvildar-Zadeh, Christopher Thomas.

This work was graciously supported by the VW
Stiftung Freigeist Fellowship, Humboldt-Universität zu
Berlin, and a visiting fellowship at the African Institute
for Mathematical Sciences in Cape Town.

[1] Silagadze, Z.G., “SO(8) Colour as possible ori-
gin of generations,” Phys.Atom.Nucl.58:1430-1434,1995;
Yad.Fiz.58N8:1513-1517,1995 arXiv:hep-ph/9411381

[2] Kong, O., “The three families from SU(4)A × SU(3)C ×
SU(2)L × U(1)X SM-like chiral models,” Phys.Rev. D,
55, 383-396 (1997)



14

sequence

multiply

256 C

Need

244 R

† ∶ LC⊗H⊗O → LC⊗H⊗O

(C imaginary ) i� −i
(H imaginaries ) ✏j � −✏j j ∈ {1,2,3}
(O imaginaries ) ek � −ek k ∈ {1,2, . . .7}

“Hermitian conjugate”

Consider hermitian subspace
of LC⊗H⊗O � H16(C)

⋅ Important applications in physics

⋅ 256R � 244R

Standard model’s particle content

as a

Jordan algebraic mosaic

Symmetry:

SU(3)×SU(2)×U(1) / Z6

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

The authors are grateful for discussions with and feed-
back from Latham Boyle, Brage Gording, Mia Hughes,
Alessio Marrani, Agostino Patella, Jan Plefka, Mike Rios,
Shadi Tahvildar-Zadeh, Christopher Thomas.

This work was graciously supported by the VW
Stiftung Freigeist Fellowship, Humboldt-Universität zu
Berlin, and a visiting fellowship at the African Institute
for Mathematical Sciences in Cape Town.

[1] Silagadze, Z.G., “SO(8) Colour as possible ori-
gin of generations,” Phys.Atom.Nucl.58:1430-1434,1995;
Yad.Fiz.58N8:1513-1517,1995 arXiv:hep-ph/9411381

[2] Kong, O., “The three families from SU(4)A × SU(3)C ×
SU(2)L × U(1)X SM-like chiral models,” Phys.Rev. D,
55, 383-396 (1997)



14

sequence

multiply

256 C

Need

244 R

† ∶ LC⊗H⊗O → LC⊗H⊗O

(C imaginary ) i� −i
(H imaginaries ) ✏j � −✏j j ∈ {1,2,3}
(O imaginaries ) ek � −ek k ∈ {1,2, . . .7}

“Hermitian conjugate”

Consider hermitian subspace
of LC⊗H⊗O � H16(C)

⋅ Important applications in physics

⋅ 256R � 244R

Standard model’s particle content

as a

Jordan algebraic mosaic

Symmetry:

SU(3)×SU(2)×U(1) / Z6

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

The authors are grateful for discussions with and feed-
back from Latham Boyle, Brage Gording, Mia Hughes,
Alessio Marrani, Agostino Patella, Jan Plefka, Mike Rios,
Shadi Tahvildar-Zadeh, Christopher Thomas.

This work was graciously supported by the VW
Stiftung Freigeist Fellowship, Humboldt-Universität zu
Berlin, and a visiting fellowship at the African Institute
for Mathematical Sciences in Cape Town.

[1] Silagadze, Z.G., “SO(8) Colour as possible ori-
gin of generations,” Phys.Atom.Nucl.58:1430-1434,1995;
Yad.Fiz.58N8:1513-1517,1995 arXiv:hep-ph/9411381

[2] Kong, O., “The three families from SU(4)A × SU(3)C ×
SU(2)L × U(1)X SM-like chiral models,” Phys.Rev. D,
55, 383-396 (1997)

14

sequence

multiply

216 R

Need

Gsm ∶=

† ∶ LC⊗H⊗O → LC⊗H⊗O

(C imaginary ) i� −i
(H imaginaries ) ✏j � −✏j j ∈ {1,2,3}
(O imaginaries ) ek � −ek k ∈ {1,2, . . .7}

“Hermitian conjugate”

Consider hermitian subspace
of LC⊗H⊗O � H16(C)

⋅ Important applications in physics
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2(1 + iRe7)
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O multiplication algebra
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.
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Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
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find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?
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Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
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Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of
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were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?
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ious particle representations sitting inside one copy of
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)
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Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?
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behaviour we see in elementary particle physics. If we
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with four real degrees of freedom allocated for the space-
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Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
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Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
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the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.
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Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.
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Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
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known as Bott periodicity. That is, we find that, as ma-
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ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =
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Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?
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of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
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close at 256. Moreover, this Cl(0, 8) is not far removed
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be possible to identify single particle states with the var-
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Cl(0, 8). Furthermore, could these repeating tensor prod-
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plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].



12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of

Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein
familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock
space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

The authors are grateful for discussions with and feed-
back from Latham Boyle, Brage Gording, Mia Hughes,
Alessio Marrani, Agostino Patella, Jan Plefka, Mike Rios,
Shadi Tahvildar-Zadeh, Christopher Thomas.

This work was graciously supported by the VW
Stiftung Freigeist Fellowship, Humboldt-Universität zu
Berlin, and a visiting fellowship at the African Institute
for Mathematical Sciences in Cape Town.

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].



12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of

Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein
familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock
space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

The authors are grateful for discussions with and feed-
back from Latham Boyle, Brage Gording, Mia Hughes,
Alessio Marrani, Agostino Patella, Jan Plefka, Mike Rios,
Shadi Tahvildar-Zadeh, Christopher Thomas.

This work was graciously supported by the VW
Stiftung Freigeist Fellowship, Humboldt-Universität zu
Berlin, and a visiting fellowship at the African Institute
for Mathematical Sciences in Cape Town.

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].



12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of

Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein
familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock
space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

The authors are grateful for discussions with and feed-
back from Latham Boyle, Brage Gording, Mia Hughes,
Alessio Marrani, Agostino Patella, Jan Plefka, Mike Rios,
Shadi Tahvildar-Zadeh, Christopher Thomas.

This work was graciously supported by the VW
Stiftung Freigeist Fellowship, Humboldt-Universität zu
Berlin, and a visiting fellowship at the African Institute
for Mathematical Sciences in Cape Town.

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022)

G. Dixon

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

The authors are grateful for discussions with and feed-
back from Latham Boyle, Brage Gording, Mia Hughes,
Alessio Marrani, Agostino Patella, Jan Plefka, Mike Rios,
Shadi Tahvildar-Zadeh, Christopher Thomas.

This work was graciously supported by the VW
Stiftung Freigeist Fellowship, Humboldt-Universität zu

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].



12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].



12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of

Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein
familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock
space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

The authors are grateful for discussions with and feed-
back from Latham Boyle, Brage Gording, Mia Hughes,
Alessio Marrani, Agostino Patella, Jan Plefka, Mike Rios,
Shadi Tahvildar-Zadeh, Christopher Thomas.

This work was graciously supported by the VW
Stiftung Freigeist Fellowship, Humboldt-Universität zu
Berlin, and a visiting fellowship at the African Institute
for Mathematical Sciences in Cape Town.

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].



12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of

Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein
familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock
space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

The authors are grateful for discussions with and feed-
back from Latham Boyle, Brage Gording, Mia Hughes,
Alessio Marrani, Agostino Patella, Jan Plefka, Mike Rios,
Shadi Tahvildar-Zadeh, Christopher Thomas.

This work was graciously supported by the VW
Stiftung Freigeist Fellowship, Humboldt-Universität zu
Berlin, and a visiting fellowship at the African Institute
for Mathematical Sciences in Cape Town.

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022)

G. Dixon

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].



12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of

Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein
familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock
space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

The authors are grateful for discussions with and feed-
back from Latham Boyle, Brage Gording, Mia Hughes,
Alessio Marrani, Agostino Patella, Jan Plefka, Mike Rios,
Shadi Tahvildar-Zadeh, Christopher Thomas.

This work was graciously supported by the VW
Stiftung Freigeist Fellowship, Humboldt-Universität zu
Berlin, and a visiting fellowship at the African Institute
for Mathematical Sciences in Cape Town.

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022)

G. Dixon

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].



12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of

Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein
familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock
space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

The authors are grateful for discussions with and feed-
back from Latham Boyle, Brage Gording, Mia Hughes,
Alessio Marrani, Agostino Patella, Jan Plefka, Mike Rios,
Shadi Tahvildar-Zadeh, Christopher Thomas.

This work was graciously supported by the VW
Stiftung Freigeist Fellowship, Humboldt-Universität zu
Berlin, and a visiting fellowship at the African Institute
for Mathematical Sciences in Cape Town.

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022)

G. Dixon

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022)

1 generation

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].



12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of

Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein
familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock
space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

The authors are grateful for discussions with and feed-
back from Latham Boyle, Brage Gording, Mia Hughes,
Alessio Marrani, Agostino Patella, Jan Plefka, Mike Rios,
Shadi Tahvildar-Zadeh, Christopher Thomas.

This work was graciously supported by the VW
Stiftung Freigeist Fellowship, Humboldt-Universität zu
Berlin, and a visiting fellowship at the African Institute
for Mathematical Sciences in Cape Town.

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022)

G. Dixon

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022)

1 generation

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].



12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of

Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein
familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock
space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

The authors are grateful for discussions with and feed-
back from Latham Boyle, Brage Gording, Mia Hughes,
Alessio Marrani, Agostino Patella, Jan Plefka, Mike Rios,
Shadi Tahvildar-Zadeh, Christopher Thomas.

This work was graciously supported by the VW
Stiftung Freigeist Fellowship, Humboldt-Universität zu
Berlin, and a visiting fellowship at the African Institute
for Mathematical Sciences in Cape Town.

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022)

G. Dixon

64 R

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
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, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?
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of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)
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Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

H
�
1, 2, � 1

2

�
1 (50)

LH fermions RH fermions

Gauge bosons

Higgs





G

A

T

C





12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

w,x, y, z ∈ R⊗C⊗H⊗O

w(x(yz))

“LC⊗H⊗O”

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,
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“LC⊗H⊗O”

R⊗C⊗H⊗O = C⊗H⊗O
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One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,
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64 R

R⊗C⊗H⊗O’s

left-multiplication algebra

Ly(z) ∶= yz

y, z ∈ R⊗C⊗H⊗O

Ly ∈ EndC(R⊗C⊗H⊗O)

Multiplication:

(Lx ○Ly) (z) = Lx (Ly(z)) = x(yz)

LC⊗H⊗O ∶= subalgebra of EndC(R⊗C⊗H⊗O)
generated by {Ly � y ∈ R⊗C⊗H⊗O}

LC⊗H⊗O � M16×16(C)

� Cl(8)

8 �j generate Cl(8)

∼ A, C, T, G

sequence
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plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

w,x, y, z ∈ R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R
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plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

w,x, y, z ∈ R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R
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familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.
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w,x, y, z ∈ R⊗C⊗H⊗O
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plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

w,x, y, z ∈ R⊗C⊗H⊗O

w(x(yz))

“LC⊗H⊗O”

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

12

p
le

x
C

li
↵
or

d
al

ge
b
ra

s
of

B
ot

t
p
er

io
d
ic

it
y.

B
u
t
w

hy
sh

ou
ld

B
ot

t
p
er

io
d
ic

st
ru

ct
u
re

s
b
e

im
p
or

ta
nt

?
W

e’
re

al
w

ay
s

lo
ok

in
g

fo
r

th
e

u
n
ic

or
n

B
u
t

w
e

sh
ou

ld
re

al
ly

b
e

lo
ok

in
g

fo
r

re
cu

rr
in

g
st

ru
c-

tu
re

s.
B

ot
t
p
er

io
d
ic

it
y

gi
ve

s
on

e
ex

am
p
le

of
a

re
cu

rr
in

g
st

ru
c-

tu
re

.
C

on
si

d
er

an
y

C
li
↵
or

d
al

ge
b
ra

at
ra

n
d
om

.
B

ot
t

p
er

io
d
ic

it
y

sa
ys

ov
er

w
h
el

m
in

gl
y

C
l(

08
).

L
oo

se
ly

sp
ea

ki
n
g

w
e

m
ay

b
e

ab
le

to
id

en
ti

fy
an

el
em

en
t

ou
t
of

a
ra

n
d
om

C
li
↵
or

d
al

ge
b
ra

as
a

m
u
lt

i-
p
ar

ti
cl

e
st

at
e.

E
ac

h
C

l(
08

)
fa

ct
or

co
rr

es
p
on

d
s

to
a

on
e-

p
ar

ti
cl

e
st

at
e.

S
om

e
id

ea
s

w
it

h
th

is
re

sp
ec

t
w

er
e

p
u
t

fo
rw

ar
d

in
[2

6]
.

X
IV

.
S
U

M
M

A
R

Y

W
e

d
em

on
st

ra
te

d
on

e
em

b
ed

d
in

g
of

st
an

d
ar

d
m

od
el

ir
re

d
u
ci

b
le

re
p
re

se
nt

at
io

n
s

w
it

h
in

th
e

Jo
rd

an
al

ge
b
ra

of
16
×

16
h
er

m
it

ia
n

m
at

ri
ce

s,
H

1
6
(C
),

ge
n
er

at
ed

by
th

e
le

ft
m

u
lt

ip
li
ca

ti
on

al
ge

b
ra

of
A
∶=

R
⊗

C
⊗

H
⊗

O
.

T
h
is

Jo
rd

an
al

ge
b
ra

m
ay

b
e

th
ou

gh
t

of
as

a
ge

n
er

al
iz

at
io

n
of

th
e

2
×

2
h
er

m
it

ia
n

m
at

ri
ce

s
p ↵

�̇
=

�
i ↵
�̄

i �̇
,∈
H

2
(C
)

fa
m

il
ia

r
fr

om

th
e

sp
in

or
-h

el
ic

it
y

fo
rm

al
is

m
.

M
ak

in
g

ex
p
li
ci

t
u
se

of
A

’s
oc

to
n
io

n
ic

st
ru

ct
u
re

,
w

e
id

en
ti

fi
ed

an
oc

to
n
io

n
ic

P
ei

rc
e

d
ec

om
p
os

it
io

n
of
H

1
6
(C
),

an
d

sh
ow

h
ow

th
e

st
an

d
ar

d
m

od
el

’s
ir

re
d
u
ci

b
le

re
p
re

se
n
-

ta
ti

on
s

fi
t

in
si

d
e

th
es

e
b
lo

ck
s.

W
e

p
oi

nt
ou

t
h
ow

th
is

P
ei

rc
e

d
ec

om
p
os

it
io

n
is

fu
rt

h
er

m
or

e
u
se

fu
l

fo
r

id
en

ti
fy

-
in

g
p
ro

je
ct

iv
e

m
ea

su
re

m
en

ts
of

fu
n
d
am

en
ta

l
p
ar

ti
cl

es
.

T
h
e

ar
ra

n
ge

m
en

t
of

st
an

d
ar

d
m

od
el

ir
re

d
u
ci

b
le

re
p
-

re
se

nt
at

io
n
s

ta
ke

s
th

e
fo

rm
of

a
ge

n
er

al
iz

ed
co

va
ri

an
t

d
er

iv
at

iv
e,

w
it

h
m

om
en

ta
an

d
ga

u
ge

b
os

on
s

ap
p
ea

ri
n
g

in
d
ia

go
n
al

b
lo

ck
s,

an
d

fe
rm

io
n
s

ap
p
ea

ri
n
g

in
o↵

-d
ia

go
n
al

b
lo

ck
s.

B
as

ed
on

th
e

d
is

cr
et

e
sy

m
m

et
ri

es
of

A
an

d
it

s
le

ft
-

m
u
lt

ip
li
ca

ti
on

al
ge

b
ra

,
w

e
p
ro

p
os

e
on

e
se

t
of

tr
an

sf
or

-
m

at
io

n
ru

le
s

on
th

es
e

P
ei

rc
e

su
b
sp

ac
es

.
O

n
a

fi
rs

t
p
as

s,
th

es
e

tr
an

sf
or

m
at

io
n

ru
le

s
gi

ve
23

2
re

al
d
eg

re
es

of
fr

ee
-

d
om

tr
an

sf
or

m
in

g
u
n
d
er

S
U

(3
) C
×

S
U

(2
) L
×

U
(1

) Y
�Z

6

in
ac

co
rd

an
ce

w
it

h
th

e
st

an
d
ar

d
m

od
el

.
(T

h
e

st
an

d
ar

d
m

od
el

’s
re

al
o↵

-s
h
el

l
d
eg

re
es

of
fr

ee
d
om

am
ou

nt
to

24
8

w
h
en

on
e

in
cl

u
d
es

th
re

e
ge

n
er

at
io

n
s

of
st

er
il
e

n
eu

tr
in

os
,

an
d

in
d
ep

en
d
en

t
4-

m
om

en
ta

fo
r

th
e

le
p
to

n
ic

an
d

b
ar

y-
on

ic
se

ct
or

s.
)

D
is

cr
ep

an
ci

es
ap

p
ea

r
as

an
in

it
ia

l
ov

er
-

co
u
nt

in
g

of
el

ec
tr

ow
ea

k
b
os

on
s,

th
e

la
ck

of
tw

o
ge

n
er

a-
ti

on
s

of
ri

gh
t-

h
an

d
ed

le
p
to

n
s,

an
d

in
th

e
om

is
si

on
of

th
e

H
ig

gs
.

U
p
on

th
e

in
tr

od
u
ct

io
n

of
a

se
co

n
d

oc
to

n
io

n
ic

co
m

p
le

x
st

ru
ct

u
re

,
h
ow

ev
er

,
w

e
d
em

on
st

ra
te

a
si

m
u
lt

an
eo

u
s

re
s-

ol
u
ti

on
to

th
e

co
u
nt

in
g

of
el

ec
tr

ow
ea

k
b
os

on
s

an
d

ri
gh

t-
h
an

d
ed

le
p
to

n
s.

T
h
e

st
at

u
s

of
th

e
H

ig
gs

re
m

ai
n
s

sp
ec

u
-

la
ti

ve
.

In
se

ar
ch

of
a

b
ig

ge
r

p
ic

tu
re

,
w

e
qu

es
ti

on
th

e
im

p
or

-
ta

n
ce

of
th

e
fu

ll
m

u
lt

ip
li
ca

ti
on

al
ge

b
ra

of
A

,
w

h
ic

h
is

is
om

or
p
h
ic

to
C

l(
8)
⊗

C
C

l(
2)

.
W

it
h

an
id

en
ti

fi
ca

ti
on

of
C

l(
8)

an
d

st
an

d
ar

d
m

od
el

in
te

rn
al

d
eg

re
es

of
fr

ee
d
om

,
w

e
p
ro

p
os

e
an

id
en

ti
fi
ca

ti
on

of
C

l(
2)

an
d

th
e

vi
el

b
ei

n

fa
m

il
ia

r
fr

om
ge

n
er

al
re

la
ti

vi
ty

.
S
u
ch

a
vi

el
b
ei

n
m

ay
b
e

vi
ew

ed
as

a
b
as

ic
b
u
il
d
in

g
b
lo

ck
of

em
er

ge
nt

sp
ac

et
im

e.
F
in

al
ly

,
w

e
p
oi

nt
ou

t
th

e
fa

ct
th

at
A

’s
m

u
lt

ip
li
ca

-
ti

on
al

ge
b
ra

m
ay

b
e

eq
u
iv

al
en

tl
y

se
p
ar

at
ed

as
tw

o
w

el
l-

kn
ow

n
B

ot
t

p
er

io
d
ic

st
ru

ct
u
re

s:
C

l(
0,

8)
⊗

C
l(

2)
.
F
ro

m
h
er

e,
w

e
p
u
t

fo
rw

ar
d

a
p
ro

p
os

al
fo

r
a

B
o
tt
-
p
e
r
io

d
ic

F
o
c
k

s
p
a
c
e
,

w
it

h
el

em
en

ts
of

C
l(

0,
8)

sp
ec

if
yi

n
g

on
e-

p
ar

ti
cl

e
st

at
es

,
an

d
el

em
en

ts
of

ge
n
er

ic
C

li
↵
or

d
al

ge
b
ra

s
sp

ec
if
y-

in
g

m
u
lt

i-
p
ar

ti
cl

e
st

at
es

.

R
,

C
,

H
,

O

R
⊗

C
⊗

H
⊗

O

w
,x

,y
,z
∈

R
⊗

C
⊗

H
⊗

O

w
(x
(y

z)
)

} en
co

d
e

p
ar

ti
cl

es
?

}

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013
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plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.
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tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i
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, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.
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R⊗C⊗H⊗O

w,x, y, z ∈ R⊗C⊗H⊗O
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One generation of standard model Weyl representations
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We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

w,x, y, z ∈ R⊗C⊗H⊗O

w(x(yz))

“LC⊗H⊗O”

R⊗C⊗H⊗O = C⊗H⊗O
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plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,
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Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.
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and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.
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plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R

R⊗C⊗H⊗O’s

left-multiplication algebra
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R, C, H, O

R⊗C⊗H⊗O

w,x, y, z ∈ R⊗C⊗H⊗O

“LC⊗H⊗O”

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

15

Gsm ∶=

† ∶ LC⊗H⊗O → LC⊗H⊗O

(C imaginary ) i� −i
(H imaginaries ) ✏j � −✏j j ∈ {1,2,3}
(O imaginaries ) ek � −ek k ∈ {1,2, . . .7}

“Hermitian conjugate”

Consider hermitian subspace
of LC⊗H⊗O � H16(C)

⋅ Important applications in physics

⋅ 256R � 244R

Standard model’s particle content

as a

Jordan algebraic mosaic

Symmetry:

SU(3)×SU(2)×U(1) / Z6

Particles?

operator

state

s ∶= 1
2(1 + iLe7) S ∶= 1

2(1 + iRe7)

s∗ ∶= 1
2(1 − iLe7) S∗ ∶= 1

2(1 − iRe7)

Generic element of Gsm’s Lie algebra
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XIV. SUMMARY

We demonstrated one embedding of standard model
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16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i
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�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

w,x, y, z ∈ R⊗C⊗H⊗O

w(x(yz))

“LC⊗H⊗O”

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,
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plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R

R⊗C⊗H⊗O’s

left-multiplication algebra
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Ly(z) ∶= yz

y, z ∈ R⊗C⊗H⊗O

Ly ∈ EndC(R⊗C⊗H⊗O)

Multiplication:

(Lx ○Ly) (z) = Lx (Ly(z)) = x(yz)

LC×H⊗O ∶= subalgebra of EndC(R⊗C⊗H⊗O) generated
by {Ly � y ∈ R⊗C⊗H⊗O}

LC×H⊗O �M16×16(C)

� Cl(8)

8 �j generate Cl(8)

∼ A, C, T, G
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when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
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Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
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Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.
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(H imaginaries ) ✏j � −✏j j ∈ {1,2,3}
(O imaginaries ) ek � −ek k ∈ {1,2, . . .7}
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Consider hermitian subspace
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⋅ Important applications in physics
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Particles?

operator

state
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2(1 + iLe7) S ∶= 1

2(1 + iRe7)

s∗ ∶= 1
2(1 − iLe7) S∗ ∶= 1

2(1 − iRe7)

Generic element of Gsm’s Lie algebra



13

“LC⊗H⊗O”

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R

R⊗C⊗H⊗O’s

left-multiplication algebra

Ly(z) ∶= yz

y, z ∈ R⊗C⊗H⊗O

Ly ∈ EndC(R⊗C⊗H⊗O)

Multiplication:

(Lx ○Ly) (z) = Lx (Ly(z)) = x(yz)

LC×H⊗O ∶= subalgebra of EndC(R⊗C⊗H⊗O) generated
by {Ly � y ∈ R⊗C⊗H⊗O}

LC×H⊗O �M16×16(C)

� Cl(8)

8 �j generate Cl(8)

∼ A, C, T, G

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

13

“LC⊗H⊗O”

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R

R⊗C⊗H⊗O’s

left-multiplication algebra

Ly(z) ∶= yz

y, z ∈ R⊗C⊗H⊗O

Ly ∈ EndC(R⊗C⊗H⊗O)

Multiplication:

(Lx ○Ly) (z) = Lx (Ly(z)) = x(yz)

LC×H⊗O ∶= subalgebra of EndC(R⊗C⊗H⊗O) generated
by {Ly � y ∈ R⊗C⊗H⊗O}

LC×H⊗O �M16×16(C)

� Cl(8)

8 �j generate Cl(8)

∼ A, C, T, G

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [25].

12

plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.
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odromies, fluxes, and compact three-generation F-theory
GUTS,” JHEP, 08, 046 (2009)

[6] Manogue, C.A., Dray, T., “Octonions, E6, and Particle
Physics,” J.Phys.Conf.Ser., 254, 012005 (2010)

[7] Evans, J.L., Ibe, M., Kehayias, J., Yanagida, T.T., “Non-
anomalous discrete R-symmetry decrees three genera-
tions,” Phys.Rev.Lett., 109, 181801 (2012)

[8] Gould, A., “Anthropic argument for three generations,”
arXiv:1011.2761 [hep-ph]

[9] Kaplan, D.B., Sun, S., “Spacetime as a topological insu-
lator: mechanism for the origin of fermion generations,”
Phys.Rev.Lett., 108, 181807 (2012)

[10] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]
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plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.
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plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.
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Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.
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Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY
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identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
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dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
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onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
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Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
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But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of

Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein
familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock
space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

R⊗C⊗H⊗O = C⊗H⊗O
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“LC⊗H⊗O”

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,

One generation of standard model Weyl representations

as a single copy of R⊗C⊗H⊗O,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

1 generation

64 R

R⊗C⊗H⊗O’s

left-multiplication algebra

Ly(z) ∶= yz

y, z ∈ R⊗C⊗H⊗O

Ly ∈ EndC(R⊗C⊗H⊗O)

Multiplication:

(Lx ○Ly) (z) = Lx (Ly(z)) = x(yz)

LC⊗H⊗O ∶= subalgebra of EndC(R⊗C⊗H⊗O)
generated by {Ly � y ∈ R⊗C⊗H⊗O}

LC⊗H⊗O � M16×16(C)

� Cl(8)

8 �j generate Cl(8)

∼ A, C, T, G

sequence
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plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.

R, C, H, O

R⊗C⊗H⊗O

w,x, y, z ∈ R⊗C⊗H⊗O

w(x(yz))

“LC⊗H⊗O”

R⊗C⊗H⊗O = C⊗H⊗O

N.F., M.J. Hughes,
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R⊗C⊗H⊗O’s

left-multiplication algebra

Ly(z) ∶= yz

y, z ∈ R⊗C⊗H⊗O

Ly ∈ EndC(R⊗C⊗H⊗O)

Multiplication:

(Lx ○Ly) (z) = Lx (Ly(z)) = x(yz)

LC⊗H⊗O ∶= subalgebra of EndC(R⊗C⊗H⊗O)
generated by {Ly � y ∈ R⊗C⊗H⊗O}

LC⊗H⊗O � M16×16(C)

� Cl(8)

8 �j generate Cl(8)

∼ A, C, T, G

sequence
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plex Cli↵ord algebras of Bott periodicity. But why should
Bott periodic structures be important?

We’re always looking for the unicorn
But we should really be looking for recurring struc-

tures.
Bott periodicity gives one example of a recurring struc-

ture.
Consider any Cli↵ord algebra at random.
Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
multiplication algebra of A ∶= R⊗C⊗H⊗O. This Jordan
algebra may be thought of as a generalization of the 2×2
hermitian matrices p↵�̇ = �i

↵�̄i
�̇
, ∈ H2(C) familiar from

the spinor-helicity formalism.
Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.

The arrangement of standard model irreducible rep-
resentations takes the form of a generalized covariant
derivative, with momenta and gauge bosons appearing in
diagonal blocks, and fermions appearing in o↵-diagonal
blocks.

Based on the discrete symmetries of A and its left-
multiplication algebra, we propose one set of transfor-
mation rules on these Peirce subspaces. On a first pass,
these transformation rules give 232 real degrees of free-
dom transforming under SU(3)C × SU(2)L × U(1)Y �Z6

in accordance with the standard model. (The standard
model’s real o↵-shell degrees of freedom amount to 248
when one includes three generations of sterile neutrinos,
and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
lative.

In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
isomorphic to Cl(8) ⊗C Cl(2). With an identification of
Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.
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Bott periodicity says overwhelmingly Cl(08).
Loosely speaking we may be able to identify an element

out of a random Cli↵ord algebra as a multi-particle state.
Each Cl(08) factor corresponds to a one-particle state.

Some ideas with this respect were put forward in [26].

XIV. SUMMARY

We demonstrated one embedding of standard model
irreducible representations within the Jordan algebra of
16×16 hermitian matrices, H16(C), generated by the left
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algebra may be thought of as a generalization of the 2×2
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, ∈ H2(C) familiar from
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Making explicit use of A’s octonionic structure, we

identified an octonionic Peirce decomposition of H16(C),
and show how the standard model’s irreducible represen-
tations fit inside these blocks. We point out how this
Peirce decomposition is furthermore useful for identify-
ing projective measurements of fundamental particles.
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in accordance with the standard model. (The standard
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and independent 4-momenta for the leptonic and bary-
onic sectors.) Discrepancies appear as an initial over-
counting of electroweak bosons, the lack of two genera-
tions of right-handed leptons, and in the omission of the
Higgs.

Upon the introduction of a second octonionic complex
structure, however, we demonstrate a simultaneous res-
olution to the counting of electroweak bosons and right-
handed leptons. The status of the Higgs remains specu-
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In search of a bigger picture, we question the impor-
tance of the full multiplication algebra of A, which is
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Cl(8) and standard model internal degrees of freedom,
we propose an identification of Cl(2) and the vielbein

familiar from general relativity. Such a vielbein may be
viewed as a basic building block of emergent spacetime.

Finally, we point out the fact that A’s multiplica-
tion algebra may be equivalently separated as two well-
known Bott periodic structures: Cl(0,8) ⊗ Cl(2). From
here, we put forward a proposal for a Bott-periodic Fock

space, with elements of Cl(0,8) specifying one-particle
states, and elements of generic Cli↵ord algebras specify-
ing multi-particle states.
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS

A. H2(C)

↵ :=

✓
0 1

0 0

◆
, ↵

† :=

✓
0 0

1 0

◆
, (6)

v := ↵↵
† =

✓
1 0

0 0

◆
(7)

 :=  
"
v +  

#
↵

†
v =

 
 

" 0

 
# 0

!
(8)

for  "
, 

#
2 C.

4X

µ=1

pµ�
µ =

2X

i=1

 i 
†
i (9)

4X

µ=1

pµ�
µ = c1 v + c2 v↵+ c3 ↵

†
v + c4 ↵

†
v↵ + h.c., (10)

for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as

4X

µ=1

pµ�
µ =

X

i,j=0,1

cij ↵
†
iv↵j + h.c., (11)

where we have now defined ↵1 := ↵, and ↵0 := I.

B. H16(C)

Define ↵1, ↵2, ↵3, ↵4 such that

{↵i,↵j} = 0, {↵i,↵
†
j} = �ij , (12)

where it is understood that {a, b} := ab + ba.

v := ↵1↵2↵3↵4↵
†
4↵

†
3↵

†
2↵

†
1 (13)

256X

µ=1

pµ�
µ =

16X

i=1

 i 
†
i (14)

In analogy to equation (11),

256X

µ=1

pµ�
µ = cijklmnpq ↵

†
i↵

†
j↵

†
k↵

†
l v↵m↵n↵p↵q + h.c.,

(15)
for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS

Define idempotents s, s
?
, S, S

? in terms of ladders.

s := vc+↵†
3↵

†
2vc↵2↵3+↵†

1↵
†
3vc↵3↵1+↵†

2↵
†
1vc↵1↵2, (16)

where vc is known as the colour vacuum, and is defined as
vc := ↵1↵2↵3↵

†
3↵

†
2↵

†
1. The idempotent s

? is most simply
defined as s

? := I � s. Similarly may be able to defined
another idempotent as

S := vc + ↵
†
1vc↵1 + ↵

†
2vc↵2 + ↵

†
3vc↵3. (17)

Furthermore defined S
? := I � S. Note that sS = Ss.

Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.

V. ASSEMBLING STANDARD MODEL
DEGREES OF FREEDOM INSIDE H16(C)

A. Three generations of quarks and leptons

Left-handed quarks
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Possible precursors for weak hypercharge gauge boson
Bµ�
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Y
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1

2
(B � L) + ⌧

R
3 (28)
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R
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2
s
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⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

s
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2

als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT
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for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS
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Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as
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where we have now defined ↵1 := ↵, and ↵0 := I.

B. H16(C)

Define ↵1, ↵2, ↵3, ↵4 such that
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In analogy to equation (11),
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for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS
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where vc is known as the colour vacuum, and is defined as
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defined as s
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another idempotent as

S := vc + ↵
†
1vc↵1 + ↵

†
2vc↵2 + ↵

†
3vc↵3. (17)

Furthermore defined S
? := I � S. Note that sS = Ss.

Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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This may be written more compactly as
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B. H16(C)
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†
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†
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In analogy to equation (11),

256X
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pµ�
µ = cijklmnpq ↵

†
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†
j↵

†
k↵

†
l v↵m↵n↵p↵q + h.c.,

(15)
for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).
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IDEMPOTENTS

Define idempotents s, s
?
, S, S
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where vc is known as the colour vacuum, and is defined as
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†
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†
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†
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? is most simply
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Although it may not be obvious from their current def-
inition, s, s

?
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where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons

Within the upper diagonal blocks of H16(C) in Fig-
ure (1) we find

Quark momentum and Gluons sS
⇤

H16(C) sS
⇤

Quark momentum 7! pµ �
µ
sS

⇤

Gluons 7! G
a
µ �

µ⇤asS
⇤
,

(19)
where pµ, G

a
µ 2 R. We define vs := ↵4↵

†
4, and

�
0 := ↵

†
4vs↵4 + vs �

1 := ↵
†
4vs + vs↵4

�
2 := �i↵

†
4vs + ivs↵4 �
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†
4vs↵4 � vs,

(20)
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†
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†
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†
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†
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†
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†
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†
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†
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†
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†
1↵

†
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†
1↵

†
2vc↵2↵3 � ↵

†
3↵

†
2vc↵2↵1,

⇤5 := �i↵
†
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†
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†
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†
2vc↵2↵1,
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†
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†
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†
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†
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†
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†
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†
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⌘
.

(21)
Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS

Lepton momentum 7! p
0
µ �

µ
sS,

(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.

C. Possible electroweak gauge boson precursors

Within the lower diagonal blocks of H16(C) in Fig-
ure (1), we identify degrees of freedom corresponding to

W
1,2,3
µ precursors s

⇤
St H16(C) ts

⇤
S

W
1,2,3
µ precursors 7! W

j
µ �j�

0µ
s

?
S,

(23)

where

�
0
0 := 1

2 (↵†
1vc↵1 + ↵

†
2vc↵2), �

0
1 := 1

2 (↵†
1vc↵2 + ↵

†
2vc↵1),

�
0
2 := 1

2 (�i↵
†
1vc↵2 + i↵

†
2vc↵1), �

0
3 := 1

2 (↵†
1vc↵1 � ↵

†
2vc↵2).

(24)
Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.

Finally, we use the well-known relation Y = 1
2 (B �

L) + ⌧
R
3 to propose a map from

Bµ precursors 7! W
m
j �

j
�

0
ms

?
S, (25)

where ⌧
R
m := i✏m

2 s
⇤
S

⇤
.
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as
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where we have now defined ↵1 := ↵, and ↵0 := I.
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In analogy to equation (11),
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l v↵m↵n↵p↵q + h.c.,

(15)
for cijklmnpq 2 C, and an implied sum over
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Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs

Nice parallels: spin to isospin as colour to generations

Might ultimately need relative spin relative colour def-
inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:

Read intros on Jordan algebras Read Latham and
Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
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under which  may be reinterpreted as  ?. Clearly this
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D. Bott periodicity

Finally, we close this article with one further idea
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VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION
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helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

s
?
S

?
H16(C) sS

s
?
S

?
H16(C) sS

?

s
?
S

?
H16(C) s

?
S

s
?
S H16(C) s

?
S

?

v

↵
†
j↵

†
i v ↵k↵`

↵
†
j↵

†
i v ↵k

↵
†
j↵

†
i v ↵1↵2↵3

↵
†
3↵

†
2↵

†
1 v ↵1↵2↵3

↵
†
3↵

†
2↵

†
1 v

↵
†
3↵

†
2↵

†
1 v ↵k↵`

↵
†
3↵

†
2↵

†
1 v ↵k

↵
†
3↵

†
2↵

†
1 v ↵1↵2↵3

⌫eR ( 1, 1, 0 )2
⌫µR ( 1, 1, 0 )2
⌫⌧R ( 1, 1, 0 )2

(31)

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

pµ ( 1, 1, 0 )4

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras - wikipedia - done -
nlab - done
Diagram - done
McCrimmon intro - done
John Baez’ paper - done
Read Latham and Shane’s paper - done
Know the basic idea with spinor-helicity formalism
Talk to Jan
Write the whole thing out
Talk to Beth about what to do with the subsequent

paper
First paper:
embed SM states inside H16
Was originally hoping for Cl(8) but this doesn’t seem

to match SM states
Not nec trf under Gsm
Connect to spinor-helicity formalism
No mathematical motivation, not anything particu-

larly deep being said about the algebra
No division algebras
Second paper:
Nice mathematical starting point. Left mult algeb of

RCHO. 16x16C matrices. Lie alg = anti-herm JA =
herm. Under involution i eps e. Need to check that’s
an anti-aut

Might even be able to relate it back to 1 gen model of
Mia and I.

Then can use complex structures to break Lie alg and
JA down to subalgebras.

See how close we can get to the SM embedding of the
first paper. Don’t nec even need to make it all the way
there.

Been looking up intros to JA. A lot of structures that
should be in there. p15 of JA notes

eg bi Caley algebra
In particular Jordan triple system of McCrimmon -

mult algebra looks super familiar.
Close to Jodi Foster, except determinant piece -

quaternionic structure.
Read into determinants - check that paper you recently

downloaded
Reread Cedarwall’s Jordan algebra paper
Take a look at Gunaydin’s old notes on JAs
read Shane’s paper

s
?
S

?
H16(C) sS

s
?
S

?
H16(C) sS

?

s
?
S

?
H16(C) s

?
S

s
?
S H16(C) s

?
S

?

v

↵
†
j↵

†
i v ↵k↵`

↵
†
j↵

†
i v ↵k

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

p
0
µ ( 1, 1, 0 )4

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.
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Mia and I.
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first paper. Don’t nec even need to make it all the way
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eg bi Caley algebra
In particular Jordan triple system of McCrimmon -

mult algebra looks super familiar.
Close to Jodi Foster, except determinant piece -

quaternionic structure.
Read into determinants - check that paper you recently

downloaded
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons

Within the upper diagonal blocks of H16(C) in Fig-
ure (1) we find

Quark momentum and Gluons sS
⇤

H16(C) sS
⇤

Quark momentum 7! pµ �
µ
sS

⇤

Gluons 7! G
a
µ �

µ⇤asS
⇤
,

(19)
where pµ, G

a
µ 2 R. We define vs := ↵4↵

†
4, and

�
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†
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†
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†
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†
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†
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†
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†
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†
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†
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†
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†
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†
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†
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†
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†
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⌘
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(21)
Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS

Lepton momentum 7! p
0
µ �

µ
sS,

(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.

C. Possible electroweak gauge boson precursors

Within the lower diagonal blocks of H16(C) in Fig-
ure (1), we identify degrees of freedom corresponding to

W
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W
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�
0
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0
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†
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(24)
Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.

Finally, we use the well-known relation Y = 1
2 (B �

L) + ⌧
R
3 to propose a map from

Bµ precursors 7! W
m
j �

j
�

0
ms

?
S, (25)
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R
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2 s
⇤
S

⇤
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⋅ Important applications in physics

⋅ 256R � 244R

Standard model’s particle content

as a

Jordan algebraic mosaic

Symmetry:

SU(3)×SU(2)×U(1) / Z6

Particles?

Fermions

s ∶= 1
2(1 + iLe7) S ∶= 1

2(1 + iRe7)

s∗ ∶= 1
2(1 − iLe7) S∗ ∶= 1

2(1 − iRe7)

Generic element of Gsm’s Lie algebra

su(3)C su(2)L u(1)Y
`sm ∶= ir′n⇤ns + rkL✏ks∗S + r

2(
i
3sS∗ − isS −L✏3s

∗S∗)

n ∈ {1,2, . . .8}
k ∈ {1,2,3}

∈ der(O)

∈ der(H)
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�b = `smb + b `†sm diagonal

�f0 = `smsf0s
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∗S)

+(sS∗f+sS + s∗S∗f+s
∗S)`†∗sm + h.c. inner o↵-diagonal
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as
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where we have now defined ↵1 := ↵, and ↵0 := I.
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where it is understood that {a, b} := ab + ba.
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In analogy to equation (11),
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l v↵m↵n↵p↵q + h.c.,

(15)
for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS

Define idempotents s, s
?
, S, S

? in terms of ladders.
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where vc is known as the colour vacuum, and is defined as
vc := ↵1↵2↵3↵

†
3↵

†
2↵

†
1. The idempotent s

? is most simply
defined as s

? := I � s. Similarly may be able to defined
another idempotent as

S := vc + ↵
†
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†
2vc↵2 + ↵
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3vc↵3. (17)

Furthermore defined S
? := I � S. Note that sS = Ss.

Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs

Nice parallels: spin to isospin as colour to generations

Might ultimately need relative spin relative colour def-
inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:

Read intros on Jordan algebras Read Latham and
Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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(50)
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inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
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point to point - allowing EW to have access to all three
generations.
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eg bi Caley algebra
In particular Jordan triple system of McCrimmon -

mult algebra looks super familiar.
Close to Jodi Foster, except determinant piece -

quaternionic structure.
Read into determinants - check that paper you recently

downloaded
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons

Within the upper diagonal blocks of H16(C) in Fig-
ure (1) we find
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⇤
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⇤
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a
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µ⇤asS
⇤
,

(19)
where pµ, G

a
µ 2 R. We define vs := ↵4↵

†
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(21)
Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS

Lepton momentum 7! p
0
µ �

µ
sS,

(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.

C. Possible electroweak gauge boson precursors

Within the lower diagonal blocks of H16(C) in Fig-
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W
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µ precursors s

⇤
St H16(C) ts

⇤
S

W
1,2,3
µ precursors 7! W

j
µ �j�

0µ
s

?
S,

(23)
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(24)
Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.

Finally, we use the well-known relation Y = 1
2 (B �
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R
3 to propose a map from
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m
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S, (25)

where ⌧
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S

⇤
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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2 C.
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4X

µ=1

pµ�
µ = c1 v + c2 v↵+ c3 ↵

†
v + c4 ↵

†
v↵ + h.c., (10)

for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as

4X

µ=1

pµ�
µ =

X

i,j=0,1

cij ↵
†
iv↵j + h.c., (11)

where we have now defined ↵1 := ↵, and ↵0 := I.

B. H16(C)

Define ↵1, ↵2, ↵3, ↵4 such that

{↵i,↵j} = 0, {↵i,↵
†
j} = �ij , (12)

where it is understood that {a, b} := ab + ba.
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In analogy to equation (11),

256X
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µ = cijklmnpq ↵

†
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†
j↵

†
k↵

†
l v↵m↵n↵p↵q + h.c.,

(15)
for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS

Define idempotents s, s
?
, S, S

? in terms of ladders.
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where vc is known as the colour vacuum, and is defined as
vc := ↵1↵2↵3↵

†
3↵

†
2↵

†
1. The idempotent s

? is most simply
defined as s

? := I � s. Similarly may be able to defined
another idempotent as

S := vc + ↵
†
1vc↵1 + ↵

†
2vc↵2 + ↵

†
3vc↵3. (17)

Furthermore defined S
? := I � S. Note that sS = Ss.

Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.

V. ASSEMBLING STANDARD MODEL
DEGREES OF FREEDOM INSIDE H16(C)

A. Three generations of quarks and leptons
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4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs

Nice parallels: spin to isospin as colour to generations

Might ultimately need relative spin relative colour def-
inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:

Read intros on Jordan algebras Read Latham and
Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS H16(C) sS

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with
three and four fermion generations,” Phys.Rev.Lett.,

109, 241802 (2012)
[6] CMS Collaboration, “Combined search for the quarks of

a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

[10] Kong, O., “The three families from SU(4)A ⇥ SU(3)C ⇥

SU(2)L ⇥ U(1)X SM-like chiral models,” Phys.Rev. D,

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs

Nice parallels: spin to isospin as colour to generations

Might ultimately need relative spin relative colour def-
inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:

Read intros on Jordan algebras Read Latham and
Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS H16(C) sS

s
?
S

?
H16(C) s

?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with
three and four fermion generations,” Phys.Rev.Lett.,

109, 241802 (2012)
[6] CMS Collaboration, “Combined search for the quarks of

a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

[10] Kong, O., “The three families from SU(4)A ⇥ SU(3)C ⇥

SU(2)L ⇥ U(1)X SM-like chiral models,” Phys.Rev. D,

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
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inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
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point to point - allowing EW to have access to all three
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IX. CONCLUSION
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons

Within the upper diagonal blocks of H16(C) in Fig-
ure (1) we find

Quark momentum and Gluons sS
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H16(C) sS
⇤

Quark momentum 7! pµ �
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,

(19)
where pµ, G

a
µ 2 R. We define vs := ↵4↵
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Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS

Lepton momentum 7! p
0
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µ
sS,

(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.

C. Possible electroweak gauge boson precursors

Within the lower diagonal blocks of H16(C) in Fig-
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Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.

Finally, we use the well-known relation Y = 1
2 (B �

L) + ⌧
R
3 to propose a map from
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs

Nice parallels: spin to isospin as colour to generations

Might ultimately need relative spin relative colour def-
inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:

Read intros on Jordan algebras Read Latham and
Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS H16(C) sS
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION
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could eventually lead to an explanation for their mass
hierarchy.
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Lepton momentum is analogously specified by
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(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.
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Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
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for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS
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Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs
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could eventually lead to an explanation for their mass
hierarchy.
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µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
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any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors
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Possible precursors for weak hypercharge gauge boson
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Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.
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could eventually lead to an explanation for their mass
hierarchy.
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µ 2 R. Finally, we point out that the generators of
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT
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for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS
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Although it may not be obvious from their current def-
inition, s, s
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? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)
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Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
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Jordan algebra paper Take a look at Gunaydin’s old notes
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could eventually lead to an explanation for their mass
hierarchy.
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Lepton momentum is analogously specified by
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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†
v + c4 ↵

†
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for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as
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cij ↵
†
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where we have now defined ↵1 := ↵, and ↵0 := I.

B. H16(C)

Define ↵1, ↵2, ↵3, ↵4 such that

{↵i,↵j} = 0, {↵i,↵
†
j} = �ij , (12)

where it is understood that {a, b} := ab + ba.
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In analogy to equation (11),
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l v↵m↵n↵p↵q + h.c.,

(15)
for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS

Define idempotents s, s
?
, S, S

? in terms of ladders.
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where vc is known as the colour vacuum, and is defined as
vc := ↵1↵2↵3↵

†
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†
1. The idempotent s

? is most simply
defined as s

? := I � s. Similarly may be able to defined
another idempotent as
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Furthermore defined S
? := I � S. Note that sS = Ss.

Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.

V. ASSEMBLING STANDARD MODEL
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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(46)
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Bµ ( 1, 1, 0 )4 (49)
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⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)
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Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)
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IX. CONCLUSION
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons

Within the upper diagonal blocks of H16(C) in Fig-
ure (1) we find
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(19)
where pµ, G
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Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS

Lepton momentum 7! p
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µ
sS,

(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.

C. Possible electroweak gauge boson precursors
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Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.

Finally, we use the well-known relation Y = 1
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R
3 to propose a map from
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS

A. H2(C)

↵ :=

✓
0 1

0 0

◆
, ↵

† :=

✓
0 0

1 0

◆
, (6)

v := ↵↵
† =

✓
1 0

0 0

◆
(7)

 :=  
"
v +  

#
↵

†
v =

 
 

" 0

 
# 0

!
(8)

for  "
, 

#
2 C.

4X

µ=1

pµ�
µ =

2X

i=1

 i 
†
i (9)

4X

µ=1

pµ�
µ = c1 v + c2 v↵+ c3 ↵

†
v + c4 ↵

†
v↵ + h.c., (10)

for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as

4X

µ=1

pµ�
µ =

X

i,j=0,1

cij ↵
†
iv↵j + h.c., (11)

where we have now defined ↵1 := ↵, and ↵0 := I.

B. H16(C)

Define ↵1, ↵2, ↵3, ↵4 such that

{↵i,↵j} = 0, {↵i,↵
†
j} = �ij , (12)

where it is understood that {a, b} := ab + ba.

v := ↵1↵2↵3↵4↵
†
4↵

†
3↵

†
2↵

†
1 (13)

256X

µ=1

pµ�
µ =

16X

i=1

 i 
†
i (14)

In analogy to equation (11),

256X

µ=1

pµ�
µ = cijklmnpq ↵

†
i↵

†
j↵

†
k↵

†
l v↵m↵n↵p↵q + h.c.,

(15)
for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS

Define idempotents s, s
?
, S, S

? in terms of ladders.

s := vc+↵†
3↵

†
2vc↵2↵3+↵†

1↵
†
3vc↵3↵1+↵†

2↵
†
1vc↵1↵2, (16)

where vc is known as the colour vacuum, and is defined as
vc := ↵1↵2↵3↵

†
3↵

†
2↵

†
1. The idempotent s

? is most simply
defined as s

? := I � s. Similarly may be able to defined
another idempotent as

S := vc + ↵
†
1vc↵1 + ↵

†
2vc↵2 + ↵

†
3vc↵3. (17)

Furthermore defined S
? := I � S. Note that sS = Ss.

Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.

V. ASSEMBLING STANDARD MODEL
DEGREES OF FREEDOM INSIDE H16(C)

A. Three generations of quarks and leptons

Left-handed quarks

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs

Nice parallels: spin to isospin as colour to generations

Might ultimately need relative spin relative colour def-
inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:

Read intros on Jordan algebras Read Latham and
Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS H16(C) sS
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)
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VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as
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where we have now defined ↵1 := ↵, and ↵0 := I.
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Define ↵1, ↵2, ↵3, ↵4 such that
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where it is understood that {a, b} := ab + ba.
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In analogy to equation (11),
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(15)
for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS

Define idempotents s, s
?
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? in terms of ladders.
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where vc is known as the colour vacuum, and is defined as
vc := ↵1↵2↵3↵
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1. The idempotent s

? is most simply
defined as s

? := I � s. Similarly may be able to defined
another idempotent as
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Furthermore defined S
? := I � S. Note that sS = Ss.

Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.

V. ASSEMBLING STANDARD MODEL
DEGREES OF FREEDOM INSIDE H16(C)

A. Three generations of quarks and leptons
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons

Within the upper diagonal blocks of H16(C) in Fig-
ure (1) we find
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Lepton momentum is analogously specified by
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(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.

C. Possible electroweak gauge boson precursors

Within the lower diagonal blocks of H16(C) in Fig-
ure (1), we identify degrees of freedom corresponding to

W
1,2,3
µ precursors s

⇤
St H16(C) ts

⇤
S

W
1,2,3
µ precursors 7! W

j
µ �j�

0µ
s

?
S,

(23)

where

�
0
0 := 1

2 (↵†
1vc↵1 + ↵

†
2vc↵2), �

0
1 := 1

2 (↵†
1vc↵2 + ↵

†
2vc↵1),

�
0
2 := 1

2 (�i↵
†
1vc↵2 + i↵

†
2vc↵1), �

0
3 := 1

2 (↵†
1vc↵1 � ↵

†
2vc↵2).

(24)
Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,
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possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.
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be possible to identify single particle states with the var-
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Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION
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Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs
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could eventually lead to an explanation for their mass
hierarchy.
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Lepton momentum is analogously specified by
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µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
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3sS
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Currently, we are identifying these states only as W
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µ

precursors since the most näıve treatment of the Pierce
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
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for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS
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where vc is known as the colour vacuum, and is defined as
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defined as s
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? := I � S. Note that sS = Ss.

Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.
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Degrees of freedom yet to be identified
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL
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VIII. OPEN QUESTIONS

IX. CONCLUSION
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
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have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
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ucts of Cl(0, 8) be interpreted as multi-particle states?
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons
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µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as
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where we have now defined ↵1 := ↵, and ↵0 := I.
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{↵i,↵j} = 0, {↵i,↵
†
j} = �ij , (12)
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In analogy to equation (11),
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for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS
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defined as s
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Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.

V. ASSEMBLING STANDARD MODEL
DEGREES OF FREEDOM INSIDE H16(C)

A. Three generations of quarks and leptons
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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describe would be W bosons, the Higgs, and potentially
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Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,
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Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?
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could eventually lead to an explanation for their mass
hierarchy.
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µ 2 R. Finally, we point out that the generators of
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as
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where we have now defined ↵1 := ↵, and ↵0 := I.
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where it is understood that {a, b} := ab + ba.
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In analogy to equation (11),
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l v↵m↵n↵p↵q + h.c.,

(15)
for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS

Define idempotents s, s
?
, S, S

? in terms of ladders.
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where vc is known as the colour vacuum, and is defined as
vc := ↵1↵2↵3↵

†
3↵

†
2↵

†
1. The idempotent s

? is most simply
defined as s

? := I � s. Similarly may be able to defined
another idempotent as

S := vc + ↵
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3vc↵3. (17)

Furthermore defined S
? := I � S. Note that sS = Ss.

Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION
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Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons

Within the upper diagonal blocks of H16(C) in Fig-
ure (1) we find
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H16(C) sS
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a
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(19)
where pµ, G

a
µ 2 R. We define vs := ↵4↵

†
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Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS

Lepton momentum 7! p
0
µ �

µ
sS,

(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.

C. Possible electroweak gauge boson precursors

Within the lower diagonal blocks of H16(C) in Fig-
ure (1), we identify degrees of freedom corresponding to

W
1,2,3
µ precursors s

⇤
St H16(C) ts

⇤
S

W
1,2,3
µ precursors 7! W

j
µ �j�

0µ
s

?
S,

(23)
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Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.

Finally, we use the well-known relation Y = 1
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3 to propose a map from
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S, (25)

where ⌧
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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†
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†
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for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as

4X
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X
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cij ↵
†
iv↵j + h.c., (11)

where we have now defined ↵1 := ↵, and ↵0 := I.

B. H16(C)

Define ↵1, ↵2, ↵3, ↵4 such that

{↵i,↵j} = 0, {↵i,↵
†
j} = �ij , (12)

where it is understood that {a, b} := ab + ba.
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In analogy to equation (11),
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k↵

†
l v↵m↵n↵p↵q + h.c.,

(15)
for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS

Define idempotents s, s
?
, S, S

? in terms of ladders.
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2vc↵2↵3+↵†
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where vc is known as the colour vacuum, and is defined as
vc := ↵1↵2↵3↵

†
3↵

†
2↵

†
1. The idempotent s

? is most simply
defined as s

? := I � s. Similarly may be able to defined
another idempotent as

S := vc + ↵
†
1vc↵1 + ↵

†
2vc↵2 + ↵

†
3vc↵3. (17)

Furthermore defined S
? := I � S. Note that sS = Ss.

Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.

V. ASSEMBLING STANDARD MODEL
DEGREES OF FREEDOM INSIDE H16(C)

A. Three generations of quarks and leptons
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.
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Finally, we close this article with one further idea
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algebras of the form Cl(p, q) exhibit a repeating pattern
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ford algebras is overwhelmingly dominated by factors of
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find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?
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time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
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VII. FEATURES OF THE MODEL
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Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION
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Read intros on Jordan algebras Read Latham and
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons

Within the upper diagonal blocks of H16(C) in Fig-
ure (1) we find

Quark momentum and Gluons sS
⇤

H16(C) sS
⇤

Quark momentum 7! pµ �
µ
sS

⇤

Gluons 7! G
a
µ �

µ⇤asS
⇤
,

(19)
where pµ, G

a
µ 2 R. We define vs := ↵4↵

†
4, and

�
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†
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1 := ↵
†
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(21)
Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS

Lepton momentum 7! p
0
µ �

µ
sS,

(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.

C. Possible electroweak gauge boson precursors

Within the lower diagonal blocks of H16(C) in Fig-
ure (1), we identify degrees of freedom corresponding to
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Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.

Finally, we use the well-known relation Y = 1
2 (B �

L) + ⌧
R
3 to propose a map from
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m
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?
S, (25)
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs

Nice parallels: spin to isospin as colour to generations

Might ultimately need relative spin relative colour def-
inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:

Read intros on Jordan algebras Read Latham and
Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS H16(C) sS
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION
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could eventually lead to an explanation for their mass
hierarchy.
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µ 2 R. Finally, we point out that the generators of
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covariant derivative

(spin connection)
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?
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Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.
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point to point - allowing EW to have access to all three
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IX. CONCLUSION
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons

Within the upper diagonal blocks of H16(C) in Fig-
ure (1) we find

Quark momentum and Gluons sS
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H16(C) sS
⇤

Quark momentum 7! pµ �
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,

(19)
where pµ, G

a
µ 2 R. We define vs := ↵4↵
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Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS

Lepton momentum 7! p
0
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µ
sS,

(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.

C. Possible electroweak gauge boson precursors

Within the lower diagonal blocks of H16(C) in Fig-
ure (1), we identify degrees of freedom corresponding to

W
1,2,3
µ precursors s

⇤
St H16(C) ts

⇤
S

W
1,2,3
µ precursors 7! W

j
µ �j�

0µ
s

?
S,

(23)

where

�
0
0 := 1

2 (↵†
1vc↵1 + ↵

†
2vc↵2), �

0
1 := 1

2 (↵†
1vc↵2 + ↵

†
2vc↵1),

�
0
2 := 1

2 (�i↵
†
1vc↵2 + i↵

†
2vc↵1), �

0
3 := 1

2 (↵†
1vc↵1 � ↵

†
2vc↵2).

(24)
Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.

Finally, we use the well-known relation Y = 1
2 (B �

L) + ⌧
R
3 to propose a map from
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m
j �

j
�

0
ms

?
S, (25)

where ⌧
R
m := i✏m

2 s
⇤
S

⇤
.

V. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VI. OPEN QUESTIONS

VII. CONCLUSION

Physical content

ACKNOWLEDGMENTS

An early version of these results was first presented for
the 16th Marcel Grossmann Meeting on the 5th of July
2021, [21].

The authors are grateful for discussions with and feed-
back from Latham Boyle, Brage Gording, Mia Hughes,
Alessio Marrani, Jan Plefka, Mike Rios, Shadi Tahlvidar-
Zadeh.

This work was graciously supported by the VW
Stiftung Freigeist Fellowship, Humboldt-Universität zu
Berlin, and a visiting fellowship at the African Institute
for Mathematical Sciences in Cape Town.



4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

s
?
S

?
H16(C) sS

s
?
S

?
H16(C) sS

?

s
?
S

?
H16(C) s

?
S

s
?
S H16(C) s

?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with
three and four fermion generations,” Phys.Rev.Lett.,

109, 241802 (2012)
[6] CMS Collaboration, “Combined search for the quarks of

a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

[10] Kong, O., “The three families from SU(4)A ⇥ SU(3)C ⇥

SU(2)L ⇥ U(1)X SM-like chiral models,” Phys.Rev. D,

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

s
?
S

?
H16(C) sS

s
?
S

?
H16(C) sS

?

s
?
S

?
H16(C) s

?
S

s
?
S H16(C) s

?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with
three and four fermion generations,” Phys.Rev.Lett.,

109, 241802 (2012)
[6] CMS Collaboration, “Combined search for the quarks of

a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

[10] Kong, O., “The three families from SU(4)A ⇥ SU(3)C ⇥

SU(2)L ⇥ U(1)X SM-like chiral models,” Phys.Rev. D,

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

s
?
S

?
H16(C) sS

s
?
S

?
H16(C) sS

?

s
?
S

?
H16(C) s

?
S

s
?
S H16(C) s

?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with
three and four fermion generations,” Phys.Rev.Lett.,

109, 241802 (2012)
[6] CMS Collaboration, “Combined search for the quarks of

a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

[10] Kong, O., “The three families from SU(4)A ⇥ SU(3)C ⇥

SU(2)L ⇥ U(1)X SM-like chiral models,” Phys.Rev. D,

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

s
?
S H16(C) sS

s
?
S H16(C) sS

?

s
?
S H16(C) s

?
S

s
?
S H16(C) s

?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with
three and four fermion generations,” Phys.Rev.Lett.,

109, 241802 (2012)
[6] CMS Collaboration, “Combined search for the quarks of

a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

[10] Kong, O., “The three families from SU(4)A ⇥ SU(3)C ⇥

SU(2)L ⇥ U(1)X SM-like chiral models,” Phys.Rev. D,

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

s
?
S H16(C) sS

s
?
S H16(C) sS

?

s
?
S H16(C) s

?
S

s
?
S H16(C) s

?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with
three and four fermion generations,” Phys.Rev.Lett.,

109, 241802 (2012)
[6] CMS Collaboration, “Combined search for the quarks of

a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

[10] Kong, O., “The three families from SU(4)A ⇥ SU(3)C ⇥

SU(2)L ⇥ U(1)X SM-like chiral models,” Phys.Rev. D,

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

s
?
S H16(C) sS

s
?
S H16(C) sS

?

s
?
S H16(C) s

?
S

s
?
S H16(C) s

?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with
three and four fermion generations,” Phys.Rev.Lett.,

109, 241802 (2012)
[6] CMS Collaboration, “Combined search for the quarks of

a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

[10] Kong, O., “The three families from SU(4)A ⇥ SU(3)C ⇥

SU(2)L ⇥ U(1)X SM-like chiral models,” Phys.Rev. D,

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

s
?
S H16(C) sS

s
?
S H16(C) sS

?

s
?
S H16(C) s

?
S

s
?
S H16(C) s

?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with
three and four fermion generations,” Phys.Rev.Lett.,

109, 241802 (2012)
[6] CMS Collaboration, “Combined search for the quarks of

a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

[10] Kong, O., “The three families from SU(4)A ⇥ SU(3)C ⇥

SU(2)L ⇥ U(1)X SM-like chiral models,” Phys.Rev. D,

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS
?

H16(C) sS

sS
?

H16(C) sS
?

sS
?

H16(C) s
?
S

sS
?

H16(C) s
?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with
three and four fermion generations,” Phys.Rev.Lett.,

109, 241802 (2012)
[6] CMS Collaboration, “Combined search for the quarks of

a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

[10] Kong, O., “The three families from SU(4)A ⇥ SU(3)C ⇥

SU(2)L ⇥ U(1)X SM-like chiral models,” Phys.Rev. D,

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified

Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS
?

H16(C) sS

sS
?

H16(C) sS
?

sS
?

H16(C) s
?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with

three and four fermion generations,” Phys.Rev.Lett.,
109, 241802 (2012)

[6] CMS Collaboration, “Combined search for the quarks of
a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified

Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS
?

H16(C) sS

sS
?

H16(C) sS
?

sS
?

H16(C) s
?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with

three and four fermion generations,” Phys.Rev.Lett.,
109, 241802 (2012)

[6] CMS Collaboration, “Combined search for the quarks of
a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified

Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS
?

H16(C) sS

sS H16(C) sS
?

sS H16(C) s
?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with

three and four fermion generations,” Phys.Rev.Lett.,
109, 241802 (2012)

[6] CMS Collaboration, “Combined search for the quarks of
a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified

Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS H16(C) sS

sS H16(C) sS
?

sS H16(C) s
?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with

three and four fermion generations,” Phys.Rev.Lett.,
109, 241802 (2012)

[6] CMS Collaboration, “Combined search for the quarks of
a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified

Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS H16(C) sS

sS H16(C) sS
?

sS H16(C) s
?
S

s
?
S

?
H16(C) s

?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs

boson at a mass of 126 GeV on the standard model with
three and four fermion generations,” Phys.Rev.Lett.,
109, 241802 (2012)

[6] CMS Collaboration, “Combined search for the quarks of
a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified

Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS H16(C) sS

sS H16(C) sS
?

s
?
S

?
H16(C) s

?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with

three and four fermion generations,” Phys.Rev.Lett.,
109, 241802 (2012)

[6] CMS Collaboration, “Combined search for the quarks of
a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs

Nice parallels: spin to isospin as colour to generations

Might ultimately need relative spin relative colour def-
inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:

Read intros on Jordan algebras Read Latham and
Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS H16(C) sS

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with
three and four fermion generations,” Phys.Rev.Lett.,

109, 241802 (2012)
[6] CMS Collaboration, “Combined search for the quarks of

a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

[10] Kong, O., “The three families from SU(4)A ⇥ SU(3)C ⇥

SU(2)L ⇥ U(1)X SM-like chiral models,” Phys.Rev. D,

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs

Nice parallels: spin to isospin as colour to generations

Might ultimately need relative spin relative colour def-
inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:

Read intros on Jordan algebras Read Latham and
Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS H16(C) sS

s
?
S

?
H16(C) s

?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with
three and four fermion generations,” Phys.Rev.Lett.,

109, 241802 (2012)
[6] CMS Collaboration, “Combined search for the quarks of

a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

[10] Kong, O., “The three families from SU(4)A ⇥ SU(3)C ⇥

SU(2)L ⇥ U(1)X SM-like chiral models,” Phys.Rev. D,

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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VI. GAUGE BOSONS AND JORDAN
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VII. FEATURES OF THE MODEL
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Nice parallels: spin to isospin as colour to generations
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inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.
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IX. CONCLUSION
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In particular Jordan triple system of McCrimmon -

mult algebra looks super familiar.
Close to Jodi Foster, except determinant piece -

quaternionic structure.
Read into determinants - check that paper you recently

downloaded
Reread Cedarwall’s Jordan algebra paper
Take a look at Gunaydin’s old notes on JAs
read Shane’s paper
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where pµ, G
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Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS

Lepton momentum 7! p
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for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.
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Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
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(C imaginary ) i� −i
(H imaginaries ) ✏j � −✏j j ∈ {1,2,3}
(O imaginaries ) ek � −ek k ∈ {1,2, . . .7}

“Hermitian conjugate”

Consider hermitian subspace
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⋅ Important applications in physics

⋅ 256R � 244R

Standard model’s particle content

as a

Jordan algebraic mosaic

Symmetry:
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Covariant derivative
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O multiplication algebra
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as

4X
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i,j=0,1

cij ↵
†
iv↵j + h.c., (11)

where we have now defined ↵1 := ↵, and ↵0 := I.

B. H16(C)

Define ↵1, ↵2, ↵3, ↵4 such that

{↵i,↵j} = 0, {↵i,↵
†
j} = �ij , (12)

where it is understood that {a, b} := ab + ba.
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In analogy to equation (11),
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l v↵m↵n↵p↵q + h.c.,

(15)
for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS

Define idempotents s, s
?
, S, S

? in terms of ladders.

s := vc+↵†
3↵

†
2vc↵2↵3+↵†

1↵
†
3vc↵3↵1+↵†

2↵
†
1vc↵1↵2, (16)

where vc is known as the colour vacuum, and is defined as
vc := ↵1↵2↵3↵
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†
1. The idempotent s

? is most simply
defined as s

? := I � s. Similarly may be able to defined
another idempotent as
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Furthermore defined S
? := I � S. Note that sS = Ss.

Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.

V. ASSEMBLING STANDARD MODEL
DEGREES OF FREEDOM INSIDE H16(C)

A. Three generations of quarks and leptons
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
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VII. FEATURES OF THE MODEL
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Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.
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IX. CONCLUSION
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons

Within the upper diagonal blocks of H16(C) in Fig-
ure (1) we find

Quark momentum and Gluons sS
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(19)
where pµ, G
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Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS

Lepton momentum 7! p
0
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µ
sS,

(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.
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Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.

Finally, we use the well-known relation Y = 1
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3 to propose a map from
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
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the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.
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Finally, we close this article with one further idea
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Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
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VII. FEATURES OF THE MODEL
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inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
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point to point - allowing EW to have access to all three
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons

Within the upper diagonal blocks of H16(C) in Fig-
ure (1) we find

Quark momentum and Gluons sS
⇤

H16(C) sS
⇤

Quark momentum 7! pµ �
µ
sS

⇤

Gluons 7! G
a
µ �

µ⇤asS
⇤
,

(19)
where pµ, G

a
µ 2 R. We define vs := ↵4↵

†
4, and

�
0 := ↵

†
4vs↵4 + vs �

1 := ↵
†
4vs + vs↵4

�
2 := �i↵

†
4vs + ivs↵4 �

3 := ↵
†
4vs↵4 � vs,

(20)

⇤1 := �↵
†
2↵

†
3vc↵3↵1 � ↵

†
1↵

†
3vc↵3↵2,

⇤2 := i↵
†
2↵

†
3vc↵3↵1 � i↵

†
1↵

†
3vc↵3↵2,

⇤3 := �↵
†
2↵

†
3vc↵3↵2 � ↵

†
1↵

†
3vc↵3↵1,

⇤4 := �↵
†
1↵

†
2vc↵2↵3 � ↵

†
3↵

†
2vc↵2↵1,

⇤5 := �i↵
†
1↵

†
2vc↵2↵3 + i↵

†
3↵

†
2vc↵2↵1,

⇤6 := �↵
†
3↵

†
1vc↵1↵2 � ↵

†
2↵

†
1vc↵1↵3,

⇤7 := i↵
†
3↵

†
1vc↵1↵2 � i↵

†
2↵

†
1vc↵1↵3,

⇤8 := 1p
3

⇣
↵

†
1↵

†
3vc↵3↵1 + ↵

†
2↵

†
3vc↵3↵2 � 2↵

†
1↵

†
2vc↵2↵1

⌘
.

(21)
Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS

Lepton momentum 7! p
0
µ �

µ
sS,

(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.

C. Possible electroweak gauge boson precursors

Within the lower diagonal blocks of H16(C) in Fig-
ure (1), we identify degrees of freedom corresponding to

W
1,2,3
µ precursors s

⇤
St H16(C) ts

⇤
S

W
1,2,3
µ precursors 7! W

j
µ �j�

0µ
s

?
S,

(23)

where

�
0
0 := 1

2 (↵†
1vc↵1 + ↵

†
2vc↵2), �

0
1 := 1

2 (↵†
1vc↵2 + ↵

†
2vc↵1),

�
0
2 := 1

2 (�i↵
†
1vc↵2 + i↵

†
2vc↵1), �

0
3 := 1

2 (↵†
1vc↵1 � ↵

†
2vc↵2).

(24)
Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.

Finally, we use the well-known relation Y = 1
2 (B �

L) + ⌧
R
3 to propose a map from

Bµ precursors 7! W
m
j �

j
�

0
ms

?
S, (25)

where ⌧
R
m := i✏m

2 s
⇤
S

⇤
.

V. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.
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2
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�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2
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Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
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m :=
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⇤ (29)
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons

Within the upper diagonal blocks of H16(C) in Fig-
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Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS

Lepton momentum 7! p
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µ
sS,

(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.

C. Possible electroweak gauge boson precursors
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Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as
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where we have now defined ↵1 := ↵, and ↵0 := I.
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In analogy to equation (11),
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(15)
for cijklmnpq 2 C, and an implied sum over
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Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs

Nice parallels: spin to isospin as colour to generations

Might ultimately need relative spin relative colour def-
inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:

Read intros on Jordan algebras Read Latham and
Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS H16(C) sS

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with
three and four fermion generations,” Phys.Rev.Lett.,

109, 241802 (2012)
[6] CMS Collaboration, “Combined search for the quarks of

a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

[10] Kong, O., “The three families from SU(4)A ⇥ SU(3)C ⇥

SU(2)L ⇥ U(1)X SM-like chiral models,” Phys.Rev. D,

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs

Nice parallels: spin to isospin as colour to generations

Might ultimately need relative spin relative colour def-
inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:

Read intros on Jordan algebras Read Latham and
Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS H16(C) sS

s
?
S

?
H16(C) s

?
S

?

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard
model Weyl spinors as a single copy of R ⌦ C ⌦ H ⌦

O”, paper submitted. Citeable presentation may be found
here: https://pirsa.org/21030013.

[3] Furey, N., Hughes, M.J., “Division algebraic symmetry
breaking”, paper submitted. Citeable presentation may
be found here https://pirsa.org/21030013.

[4] Djouadi, A., Lenz, A., “Sealing the fate of a fourth gen-
eration of fermions,” Phys.Lett.B, 715, (2012)

[5] Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Men-
zel, A., Nierste, U., Wiebusch, M., “Impact of a Higgs
boson at a mass of 126 GeV on the standard model with
three and four fermion generations,” Phys.Rev.Lett.,

109, 241802 (2012)
[6] CMS Collaboration, “Combined search for the quarks of

a sequential fourth generation,” Phys.Rev.D, 86, 112003
(2012)

[7] Lenz, A., “Constraints on a fourth generation of fermions
from Higgs boson searches,” Adv. High Energy Phys.,
2013, 910275 (2013)

[8] Banerjee, S., Frank, M., Rai, S.K., “Higgs data confronts
sequential fourth generation fermions in the Higgs triplet
model,” Phys.Rev.D, 89, 075005 (2014)

[9] Bar-Shalom, S., Geller, M., Nandi, S., Soni, A., “Two
Higgs doublets, a 4th generation and a 125 GeV Higgs:
A review,” Adv. High Energy Phys., 2013, 672972 (2013)

[10] Kong, O., “The three families from SU(4)A ⇥ SU(3)C ⇥

SU(2)L ⇥ U(1)X SM-like chiral models,” Phys.Rev. D,

9

behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states

( u, d )L
�
3, 2, 1

6

�
2

( c, s )L
�
3, 2, 1

6

�
2

( t, b )L
�
3, 2, 1

6

�
2

(42)

( ⌫e, e )L
�
1, 2, � 1

2

�
2

( ⌫µ, µ )L
�
1, 2, � 1

2

�
2

( ⌫⌧ , ⌧ )L
�
1, 2, � 1

2

�
2

(43)

uR

�
3, 1, 2

3

�
2

cR

�
3, 1, 2

3

�
2

tR

�
3, 1, 2

3

�
2

(44)

dR

�
3, 1, � 1

3

�
2

sR

�
3, 1, � 1

3

�
2

bR

�
3, 1, � 1

3

�
2

(45)

eR ( 1, 1, �1 )2
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Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)
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erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,
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Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·
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Now, when adding up the standard model’s (o↵-shell)
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dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION
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Shane’s two papers Know the basic idea with spinor-
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as
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where we have now defined ↵1 := ↵, and ↵0 := I.

B. H16(C)

Define ↵1, ↵2, ↵3, ↵4 such that
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where it is understood that {a, b} := ab + ba.
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In analogy to equation (11),
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(15)
for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS

Define idempotents s, s
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? in terms of ladders.

s := vc+↵†
3↵

†
2vc↵2↵3+↵†

1↵
†
3vc↵3↵1+↵†

2↵
†
1vc↵1↵2, (16)

where vc is known as the colour vacuum, and is defined as
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? is most simply
defined as s

? := I � s. Similarly may be able to defined
another idempotent as

S := vc + ↵
†
1vc↵1 + ↵

†
2vc↵2 + ↵

†
3vc↵3. (17)

Furthermore defined S
? := I � S. Note that sS = Ss.

Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.

V. ASSEMBLING STANDARD MODEL
DEGREES OF FREEDOM INSIDE H16(C)

A. Three generations of quarks and leptons
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
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Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.
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IX. CONCLUSION
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons

Within the upper diagonal blocks of H16(C) in Fig-
ure (1) we find
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Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS

Lepton momentum 7! p
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(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.
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Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.

Finally, we use the well-known relation Y = 1
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS
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Although it may not be obvious from their current def-
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where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.

V. ASSEMBLING STANDARD MODEL
DEGREES OF FREEDOM INSIDE H16(C)
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Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs

Nice parallels: spin to isospin as colour to generations

Might ultimately need relative spin relative colour def-
inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:

Read intros on Jordan algebras Read Latham and
Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)
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Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
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the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.
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Finally, we close this article with one further idea
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find that we need a minimum of 244 real degrees of free-
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close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of
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ucts of Cl(0, 8) be interpreted as multi-particle states?
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL
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could eventually lead to an explanation for their mass
hierarchy.
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Lepton momentum is analogously specified by
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for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.
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Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT
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for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS
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where vc is known as the colour vacuum, and is defined as
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Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.
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Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL
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VIII. OPEN QUESTIONS

IX. CONCLUSION
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons
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µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i
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, and iL := isS respectively.
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT
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for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).
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Although it may not be obvious from their current def-
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? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.

V. ASSEMBLING STANDARD MODEL
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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the left. In this case, triplet transitions may be identi-
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under which  may be reinterpreted as  ?. Clearly this
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find that we need a minimum of 244 real degrees of free-
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close at 256. Moreover, this Cl(0, 8) is not far removed
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have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
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could eventually lead to an explanation for their mass
hierarchy.
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as
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where we have now defined ↵1 := ↵, and ↵0 := I.
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where it is understood that {a, b} := ab + ba.
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In analogy to equation (11),
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l v↵m↵n↵p↵q + h.c.,

(15)
for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS

Define idempotents s, s
?
, S, S

? in terms of ladders.

s := vc+↵†
3↵

†
2vc↵2↵3+↵†

1↵
†
3vc↵3↵1+↵†

2↵
†
1vc↵1↵2, (16)

where vc is known as the colour vacuum, and is defined as
vc := ↵1↵2↵3↵

†
3↵

†
2↵

†
1. The idempotent s

? is most simply
defined as s

? := I � s. Similarly may be able to defined
another idempotent as

S := vc + ↵
†
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†
2vc↵2 + ↵

†
3vc↵3. (17)

Furthermore defined S
? := I � S. Note that sS = Ss.

Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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VI. GAUGE BOSONS AND JORDAN
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VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION
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Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons
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where pµ, G
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Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS
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0
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µ
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(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.

C. Possible electroweak gauge boson precursors
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Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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†
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for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as

4X
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cij ↵
†
iv↵j + h.c., (11)

where we have now defined ↵1 := ↵, and ↵0 := I.

B. H16(C)

Define ↵1, ↵2, ↵3, ↵4 such that

{↵i,↵j} = 0, {↵i,↵
†
j} = �ij , (12)

where it is understood that {a, b} := ab + ba.
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In analogy to equation (11),
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pµ�
µ = cijklmnpq ↵
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†
l v↵m↵n↵p↵q + h.c.,

(15)
for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS

Define idempotents s, s
?
, S, S

? in terms of ladders.
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where vc is known as the colour vacuum, and is defined as
vc := ↵1↵2↵3↵

†
3↵

†
2↵

†
1. The idempotent s

? is most simply
defined as s

? := I � s. Similarly may be able to defined
another idempotent as

S := vc + ↵
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1vc↵1 + ↵
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†
3vc↵3. (17)

Furthermore defined S
? := I � S. Note that sS = Ss.

Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.

V. ASSEMBLING STANDARD MODEL
DEGREES OF FREEDOM INSIDE H16(C)

A. Three generations of quarks and leptons
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.
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Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
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known as Bott periodicity. That is, we find that, as ma-
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find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?
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son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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(46)
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Bµ ( 1, 1, 0 )4 (49)
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VII. FEATURES OF THE MODEL
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Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION
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Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons

Within the upper diagonal blocks of H16(C) in Fig-
ure (1) we find

Quark momentum and Gluons sS
⇤

H16(C) sS
⇤

Quark momentum 7! pµ �
µ
sS

⇤

Gluons 7! G
a
µ �

µ⇤asS
⇤
,

(19)
where pµ, G

a
µ 2 R. We define vs := ↵4↵

†
4, and

�
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†
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1 := ↵
†
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�
2 := �i↵

†
4vs + ivs↵4 �

3 := ↵
†
4vs↵4 � vs,

(20)
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(21)
Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS

Lepton momentum 7! p
0
µ �

µ
sS,

(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.

C. Possible electroweak gauge boson precursors

Within the lower diagonal blocks of H16(C) in Fig-
ure (1), we identify degrees of freedom corresponding to
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Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.

Finally, we use the well-known relation Y = 1
2 (B �

L) + ⌧
R
3 to propose a map from
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m
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0
ms

?
S, (25)
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2

als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs

Nice parallels: spin to isospin as colour to generations

Might ultimately need relative spin relative colour def-
inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:

Read intros on Jordan algebras Read Latham and
Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

sS H16(C) sS
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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µR ( 1, 1, �1 )2
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(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION
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could eventually lead to an explanation for their mass
hierarchy.
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Lepton momentum is analogously specified by
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µ 2 R. Finally, we point out that the generators of
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Currently, we are identifying these states only as W
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µ
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as
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where we have now defined ↵1 := ↵, and ↵0 := I.
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In analogy to equation (11),
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for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS

Define idempotents s, s
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where vc is known as the colour vacuum, and is defined as
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defined as s
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Furthermore defined S
? := I � S. Note that sS = Ss.

Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?
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son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons
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µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i
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, and iL := isS respectively.
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Action of `sm on H16(C)

�b = `smb + b `†sm diagonal
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Observation: no projections on colour.
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Lepton helicity operator p
0
µ�

µ
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Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
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j
�
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Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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under which  may be reinterpreted as  ?. Clearly this
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
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could eventually lead to an explanation for their mass
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als have been put forward over the years. eg Susy three
generations, Nicolai, ... which describe three generations
as linearly independent. These models have three gen-
erations as not linearly independent: exceptional jordan
algebra, E8 models. Note that this author not aware of
any reason why three generations need be linearly inde-
pendent, so this might be viewed as a feature, not a bug.
With this said, the linear independence of three genera-
tions is maintained within our model presented here.

II. JORDAN ALGEBRA: A JACK OF ALL
TRADES

Uses for Jordan algebras: QM and spacetime and what
else? Now with spinor-helicity formalism, can describe
fermions too. Anything else?

Euclidean Jordan algebras classify like Lie algebras
Di↵er by factor of i and a plus sign. Both operators

encapsulated by ab plus baT

III. HERMITIAN JORDAN ALGEBRAS IN
TERMS OF OUTER PRODUCTS OF SPINORS
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for ci 2 C, and where h.c. is the hermitian conjugate.
This may be written more compactly as
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where we have now defined ↵1 := ↵, and ↵0 := I.
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In analogy to equation (11),
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for cijklmnpq 2 C, and an implied sum over
i, j, k, l, m, n, p, q 2 {0, 1, 2, 3, 4}. Again, we define ↵0 := I
in analogy with the 2⇥2 case. Clearly ↵0 is not included
in equation (12).

IV. COMPLEX STRUCTURES AND THEIR
IDEMPOTENTS

Define idempotents s, s
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where vc is known as the colour vacuum, and is defined as
vc := ↵1↵2↵3↵
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†
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? is most simply
defined as s

? := I � s. Similarly may be able to defined
another idempotent as
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Furthermore defined S
? := I � S. Note that sS = Ss.

Although it may not be obvious from their current def-
inition, s, s

?
, S, S

? are idempotents constructed from ear-
lier work. Namely, s = 1

2 (1 + ie7), and S = 1
2 (1 + iE7),

where e7 and E7 are complex structures as defined in [1],
[2], [3]. One reason for considering these complex struc-
tures may be found here [1], which showed early Jor-
dan algebraic structure within the context of a three-
generation model.
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VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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eR ( 1, 1, �1 )2
µR ( 1, 1, �1 )2
⌧R ( 1, 1, �1 )2

(46)

Gµ ( 8, 1, 0 )4 (47)

Wµ ( 1, 3, 0 )4 (48)

Bµ ( 1, 1, 0 )4 (49)

�1 = Le1 , �2 = Le2 , �3 = Le3 ,

�4 = Le4 , �5 = Le5 , �6 = Le6 ,

�7 = Le7✏1 , �8 = Le7✏2

(50)
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IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs

s
?
S

?
H16(C) sS

s
?
S

?
H16(C) sS

?

s
?
S

?
H16(C) s

?
S

s
?
S H16(C) s

?
S

?

v

↵
†
j↵

†
i v ↵k↵`

↵
†
j↵

†
i v ↵k

↵
†
j↵

†
i v ↵1↵2↵3

↵
†
3↵

†
2↵

†
1 v ↵1↵2↵3

↵
†
3↵

†
2↵

†
1 v

↵
†
3↵

†
2↵

†
1 v ↵k↵`

↵
†
3↵

†
2↵

†
1 v ↵k

↵
†
3↵

†
2↵

†
1 v ↵1↵2↵3

⌫eR ( 1, 1, 0 )2
⌫µR ( 1, 1, 0 )2
⌫⌧R ( 1, 1, 0 )2

(31)

ACKNOWLEDGMENTS

[1] Furey, C., “Generations: three prints, in colour,” JHEP,
10, 046 (2014) arXiv:1405.4601 [hep-th]

[2] Furey, N., Hughes, M.J., “One generation of standard

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

pµ ( 1, 1, 0 )4

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras - wikipedia - done -
nlab - done
Diagram - done
McCrimmon intro - done
John Baez’ paper - done
Read Latham and Shane’s paper - done
Know the basic idea with spinor-helicity formalism
Talk to Jan
Write the whole thing out
Talk to Beth about what to do with the subsequent

paper
First paper:
embed SM states inside H16
Was originally hoping for Cl(8) but this doesn’t seem

to match SM states
Not nec trf under Gsm
Connect to spinor-helicity formalism
No mathematical motivation, not anything particu-

larly deep being said about the algebra
No division algebras
Second paper:
Nice mathematical starting point. Left mult algeb of

RCHO. 16x16C matrices. Lie alg = anti-herm JA =
herm. Under involution i eps e. Need to check that’s
an anti-aut

Might even be able to relate it back to 1 gen model of
Mia and I.

Then can use complex structures to break Lie alg and
JA down to subalgebras.

See how close we can get to the SM embedding of the
first paper. Don’t nec even need to make it all the way
there.

Been looking up intros to JA. A lot of structures that
should be in there. p15 of JA notes

eg bi Caley algebra
In particular Jordan triple system of McCrimmon -

mult algebra looks super familiar.
Close to Jodi Foster, except determinant piece -

quaternionic structure.
Read into determinants - check that paper you recently

downloaded
Reread Cedarwall’s Jordan algebra paper
Take a look at Gunaydin’s old notes on JAs
read Shane’s paper

s
?
S

?
H16(C) sS

s
?
S

?
H16(C) sS

?

s
?
S

?
H16(C) s

?
S

s
?
S H16(C) s

?
S

?

v

↵
†
j↵

†
i v ↵k↵`

↵
†
j↵

†
i v ↵k

4

Lepton helicity operator p
0
µ�

µ
sS

sS H16(C) sS

Lepton number

L := sS (25)

C. Possible electroweak boson precursors

Possible precursors for W
1,2,3 gauge bosons W

m
j �

j
�

0
m

s
⇤
St H16(C) ts

⇤
S

t := ↵
†
1↵1 + ↵

†
2↵2 (26)

�
0
1 := 1

2

⇣
↵

†
1vc↵2 + ↵

†
2vc↵1

⌘
,

�
0
2 := 1

2

⇣
�i↵

†
1vc↵2 + i↵

†
2vc↵1

⌘
,

�
0
3 := 1

2

⇣
↵

†
1vc↵1 � ↵

†
2vc↵2

⌘
,

(27)

Possible precursors for weak hypercharge gauge boson
Bµ�

µ
Y

Y =
1

2
(B � L) + ⌧

R
3 (28)

⌧
R
m :=

i✏m

2
s

⇤
S

⇤ (29)

Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.

s
⇤
S (30)

VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

p
0
µ ( 1, 1, 0 )4

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras - wikipedia - done -
nlab - done
Diagram - done
McCrimmon intro - done
John Baez’ paper - done
Read Latham and Shane’s paper - done
Know the basic idea with spinor-helicity formalism
Talk to Jan
Write the whole thing out
Talk to Beth about what to do with the subsequent

paper
First paper:
embed SM states inside H16
Was originally hoping for Cl(8) but this doesn’t seem

to match SM states
Not nec trf under Gsm
Connect to spinor-helicity formalism
No mathematical motivation, not anything particu-

larly deep being said about the algebra
No division algebras
Second paper:
Nice mathematical starting point. Left mult algeb of

RCHO. 16x16C matrices. Lie alg = anti-herm JA =
herm. Under involution i eps e. Need to check that’s
an anti-aut

Might even be able to relate it back to 1 gen model of
Mia and I.

Then can use complex structures to break Lie alg and
JA down to subalgebras.

See how close we can get to the SM embedding of the
first paper. Don’t nec even need to make it all the way
there.

Been looking up intros to JA. A lot of structures that
should be in there. p15 of JA notes

eg bi Caley algebra
In particular Jordan triple system of McCrimmon -

mult algebra looks super familiar.
Close to Jodi Foster, except determinant piece -

quaternionic structure.
Read into determinants - check that paper you recently

downloaded
Reread Cedarwall’s Jordan algebra paper
Take a look at Gunaydin’s old notes on JAs
read Shane’s paper

s
?
S

?
H16(C) sS

s
?
S

?
H16(C) sS

?

s
?
S

?
H16(C) s

?
S

s
?
S H16(C) s

?
S

?

v

↵
†
j↵

†
i v ↵k↵`

↵
†
j↵

†
i v ↵k

5

could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons

Within the upper diagonal blocks of H16(C) in Fig-
ure (1) we find
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Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS

Lepton momentum 7! p
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(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.

C. Possible electroweak gauge boson precursors
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Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.

Finally, we use the well-known relation Y = 1
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3 to propose a map from
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION
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Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
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thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons
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†
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†
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†
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Lepton momentum is analogously specified by

Lepton momentum sS H16(C) sS

Lepton momentum 7! p
0
µ �

µ
sS,

(22)

for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.

C. Possible electroweak gauge boson precursors
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ure (1), we identify degrees of freedom corresponding to

W
1,2,3
µ precursors s

⇤
St H16(C) ts

⇤
S

W
1,2,3
µ precursors 7! W

j
µ �j�

0µ
s

?
S,
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where

�
0
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2 (↵†
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†
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0
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�
0
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†
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†
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0
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†
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(24)
Currently, we are identifying these states only as W

1,2,3
µ

precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.

Finally, we use the well-known relation Y = 1
2 (B �

L) + ⌧
R
3 to propose a map from

Bµ precursors 7! W
m
j �

j
�

0
ms

?
S, (25)

where ⌧
R
m := i✏m

2 s
⇤
S

⇤
.
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
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the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
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ford algebras is overwhelmingly dominated by factors of
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find that we need a minimum of 244 real degrees of free-
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close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?
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could eventually lead to an explanation for their mass
hierarchy.
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Degrees of freedom yet to be identified
Analogues of the quark and lepton helicity operators.
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs

Nice parallels: spin to isospin as colour to generations

Might ultimately need relative spin relative colour def-
inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:

Read intros on Jordan algebras Read Latham and
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helicity formalism Talk to Jan Diagram Write the whole
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quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs
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behaviour we see in elementary particle physics. If we
were to construct the standard model by starting out
with four real degrees of freedom allocated for the space-
time indices of each gauge boson, and four real degrees
of freedom per spinor, then the above states could (for
example) account for eight gluons, one photon, one Z bo-
son, three generations of left- and right-handed quarks,
three generations of left-handed leptons, and three gen-
erations of right-handed charged leptons. Still left to
describe would be W bosons, the Higgs, and potentially
right-handed neutrinos.

Now the remaining available space, C36, is something
of a curiosity. Under the action (38), we find that C36
behaves as two copies of 3 ⌦ 3 = 6 � 3⇤, plus its com-
plex conjugate. In corroboration with the recent work of
Gording and Schmidt-May, [36], we find that it might be
possible to alleviate extraneous-su(3)c tension by having
such states act on  from the right hand side, instead of
the left. In this case, triplet transitions may be identi-
fied as transitions between generations instead of colour.
Said another way, one may seek out special conditions
under which  may be reinterpreted as  ?. Clearly this
topic will be subject to further investigation.

D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)

Cl(p, q + 8) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8).

(40)
Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?

E. Update: A first attempt at a full set of standard
model states
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D. Bott periodicity

Finally, we close this article with one further idea
worth looking into. It is well known that real Cli↵ord
algebras of the form Cl(p, q) exhibit a repeating pattern
known as Bott periodicity. That is, we find that, as ma-
trix algebras,

Cl(p+ 8, q) = Cl(p, q)⌦ R(16) = Cl(p, q)⌦ Cl(0, 8)
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Given that p and q may run o↵ to infinity, one may

then take the perspective that the space of all such Clif-
ford algebras is overwhelmingly dominated by factors of
Cl(0, 8). That is, a typical choice would read

Cl(p, q) =

Cl(pmin, qmin)⌦ Cl(0, 8)⌦ Cl(0, 8)⌦ Cl(0, 8) · · ·

(41)
Now, when adding up the standard model’s (o↵-shell)

fermionic, gauge bosonic, and Higgs bosonic states, in ad-
dition to the states of three right-handed neutrinos, we
find that we need a minimum of 244 real degrees of free-
dom. The Cli↵ord algebra Cl(0, 8) comes tantalizingly
close at 256. Moreover, this Cl(0, 8) is not far removed
from the ⇤-invariant subspace of the complex Cl(8) we
have been studying here. One might then ask if it could
be possible to identify single particle states with the var-
ious particle representations sitting inside one copy of

Cl(0, 8). Furthermore, could these repeating tensor prod-
ucts of Cl(0, 8) be interpreted as multi-particle states?
Might it be possible to build a Bott periodic Fock space?
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VI. GAUGE BOSONS AND JORDAN
SUBALGEBRAS

VII. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VIII. OPEN QUESTIONS

IX. CONCLUSION

To do:
Read intros on Jordan algebras Read Latham and

Shane’s two papers Know the basic idea with spinor-
helicity formalism Talk to Jan Diagram Write the whole
thing out Talk to Beth about what to do with the subse-
quent paper Read into determinants Reread Cedarwall’s
Jordan algebra paper Take a look at Gunaydin’s old notes
on JAs
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could eventually lead to an explanation for their mass
hierarchy.

B. Quark and lepton momenta, Gluons

Within the upper diagonal blocks of H16(C) in Fig-
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Lepton momentum is analogously specified by
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for p
0
µ 2 R. Finally, we point out that the generators of

baryon number and lepton number will be simply defined
as iB := i

3sS
⇤
, and iL := isS respectively.
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Currently, we are identifying these states only as W
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precursors since the most näıve treatment of the Pierce
operator 1/2{ s, · } labels these degrees of freedom as
spin-0 scalars. It is anticipated that a more complete
formalism also involving idempotent S will need to be
developed in order to identify these states as spin-1.

Finally, we use the well-known relation Y = 1
2 (B �

L) + ⌧
R
3 to propose a map from

Bµ precursors 7! W
m
j �

j
�

0
ms

?
S, (25)

where ⌧
R
m := i✏m

2 s
⇤
S

⇤
.

V. FEATURES OF THE MODEL

Only 8 extra DOFs
Nice parallels: spin to isospin as colour to generations
Might ultimately need relative spin relative colour def-

inition. This might explain why CKM matrix nearly di-
agonal for quarks, but PMNS not so for leptons.

Anticipate it is connected to a theory of projectors
where the projectors give propagators.

Above mentioned complex structure changes from
point to point - allowing EW to have access to all three
generations.

VI. OPEN QUESTIONS

VII. CONCLUSION

Physical content
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sequence

multiply

256 C

Need

244 R

† ∶ LC⊗H⊗O → LC⊗H⊗O

(C imaginary ) i� −i
(H imaginaries ) ✏j � −✏j j ∈ {1,2,3}
(O imaginaries ) ek � −ek k ∈ {1,2, . . .7}

“Hermitian conjugate”

Consider hermitian subspace
of LC⊗H⊗O � H16(C)

⋅ Important applications in physics

⋅ 256R � 244R

Standard model’s particle content

as a

Jordan algebraic mosaic

Symmetry:

SU(3)×SU(2)×U(1) / Z6

Particles?

Fermions

s ∶= 1
2(1 + iLe7) S ∶= 1

2(1 + iRe7)

s∗ ∶= 1
2(1 − iLe7) S∗ ∶= 1

2(1 − iRe7)

O multiplication algebra
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