Standard model irreps as an extension of 4-momentum:
 our first attempt

N. Furey and B. Romano
Humboldt-Universität zu Berlin
University of Oxford

Standard Model of Elementary Particles

Standard Model of Elementary Particles

Standard Model of Elementary Particles

Symmetry:

Symmetry:
$\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) / \mathbb{Z}_{6}$

$G_{s m}:=$

 $\mathrm{SU}(3) \times \operatorname{SU}(2) \times \mathrm{U}(1) / \mathbb{Z}_{6}$$G_{s m}:=$
$\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) / \mathbb{Z}_{6}$

Particles:
Irreps
$G_{s m}:=$
$\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) / \mathbb{Z}_{6}$

Particles:

Irreps

Which?

Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
\begin{array}{cl}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

Gauge bosons

$$
\begin{array}{cc}
G_{\mu} & (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4} \\
W_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4} \\
B_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}
\end{array}
$$

RH fermions

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
& \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
& \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{array}
$$

Higgs

$H \quad\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{1}$

Standard Model Irreps $\left(\underline{\mathrm{SU}(3)}{ }_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
\begin{array}{cl}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

Gauge bosons

$$
\begin{array}{cl}
G_{\mu} & (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4} \\
W_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4} \\
B_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}
\end{array}
$$

RH fermions

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
& \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
& \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{array}
$$

Higgs

$H \quad\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{1}$

Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \underline{\mathrm{SU}(2)_{\mathrm{L}}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
\begin{array}{cl}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

Gauge bosons

$$
\begin{array}{cc}
G_{\mu} & (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4} \\
W_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4} \\
B_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}
\end{array}
$$

RH fermions

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
& \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
& \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{array}
$$

Higgs

$H \quad\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{1}$

Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \underline{\mathrm{U}}^{(1)}{ }_{\mathrm{Y}}\right)$

LH fermions

$$
\begin{array}{cl}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

Gauge bosons

$$
\begin{array}{cl}
G_{\mu} & (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4} \\
W_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4} \\
B_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}
\end{array}
$$

RH fermions

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
& \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
& \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{array}
$$

Higgs

$H \quad\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{1}$

Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
\begin{array}{cl}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

Gauge bosons

$$
\begin{array}{cc}
G_{\mu} & (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4} \\
W_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4} \\
B_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}
\end{array}
$$

RH fermions

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
& \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
& \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{array}
$$

Higgs

$H \quad\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{1}$

> Standard Model Irreps
> $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
(u, d)_{L} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
$$

> Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
(u, d)_{L} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
$$

RH fermions
$u_{R} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$

Standard Model Irreps
 $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
(u, d)_{L} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
$$

$$
\left(\nu_{e}, e\right)_{L} \quad\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
$$

RH fermions
$u_{R} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
$d_{R} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$$
e_{R} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
$$

Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
(u, d)_{L} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
$$

$$
\left(\nu_{e}, e\right)_{L} \quad\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
$$

RH fermions
$u_{R} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
$d_{R} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$$
e_{R} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
$$

1 generation

Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$$
\begin{array}{ll}
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

RH fermions

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}
\end{array}
$$

$$
d_{R} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}
$$

$$
s_{R} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}
$$

$$
\begin{array}{ll}
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{array}
$$

2 generations

Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
\begin{array}{cl}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \boldsymbol{\tau}\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

RH fermions

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{array}
$$

Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
\begin{array}{cl}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

RH fermions

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{array}
$$

Fermion content

Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
\begin{array}{cl}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \boldsymbol{\tau}\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

RH fermions

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{array}
$$

Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
\begin{array}{cc}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

Gauge bosons

$$
\begin{array}{cl}
G_{\mu} & (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4} \\
W_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4} \\
B_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}
\end{array}
$$

RH fermions

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{array}
$$

Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
\begin{array}{cl}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

Gauge bosons

$$
\begin{array}{cc}
G_{\mu} & (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4} \\
W_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4} \\
B_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}
\end{array}
$$

RH fermions

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
& \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
& \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{array}
$$

Higgs

$H \quad\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{1}$

Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
\begin{array}{cl}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

Gauge bosons

$$
\begin{array}{cl}
G_{\mu} & (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4} \\
W_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4} \\
B_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}
\end{array}
$$

RH fermions

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
& \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
& \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{array}
$$

Higgs
$H \quad\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{1}$
$\Rightarrow 244 \mathbb{R}$

R,

H,

special
special $\xrightarrow{\longrightarrow}$

special \longrightarrow ubiquitous

R, C, H, O

R,

H,
0
everywhere

R,
everywhere

C,

H,

quantum

R,

everywhere

quantum

H,

special relativity

R.

H,

everywhere
quantum
special relativity
electromagnetism

R,

H,

everywhere
quantum
special relativity
strong
nuclear
electromagnetism
\square
N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}=\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}=\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

G. Dixon
N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013
N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

$64 \mathbb{R}$

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

$64 \mathbb{R}$
N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ 1 generation

 $64 \mathbb{R}$N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$ \longleftrightarrow 1 generation

 $64 \mathbb{R}$N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O} \quad \longleftrightarrow \quad 1$ generation $64 \mathbb{R}$

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

\subset (1)
 up-quarks
 $6 \mathbb{R}$

M. Günaydin, F. Gürsey,

Quark structure and the octonions,
J. Math. Phys., 14, No. 11 (1973)

Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
(u, d)_{L} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
$$

$$
\left(\nu_{e}, e\right)_{L} \quad\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
$$

RH fermions
$u_{R} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
$d_{R} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$$
e_{R} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
$$

1 generation

Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
\begin{array}{cl}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \boldsymbol{\tau}\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

RH fermions

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{array}
$$

Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
\begin{array}{cl}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

Gauge bosons

$$
\begin{array}{cc}
G_{\mu} & (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4} \\
W_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4} \\
B_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}
\end{array}
$$

RH fermions

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
& \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
& \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{array}
$$

Higgs

$H \quad\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{1}$

sequence

$$
w(x(y z))
$$

sequence

$$
w(x(y z))
$$

$$
w, x, y, z \in \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}
$$

encode particles?

$$
w(x(y z))
$$

$$
w, x, y, z \in \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}
$$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra

encode particles?
$w(x(y z))$
$w, x, y, z \in \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}{ }^{\prime} \mathrm{s}$ left-multiplication algebra $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{0}} "$

encode particles?

$$
w(x(y z))
$$

$$
w, x, y, z \in \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}
$$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s

 left-multiplication algebra$" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{0}} "$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}{ }^{\prime} \mathrm{s}$ left-multiplication algebra $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{0}} "$

$$
w(x(y z))
$$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} "$

operator
$\overbrace{w(x(y z))}$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}{ }^{\prime} \mathrm{s}$ left-multiplication algebra $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{D}} "$

operator
$\overbrace{w(x(y z))}$
\uparrow
state

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s

 left-multiplication algebra$" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{0}} "$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{0}} "$

multiply

$$
y z
$$

$$
y, z \in \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}
$$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}{ }^{\prime} \mathrm{s}$ left-multiplication algebra $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{D}} "$

multiply

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}{ }^{\prime} \mathrm{s}$ left-multiplication algebra $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} "$

multiply

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} "$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}}$ "

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}}$ "

$$
L_{y}(z):=y z \quad y, z \in \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}
$$

$$
\begin{gathered}
\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O} \text { 's } \\
\text { left-multiplication algebra } \\
\text { " } L_{\mathbb{C} \otimes H \in \mathbb{H}} " \\
L_{y}(z):=y z \quad y, z \in \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O} \\
L_{y} \in \operatorname{End}_{\mathbb{C}}(\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O})
\end{gathered}
$$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s

 left-multiplication algebra$" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{0}} "$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} "$

$\left(L_{x} \circ L_{y}\right)(z)$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} "$

$\left(L_{x} \circ L_{y}\right)(z)=L_{x}\left(L_{y}(z)\right)$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} "$

$\left(L_{x} \circ L_{y}\right)(z)=L_{x}\left(L_{y}(z)\right)=x(y z)$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra
 $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{0}} "$

Multiplication:
$\left(L_{x} \circ L_{y}\right)(z)=L_{x}\left(L_{y}(z)\right)=x(y z)$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s

 left-multiplication algebra$" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{0}} "$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s
left-multiplication algebra
" $L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}}$ "

$$
\begin{aligned}
L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathcal{O}}:= & \text { subalgebra of } E n d_{\mathbb{C}}(\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}) \\
& \text { generated by }\left\{L_{y} \mid y \in \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}\right\}
\end{aligned}
$$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s

 left-multiplication algebra$" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{0}} "$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{0}} "$

$$
L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} \simeq M_{16 \times 16}(\mathbb{C})
$$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}{ }^{\prime} \mathrm{s}$ left-multiplication algebra $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} "$

$$
\begin{aligned}
L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathcal{O}} & \simeq M_{16 \times 16}(\mathbb{C}) \\
& \simeq \mathbb{C l}(8)
\end{aligned}
$$

$$
\begin{gathered}
\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O} \text { 's } \\
\text { left-multiplication algebra } \\
\text { " } L_{\mathbb{C} \otimes H \mathbb{H} \otimes} " \\
L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} \simeq M_{16 \times 16}(\mathbb{C}) \\
\simeq \mathbb{C l}(8) \\
8 \gamma_{j} \\
\text { generate } \mathbb{C l}(8)
\end{gathered}
$$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$'s left-multiplication algebra
 $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{0}} "$

$$
\begin{aligned}
L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathcal{O}} & \simeq M_{16 \times 16}(\mathbb{C}) \\
& \simeq \mathbb{C l}(8)
\end{aligned}
$$

$$
8 \gamma_{j} \quad \longleftrightarrow \quad \mathrm{~A}, \mathrm{C}, \mathrm{~T}, \mathrm{G}
$$

generate $\mathbb{C l}(8)$

Standard Model Irreps $\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$

LH fermions

$$
\begin{array}{cl}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

Gauge bosons

$$
\begin{array}{cc}
G_{\mu} & (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4} \\
W_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4} \\
B_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}
\end{array}
$$

RH fermions

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
& \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
& \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{array}
$$

Higgs

$H \quad\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{1}$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O} \quad \longleftrightarrow \quad 1$ generation $64 \mathbb{R}$

N.F., M.J. Hughes,

One generation of standard model Weyl representations as a single copy of $\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}$,

Phys.Lett.B, 827 (2022) https://pirsa.org/21030013

sequence

$$
w(x(y z))
$$

sequence

$$
w(x(y z))
$$

$$
w, x, y, z \in \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}
$$

$\mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}{ }^{\prime} \mathrm{s}$ left-multiplication algebra
 $" L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{0}} "$

sequence

$$
w(x(y z))
$$

$$
w, x, y, z \in \mathbb{R} \otimes \mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}
$$

$L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathrm{O}} \simeq \mathbb{C l}(8)$

$L_{\mathbb{C} \otimes H \otimes O} \simeq \mathbb{C l}(8)$

$$
8 \gamma_{j} \quad \longleftrightarrow \quad \mathrm{~A}, \mathrm{C}, \mathrm{~T}, \mathrm{G}
$$

generate $\mathbb{C l}(8)$

$$
L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathcal{O}} \simeq \mathbb{C l}(8)
$$

$L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathcal{O}} \simeq \mathbb{C l}(8)$
$256 \mathbb{C}$
$L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathrm{O}} \simeq \mathbb{C l}(8)$
$256 \mathbb{C}$

Need
$244 \mathbb{R}$
$\dagger: \quad L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} \rightarrow L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{C}}$

$$
\dagger: \quad L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathscr{O}} \rightarrow L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}}
$$

(C imaginary) $\quad i \mapsto-i$

$$
\dagger: \quad L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathscr{O}} \rightarrow L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}}
$$

(\mathbb{C} imaginary) $\quad i \mapsto-i$

$\left(\mathbb{H}\right.$ imaginaries) $\quad \epsilon_{j} \mapsto-\epsilon_{j} \quad j \in\{1,2,3\}$

$$
\dagger: \quad L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathcal{O}} \rightarrow L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}}
$$

$$
\begin{array}{lll}
(\mathbb{C} \text { imaginary) } & i \mapsto-i & \\
(\mathbb{H} \text { imaginaries }) & \epsilon_{j} \mapsto-\epsilon_{j} & j \in\{1,2,3\} \\
(\mathbb{O} \text { imaginaries }) & e_{k} \mapsto-e_{k} & k \in\{1,2, \ldots 7\}
\end{array}
$$

"Hermitian conjugate"

$$
\dagger: \quad L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathcal{O}} \rightarrow L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}}
$$

(\mathbb{C} imaginary) $\quad i \mapsto-i$
$(\mathbb{H}$ imaginaries $) \quad \epsilon_{j} \mapsto-\epsilon_{j} \quad j \in\{1,2,3\}$
(© imaginaries) $\quad e_{k} \mapsto-e_{k} \quad k \in\{1,2, \ldots 7\}$

Consider hermitian subspace of $L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} \simeq \mathcal{H}_{16}(\mathbb{C})$

Consider hermitian subspace of $L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} \simeq \mathcal{H}_{16}(\mathbb{C})$

- Important applications in physics

Consider hermitian subspace of $L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} \simeq \mathcal{H}_{16}(\mathbb{C})$

- Important applications in physics $p \in \mathcal{H}_{2}(\mathbb{C}) \rightarrow \mathcal{H}_{16}(\mathbb{C})$

Consider hermitian subspace of $L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} \simeq \mathcal{H}_{16}(\mathbb{C})$

- Important applications in physics $p \in \mathcal{H}_{2}(\mathbb{C}) \rightarrow \mathcal{H}_{16}(\mathbb{C})$
- $256 \mathbb{R} \gtrsim 244 \mathbb{R}$

Consider hermitian subspace of $L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathcal{O}} \simeq \mathcal{H}_{16}(\mathbb{C})$

- Important applications in physics $p \in \mathcal{H}_{2}(\mathbb{C}) \rightarrow \mathcal{H}_{16}(\mathbb{C})$
- $256 \mathbb{R} \gtrsim 244 \mathbb{R}$

Consider hermitian subspace of $L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathcal{O}} \simeq \mathcal{H}_{16}(\mathbb{C})$

- Important applications in physics $p \in \mathcal{H}_{2}(\mathbb{C}) \rightarrow \mathcal{H}_{16}(\mathbb{C})$
- $256 \mathbb{R} \gtrsim 244 \mathbb{R}$

© multiplication algebra

© multiplication algebra

(0) multiplication algebra

Idempotents

© (0) multiplication algebra

Idempotents

$$
\begin{array}{ll}
s:=\frac{1}{2}\left(1+i L_{e_{7}}\right) & S:=\frac{1}{2}\left(1+i R_{e_{7}}\right) \\
s^{*}:=\frac{1}{2}\left(1-i L_{e_{7}}\right) & S^{*}:=\frac{1}{2}\left(1-i R_{e_{7}}\right)
\end{array}
$$

$\mathcal{H}_{16}(\mathbb{C})$
$\mathcal{H}_{16}(\mathbb{C})$

$\mathcal{H}_{16}(\mathbb{C})$
"Peirce decomposition"

$s S \mathcal{H}_{16}(\mathbb{C}) ~ s S$	$s S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$

$\mathcal{H}_{16}(\mathbb{C})$


```
(u,d)L
(c,s)L
(t,b)}\mp@subsup{L}{L}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{2}},\frac{1}{6}\mp@subsup{)}{2}{
(\nue,e)L
(\nu},\mp@subsup{\nu}{\mu}{},\mu\mp@subsup{)}{L}{}\quad(\underline{\mathbf{1}},\underline{\mathbf{2}},-\frac{1}{2}\mp@subsup{)}{2}{
(\nu},\mp@subsup{\nu}{\tau}{},\tau\mp@subsup{)}{L}{}\quad(\underline{\mathbf{1}},\underline{\mathbf{2}},-\frac{1}{2}\mp@subsup{)}{2}{
    u}\mp@subsup{u}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},\frac{2}{3}\mp@subsup{)}{2}{
    c}\mp@subsup{c}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},\frac{2}{3}\mp@subsup{)}{2}{
    t
    d}\mp@subsup{d}{R}{}(\underline{\mathbf{3}},\underline{\mathbf{1}},-\frac{1}{3}\mp@subsup{)}{2}{
    s}\mp@subsup{s}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},-\frac{1}{3}\mp@subsup{)}{2}{
    b}\mp@subsup{b}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},-\frac{1}{3}\mp@subsup{)}{2}{
\nu
\nu}\mp@subsup{\nu}{R}{}\quad(\underline{\mathbf{1}},\underline{\mathbf{1}},0\mp@subsup{)}{2}{
\nu\tauR
e}\mp@subsup{e}{R}{}\quad(\underline{\mathbf{1}},\underline{\mathbf{1}},-1)
\mu
\tau
p\mu (\underline{\mathbf{1}},\underline{\mathbf{1}},0)
p}\mp@subsup{\mu}{\mu}{\prime}\quad(\underline{\mathbf{1}},\underline{\mathbf{1}},0)
G}\mp@subsup{\mu}{\mu}{}\quad(\underline{\mathbf{8}},\underline{\mathbf{1}},0)
W\mu
B\mu
```


\square

Generic element of $G_{s m}$'s Lie algebra

Generic element of $G_{s m}$'s Lie algebra

$$
\begin{array}{cc}
\mathfrak{s u}(3)_{C} & \mathfrak{s u}(2)_{L} \\
\ell_{s m}:= & \mathfrak{u}(1)_{Y}^{\prime} \Lambda_{n} s+r_{k} L_{\epsilon_{k}} s^{*} S+\frac{r}{2}\left(\frac{i}{3} s S^{*}-i s S-L_{\epsilon_{3}} s^{*} S^{*}\right)
\end{array}
$$

$$
\begin{array}{r}
n \in\{1,2, \ldots 8\} \\
k \in\{1,2,3\}
\end{array}
$$

Generic element of $G_{s m}$'s Lie algebra

$$
\underset{\ell_{s m}:=i r_{n}^{\prime} \Lambda_{n} s+{ }_{\mathfrak{s u l}(3)_{C}}^{\mathfrak{s u}(2)_{L}} \begin{array}{c}
\mathfrak{u}(1)_{Y} \\
\epsilon_{k} s^{*} S
\end{array}+\frac{r}{2}\left(\frac{i}{3} s S^{*}-i s S-L_{\epsilon_{3}} s^{*} S^{*}\right)}{ }
$$

$$
n \in\{1,2, \ldots 8\}
$$

$$
k \in\{1,2,3\}
$$

\square

Action of $\ell_{s m}$ on $\mathcal{H}_{16}(\mathbb{C})$

Action of $\ell_{s m}$ on $\mathcal{H}_{16}(\mathbb{C})$

$$
\delta b=\ell_{s m} b+b \ell_{s m}^{\dagger}
$$

Action of $\ell_{s m}$ on $\mathcal{H}_{16}(\mathbb{C})$

$\delta b=\ell_{s m} b+b \ell_{s m}^{\dagger}$
$\delta f_{0}=\ell_{s m} s f_{0} s^{*}+s f_{0} s^{*} \ell_{s m}+h . c$.
diagonal
outer off-diagonal

Action of $\ell_{s m}$ on $\mathcal{H}_{16}(\mathbb{C})$

$$
\begin{aligned}
& \delta b=\ell_{s m} b+b \ell_{s m}^{\dagger} \\
& \delta f_{0}=\ell_{s m} s f_{0} s^{*}+s f_{0} s^{*} \ell_{s m}+h . c . \\
& \delta f_{+}=\ell_{s m}\left(s S^{*} f_{+} s S+s^{*} S^{*} f_{+} s^{*} S\right)
\end{aligned}
$$

$$
+\left(s S^{*} f_{+} s S+s^{*} S^{*} f_{+} s^{*} S\right) \ell_{s m}^{\dagger *}+h . c . \quad \text { inner off-diagonal }
$$

```
(u,d)L
(c,s)L
(t,b)}\mp@subsup{L}{L}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{2}},\frac{1}{6}\mp@subsup{)}{2}{
(\nue,e)L
(\nu},\mp@subsup{\nu}{\mu}{},\mu\mp@subsup{)}{L}{}\quad(\underline{\mathbf{1}},\underline{\mathbf{2}},-\frac{1}{2}\mp@subsup{)}{2}{
(\nu},\mp@subsup{\nu}{\tau}{},\tau\mp@subsup{)}{L}{}\quad(\underline{\mathbf{1}},\underline{\mathbf{2}},-\frac{1}{2}\mp@subsup{)}{2}{
    u}\mp@subsup{u}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},\frac{2}{3}\mp@subsup{)}{2}{
    c}\mp@subsup{c}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},\frac{2}{3}\mp@subsup{)}{2}{
    t
    d}\mp@subsup{d}{R}{}(\underline{\mathbf{3}},\underline{\mathbf{1}},-\frac{1}{3}\mp@subsup{)}{2}{
    s}\mp@subsup{s}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},-\frac{1}{3}\mp@subsup{)}{2}{
    b}\mp@subsup{b}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},-\frac{1}{3}\mp@subsup{)}{2}{
\nu
\nu}\mp@subsup{\nu}{R}{}\quad(\underline{\mathbf{1}},\underline{\mathbf{1}},0\mp@subsup{)}{2}{
\nu\tauR
e}\mp@subsup{e}{R}{}\quad(\underline{\mathbf{1}},\underline{\mathbf{1}},-1)
\mu
\tau
p\mu (\underline{\mathbf{1}},\underline{\mathbf{1}},0)
p}\mp@subsup{\mu}{\mu}{\prime}\quad(\underline{\mathbf{1}},\underline{\mathbf{1}},0)
G}\mp@subsup{\mu}{\mu}{}\quad(\underline{\mathbf{8}},\underline{\mathbf{1}},0)
W\mu
B\mu
```



```
(u,d)L
(c,s)}\mp@subsup{L}{L}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{2}},\frac{1}{6}\mp@subsup{)}{2}{
(t,b)
(\mp@subsup{\nu}{e}{},e\mp@subsup{)}{L}{}
    u}\mp@subsup{|}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},\frac{2}{3}\mp@subsup{)}{2}{
    c}\mp@subsup{c}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},\frac{2}{3}\mp@subsup{)}{2}{
    t
    d}\mp@subsup{d}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},-\frac{1}{3}\mp@subsup{)}{2}{
    s}\mp@subsup{s}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},-\frac{1}{3}\mp@subsup{)}{2}{
    b}\mp@subsup{b}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},-\frac{1}{3}\mp@subsup{)}{2}{
\nu
\nu}\mp@subsup{\mu}{R}{}\quad(\underline{\mathbf{1}},\underline{\mathbf{1}},0)\mp@subsup{)}{2}{
\nu\tauR (\underline{1},\underline{\mathbf{1}},0)
e
\mu}R\quad(\underline{\mathbf{1}},\underline{\mathbf{1}},-1)
\tau
p\mu (\underline{\mathbf{1}},\underline{\mathbf{1}},0)
p}\mp@subsup{p}{\mu}{\prime}(\underline{\mathbf{1}},\underline{\mathbf{1}},0)
G\mu (\underline{8},\underline{1},0)4
W\mu
B\mu
```

$\mathcal{H}_{16}(\mathbb{C})$


```
(u,d )
(c,s)}\mp@subsup{L}{L}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{2}},\frac{1}{6}\mp@subsup{)}{2}{
(t,b)}L\quad(\underline{\mathbf{3}},\underline{\mathbf{2}},\frac{1}{6}\mp@subsup{)}{2}{
(\nu
(\nu
(\nu},\mp@code{\tau}\mp@subsup{)}{L}{}\quad(\underline{\mathbf{1}},\underline{\mathbf{2}},-\frac{1}{2}\mp@subsup{)}{2}{
    u}\mp@subsup{|}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},\frac{2}{3}\mp@subsup{)}{2}{
    c}\mp@subsup{c}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},\frac{2}{3}\mp@subsup{)}{2}{
    t
    d}\mp@subsup{d}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},-\frac{1}{3}\mp@subsup{)}{2}{
    s}\mp@subsup{s}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},-\frac{1}{3}\mp@subsup{)}{2}{
b}\mp@subsup{b}{R}{}\quad(\underline{\mathbf{3}},\underline{\mathbf{1}},-\frac{1}{3}\mp@subsup{)}{2}{
\nueR (\underline{\mathbf{1}},\underline{\mathbf{1}},0)
\nu
\nu\tauR
e
\mu}R\quad(\underline{\mathbf{1}},\underline{\mathbf{1}},-1)
\tau
p\mu (\underline{\mathbf{1}},\underline{\mathbf{1}},0)
p
G\mu (\underline{8},\underline{1},0)4
W\mu
B\mu
```

$\mathcal{H}_{16}(\mathbb{C})$

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$$
\begin{array}{ll}
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$\mathcal{H}_{16}(\mathbb{C})$

$s S \mathcal{H}_{16}(\mathbb{C}) s S$	$s \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$		
$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$			
	$s \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$\mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$	
$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$			
	$s^{\star} S S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$		

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$$
\begin{array}{ll}
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$\mathcal{H}_{16}(\mathbb{C})$

$s S \mathcal{H}_{16}(\mathbb{C}) s S$	$s S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	${ }_{s} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$$
\begin{array}{ll}
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}
\end{array}
$$

$$
d_{R} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}
$$

$$
s_{R} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}
$$

$$
b_{R} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}
$$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$\mathcal{H}_{16}(\mathbb{C})$

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$$
\begin{array}{ll}
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{8}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$\mathcal{H}_{16}(\mathbb{C})$

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$$
\begin{array}{ll}
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

$$
\begin{array}{ll}
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}
\end{array}
$$

$$
d_{R} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}
$$

$$
s_{R} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}
$$

$$
b_{R} \quad\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}
$$

$\left.\begin{array}{|ll|}\hline \nu_{e R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2} \\ \nu_{\mu R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2} \\ \nu_{\tau R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2} \\ e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\ \mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\ \tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}\end{array}\right) \longleftarrow$

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$\left(\nu_{e}, e\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\mu}, \mu\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\tau}, \tau\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R} \quad(\underline{1}, \underline{1}, 0)_{2}$
$\nu_{\tau R} \quad(\underline{1}, \underline{1}, 0)_{2}$
$e_{R} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
$\mu_{R} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{8}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$

$s S \mathcal{H}_{16}(\mathbb{C}) s S$	$s S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$		
$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$			
	$s \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$\mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S^{\star}$
$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$			
			$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$\left(\nu_{e}, e\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\mu}, \mu\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\tau}, \tau\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R} \quad(\underline{1}, \underline{1}, 0)_{2}$
$\nu_{\tau R} \quad(\underline{1}, \underline{1}, 0)_{2}$

$e_{R} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}
τ_{R}
$\mathbf{\mathbf { 1 }}, \underline{\mathbf{1}},-1)_{2}$

p_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
p_{μ}^{\prime}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
G_{μ}	$(\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$
W_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
B_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$

$\mathcal{H}_{16}(\mathbb{C})$

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$\left(\nu_{e}, e\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\mu}, \mu\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\tau}, \tau\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{8}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$\mathcal{H}_{16}(\mathbb{C})$

$$
\begin{aligned}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}
\end{aligned}
$$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{8}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{1}, \underline{\mathbf{1}}, 0)_{4}$
$\mathcal{H}_{16}(\mathbb{C})$

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$\left(\nu_{e}, e\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\mu}, \mu\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\tau}, \tau\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\mathbf{8}, \underline{1}, 0)_{4}$
$W_{\mu} \quad(\underline{1}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$\mathcal{H}_{16}(\mathbb{C})$

$s S \mathcal{H}_{16}(\mathbb{C}) s S$	$s S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$		
$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$			
	$s \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$		

$$
\begin{aligned}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}
\end{aligned}
$$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{8}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{1}, \underline{\mathbf{1}}, 0)_{4}$
$\mathcal{H}_{16}(\mathbb{C})$

$(u, d)_{L}$	$\left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}$
$(c, s)_{L}$	$\left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}$
$(t, b)_{L}$	$\left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}$

$\left(\nu_{e}, e\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\mu}, \mu\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\tau}, \tau\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$

u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

p_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
p_{μ}^{\prime}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
G_{μ}	$(\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$
W_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
B_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$

$232 \mathbb{R}$
$\mathcal{H}_{16}(\mathbb{C})$

$s S \mathcal{H}_{16}(\mathbb{C}) s S$	$s S \mathcal{H}_{16}(\mathbb{C}) ~ s S^{\star}$	s S $\mathcal{H}_{16}(\mathbb{C}) s^{*} S$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
${ }^{\text {s }} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$

Physical content

$$
\begin{array}{cc}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{\mathbf{1}}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{\mathbf{2}}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{\mathbf{2}}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{\mathbf{2}}{3}\right)_{2} \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{\mathbf{1}}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
\nu_{e R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2} \\
\nu_{\mu R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2} \\
\nu_{\tau R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2} \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
p_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4} \\
p_{\mu}^{\prime} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4} \\
G_{\mu} & (\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4} \\
W_{\mu} & (\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4} \\
B_{\mu} & (\underline{\mathbf{1}}, 0)_{4}
\end{array}
$$

$s S \mathcal{H}_{16}(\mathbb{C}) ~ s S$	$s S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{*} S$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{*} S^{\star}$
$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{*} S \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$

$$
\begin{aligned}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{\mathbf{2}}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
\nu_{e R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2} \\
\nu_{\mu R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2} \\
\nu_{\tau R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2} \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{aligned}
$$

p_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
p_{μ}^{\prime}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
G_{μ}	$(\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$
W_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
B_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$

Covariant derivative

$$
\begin{aligned}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}
\end{aligned}
$$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{8}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{1}, \underline{\mathbf{1}}, 0)_{4}$
$\mathcal{H}_{16}(\mathbb{C})$

$$
\begin{aligned}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}
\end{aligned}
$$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$

$s S \mathcal{H}_{16}(\mathbb{C}) ~ s S$.	${ }_{\text {s }} S \mathcal{H}_{16}(\mathbb{C}) ~ s S^{\star}$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{*} S$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s$.	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{*} S \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$$
\begin{array}{ll}
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$

Fermions

$s S \mathcal{H}_{16}(\mathbb{C}) s$,	$s S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{*} S$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) ~ s S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$

$$
\begin{aligned}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}
\end{aligned}
$$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{8}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{1}, \underline{\mathbf{1}}, 0)_{4}$
$\mathcal{H}_{16}(\mathbb{C})$

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$\left(\nu_{e}, e\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\mu}, \mu\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\tau}, \tau\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$

u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$	
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$	\longleftarrow
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$	\longleftarrow
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$	
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$	\longleftarrow
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$	\longleftarrow

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{8}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{1}, \underline{1}, 0)_{4}$
$\mathcal{H}_{16}(\mathbb{C})$

$s S \mathcal{H}_{16}(\mathbb{C}) ~ s S$	$s S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
${ }_{s S^{\star}} \mathcal{H}_{16}(\mathbb{C}) s S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$\left(\nu_{e}, e\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\mu}, \mu\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\tau}, \tau\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\mathbf{8}, \underline{1}, 0)_{4}$
$W_{\mu} \quad(\underline{1}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$\mathcal{H}_{16}(\mathbb{C})$

$s S \mathcal{H}_{16}(\mathbb{C}) s S$	$s S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$		
$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$			
	$s \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$		

End of the line?

End of the line?
Maybe, maybe not.

$$
\begin{aligned}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}
\end{aligned}
$$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{8}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{1}, \underline{\mathbf{1}}, 0)_{4}$
$\mathcal{H}_{16}(\mathbb{C})$

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$\left(\nu_{e}, e\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\mu}, \mu\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\tau}, \tau\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{8}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$

$s S \mathcal{H}_{16}(\mathbb{C}) ~ s S$.	$s S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{*} S$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s$.	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$\left(\nu_{e}, e\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\mu}, \mu\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\tau}, \tau\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$

u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\mathbf{8}, \underline{\mathbf{1}}, 0)_{\Lambda}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$\mathcal{H}_{16}(\mathbb{C})$

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$\left(\nu_{e}, e\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\mu}, \mu\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\tau}, \tau\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{8}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$

$s S \mathcal{H}_{16}(\mathbb{C}) ~ s S$.	$s S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{*} S$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s$.	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$\left(\nu_{e}, e\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\mu}, \mu\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\tau}, \tau\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$

u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$s S \mathcal{H}_{16}(\mathbb{C}) ~ s S$.	${ }_{\text {s }} S \mathcal{H}_{16}(\mathbb{C}) ~ s S^{\star}$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{*} S$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{*} S^{\star}$
$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s$.	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{*} S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$\left(\nu_{e}, e\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\mu}, \mu\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\tau}, \tau\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{8}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$

$s S \mathcal{H}_{16}(\mathbb{C}) ~ s S$.	$s S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{*} S$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s$.	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$

To be continued ...

Colour and projective measurements

© (0) multiplication algebra

Idempotents

$$
\begin{array}{ll}
s:=\frac{1}{2}\left(1+i L_{e_{7}}\right) & S:=\frac{1}{2}\left(1+i R_{e_{7}}\right) \\
s^{*}:=\frac{1}{2}\left(1-i L_{e_{7}}\right) & S^{*}:=\frac{1}{2}\left(1-i R_{e_{7}}\right)
\end{array}
$$

Octonion
Left multiplication

Octonion
Left multiplication

Octonion
Left multiplication

Octonion
Left multiplication

Octonion
Left multiplication

Octonion
Left multiplication

Octonion
Left multiplication

Octonion
Left multiplication

Octonion
Left multiplication

$$
\left(\begin{array}{llll}
\left(e_{j_{1}}\right) & \left(e_{j_{2}} \cdot\right.
\end{array} \quad \ldots \quad\left(e_{j_{6}} \cdot\right)\right.
$$

Octonion
Left multiplication

$$
\mathrm{e}_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{2}} \cdot\right.
$$

$$
\left(\begin{array}{llll}
\left(e_{j_{1}}\right.
\end{array}\right) \quad\left(e_{j_{2}} \cdot\right) \quad \ldots \quad\left(e_{j_{6}} \cdot\right)
$$

Octonion

Left multiplication

$$
\mathrm{e}_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{2}} \cdot\right) \quad \mathrm{e}_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{3}} \cdot\right)
$$

$$
\left(\begin{array}{llll}
\left(e_{j_{1}}\right) & \left(e_{j_{2}} \cdot\right. & \ldots & \left(e_{j_{6}} \cdot\right.
\end{array}\right)
$$

Octonion

Left multiplication

$$
\begin{aligned}
& e_{j_{1}}\left(e_{j_{2}} \cdot\right) \quad e_{j_{1}}\left(e_{j_{3}} \cdot\right) \quad \ldots \\
& \\
& \left(e_{j_{1}}\right) \quad\left(e_{j_{2}} \cdot\right) \quad \ldots
\end{aligned}
$$

Octonion

Left multiplication

$$
\begin{gathered}
\mathrm{e}_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{2}} \cdot\right) \quad \mathrm{e}_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{3}} \cdot\right) \quad \ldots \quad \mathrm{e}_{\mathrm{j}_{5}}\left(\mathrm{e}_{\mathrm{j}_{6}} \cdot\right) \\
\left(\mathrm{e}_{\mathrm{j}_{1}}\right) \quad\left(\mathrm{e}_{\mathrm{j}_{2}}\right) \quad \ldots \quad\left(\mathrm{e}_{\mathrm{j}_{6}}\right)
\end{gathered}
$$

Octonion

Left multiplication

Octonion

Left multiplication

$$
\mathrm{e}_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{2}}\left(\mathrm{e}_{\mathrm{j}_{3}}\left(\mathrm{e}_{\mathrm{j}_{4}}\left(\mathrm{e}_{\mathrm{j}_{5}}\left(\mathrm{e}_{\mathrm{j}_{6}} \cdot\right)\right)\right)\right)\right.
$$

$$
e_{j_{1}}\left(e_{j_{2}} \cdot\right) \quad e_{j_{1}}\left(e_{j_{3}} \cdot\right) \quad \ldots \quad e_{j_{5}}\left(e_{j_{6}} \cdot\right)
$$

$$
\left(e_{j_{1}}\right) \quad\left(e_{j_{2}} \cdot\right) \quad \ldots \quad\left(e_{j_{6}} \cdot\right)
$$

Octonion

Left multiplication

$$
\mathrm{e}_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{2}}\left(\mathrm{e}_{\mathrm{j}_{3}}\left(\mathrm{e}_{\mathrm{j}_{4}}\left(\mathrm{e}_{\mathrm{j}_{5}}\left(\mathrm{e}_{\mathrm{j}_{6}} \cdot\right)\right)\right)\right)\right)= \pm\left(\mathrm{e}_{\mathrm{j}_{7}}\right)
$$

$$
\mathrm{e}_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{2}} \cdot\right) \quad \mathrm{e}_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{3}} \cdot\right) \quad \ldots \quad \mathrm{e}_{\mathrm{j}_{5}}\left(\mathrm{e}_{\mathrm{j}_{6}} \cdot\right)
$$

$$
\left(e_{j_{1}}\right) \quad\left(e_{j_{2}}\right) \quad \ldots \quad\left(e_{j_{6}} \cdot\right)
$$

Octonion
Left multiplication
isolate

$$
e_{j_{1}}\left(e_{j_{2}}\left(e_{j_{3}}\left(e_{j_{4}}\left(e_{j_{5}}\left(e_{j_{6}} \cdot\right)\right)\right)\right)\right)= \pm\left(e_{j_{7}}\right)
$$

$$
e_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{2}} \cdot\right) \quad \mathrm{e}_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{3}} \cdot\right) \quad \ldots \quad e_{\mathrm{j}_{5}}\left(\mathrm{e}_{\mathrm{j}_{6}} \cdot\right)
$$

$$
\left(e_{j_{1}}\right) \quad\left(e_{j_{2}} \cdot\right) \quad \ldots \quad\left(e_{j_{6}} \cdot\right)
$$

Octonion
Left multiplication

$$
e_{j_{1}}\left(e_{j_{2}}\left(e_{j_{3}}\left(e_{j_{4}}\left(e_{j_{5}}\left(e_{j_{6}} \cdot\right)\right)\right)\right)\right)= \pm\left(e_{j_{7}}\right)
$$

$$
\mathrm{e}_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{2}} \cdot\right) \quad \mathrm{e}_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{3}} \cdot\right) \quad \ldots \quad \mathrm{e}_{\mathrm{j}_{5}}\left(\mathrm{e}_{\mathrm{j}_{6}} \cdot\right)
$$

$$
\left(e_{j_{1}}\right) \quad\left(e_{j_{2}} \cdot\right) \quad \ldots \quad\left(e_{j_{6}} \cdot\right)
$$

© (0) multiplication algebra

Idempotents

$$
\begin{array}{ll}
s:=\frac{1}{2}\left(1+i L_{e_{7}}\right) & S:=\frac{1}{2}\left(1+i R_{e_{7}}\right) \\
s^{*}:=\frac{1}{2}\left(1-i L_{e_{7}}\right) & S^{*}:=\frac{1}{2}\left(1-i R_{e_{7}}\right)
\end{array}
$$

© multiplication algebra

$$
\begin{array}{ll}
s:=\frac{1}{2}\left(1+i L_{e_{7}}\right) & S:=\frac{1}{2}\left(1+i R_{e_{7}}\right) \\
s^{*}:=\frac{1}{2}\left(1-i L_{e_{7}}\right) & S^{*}:=\frac{1}{2}\left(1-i R_{e_{7}}\right)
\end{array}
$$

Octonion

Left multiplication

$$
\mathrm{e}_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{2}}\left(\mathrm{e}_{\mathrm{j}_{3}}\left(\mathrm{e}_{\mathrm{j}_{4}}\left(\mathrm{e}_{\mathrm{j}_{5}}\left(\mathrm{e}_{\mathrm{j}_{6}} \cdot\right)\right)\right)\right)\right)= \pm\left(\mathrm{e}_{\mathrm{j}_{7}}\right)
$$

$$
\mathrm{e}_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{2}} \cdot\right) \quad \mathrm{e}_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{3}} \cdot\right) \quad \ldots \quad \mathrm{e}_{\mathrm{j}_{5}}\left(\mathrm{e}_{\mathrm{j}_{6}} \cdot\right)
$$

$$
\left(e_{j_{1}}\right) \quad\left(e_{j_{2}}\right) \quad \ldots \quad\left(e_{j_{6}} \cdot\right)
$$

Octonion

Left multiplication
\Rightarrow

$$
\mathrm{e}_{\mathrm{j}_{1}}\left(\mathrm{e}_{\mathrm{j}_{2}}\left(\mathrm{e}_{\mathrm{j}_{3}}\left(\mathrm{e}_{\mathrm{j}_{4}}\left(\mathrm{e}_{\mathrm{j}_{5}}\left(\mathrm{e}_{\mathrm{j}_{6}} \cdot\right)\right)\right)\right)\right)= \pm\left(\mathrm{e}_{\mathrm{j}_{7}}\right)
$$

$$
e_{j_{1}}\left(e_{j_{2}} \cdot\right) \quad e_{j_{1}}\left(e_{j_{3}} \cdot\right) \quad \ldots \quad e_{j_{5}}\left(e_{j_{6}} \cdot\right)
$$

$$
\left(e_{j_{1}}\right) \quad\left(e_{j_{2}}\right) \quad \ldots \quad\left(e_{j_{6}} \cdot\right)
$$

Octonion

Left multiplication
$\Rightarrow \mathrm{Cl}(0,6)$

$$
e_{j_{1}}\left(e_{j_{2}}\left(e_{j_{3}}\left(e_{j_{4}}\left(e_{j_{5}}\left(e_{j_{6}} \cdot\right)\right)\right)\right)\right)= \pm\left(e_{j_{7}}\right)
$$

$$
e_{j_{1}}\left(e_{j_{2}} \cdot\right) \quad e_{j_{1}}\left(e_{j_{3}} \cdot\right) \quad \ldots \quad e_{j_{5}}\left(e_{j_{6}} \cdot\right)
$$

$$
\left(e_{j_{1}}\right) \quad\left(e_{j_{2}} \cdot\right) \quad \ldots \quad\left(e_{j_{6}} \cdot\right)
$$

Octonion

Octonion
Right multiplication

Octonion

Right multiplication

Octonion
Right multiplication

Octonion
Right multiplication

Octonion
Right multiplication

Octonion
Right multiplication

Octonion
Right multiplication

Octonion

Right multiplication

$$
\left(\left(\cdot e_{j_{1}}\right) e_{j_{j}}\right)
$$

$$
\left(\cdot e_{j_{1}}\right) \quad\left(\cdot e_{j_{2}}\right) \quad \ldots \quad\left(\cdot e_{j_{6}}\right)
$$

Octonion

Right multiplication

$$
\begin{aligned}
& \left(\left(\cdot e_{j_{1}}\right) e_{j_{2}}\right) \quad\left(\left(\cdot e_{j_{1}}\right) e_{j_{3}}\right) \\
& \\
& \quad\left(\cdot e_{j_{1}}\right) \quad\left(\cdot e_{j_{2}}\right) \quad \ldots \quad\left(\cdot e_{j_{6}}\right)
\end{aligned}
$$

Octonion

Right multiplication

$$
\begin{aligned}
& \left(\left(\cdot e_{j_{1}}\right) e_{j_{2}}\right) \quad\left(\left(\cdot e_{j_{1}}\right) e_{j_{3}}\right) \quad \ldots \\
& \\
& \\
& \left(\cdot e_{j_{1}}\right) \\
& \left(\cdot e_{j_{2}}\right)
\end{aligned} \quad \ldots \quad\left(\cdot e_{j_{6}}\right) .
$$

Octonion

Right multiplication

$$
\begin{gathered}
\left(\left(\cdot e_{j_{1}}\right) e_{j_{2}}\right) \quad\left(\left(\cdot e_{j_{1}}\right) e_{j_{3}}\right) \quad \ldots \quad\left(\left(\cdot e_{j_{5}}\right) e_{j_{6}}\right) \\
\left(\cdot e_{j_{1}}\right) \\
\left(\cdot e_{j_{2}}\right)
\end{gathered} \quad \ldots \quad\left(\cdot e_{j_{6}}\right), ~ l
$$

Octonion

Right multiplication

$$
\begin{gathered}
\left(\left(\cdot e_{\mathrm{j}_{1}}\right) \mathrm{e}_{\mathrm{j}_{2}}\right) \quad\left(\left(\cdot \mathrm{e}_{\mathrm{j}_{1}}\right) \mathrm{e}_{\mathrm{j}_{3}}\right) \quad \ldots \\
\left(\cdot \mathrm{e}_{\mathrm{j}_{1}}\right) \\
\left(\cdot \mathrm{e}_{\mathrm{j}_{2}}\right)
\end{gathered} \quad \ldots \quad\left(\cdot \mathrm{e}_{\mathrm{j}_{6}}\right)
$$

Octonion

Right multiplication

$$
\left(\left(\cdot e_{j_{1}}\right) e_{j_{2}}\right) \quad\left(\left(\cdot e_{j_{1}}\right) e_{j_{3}}\right) \quad \ldots \quad\left(\left(\cdot e_{j_{5}}\right) e_{j_{6}}\right)
$$

Octonion

Right multiplication
\Rightarrow

$$
\left(\cdot e_{j_{7}}\right)
$$

$$
\begin{gathered}
\left(\left(\cdot e_{j_{1}}\right) e_{j_{2}}\right) \quad\left(\left(\cdot e_{j_{1}}\right) e_{j_{3}}\right) \quad \ldots \quad\left(\left(\cdot e_{j_{5}}\right) e_{j_{6}}\right) \\
\left(\cdot e_{j_{1}}\right) \\
\left(\cdot e_{j_{2}}\right)
\end{gathered} \quad \ldots \quad\left(\cdot e_{j_{6}}\right), ~ l
$$

Octonion

Right multiplication
$\Rightarrow \mathrm{Cl}(0,6)$

$$
\left(\cdot e_{j_{7}}\right)
$$

$$
\begin{gathered}
\left(\left(\cdot e_{\mathrm{j}_{1}}\right) \mathrm{e}_{\mathrm{j}_{2}}\right) \quad\left(\left(\cdot \mathrm{e}_{\mathrm{j}_{1}}\right) \mathrm{e}_{\mathrm{j}_{3}}\right) \\
\\
\left(\cdot \mathrm{e}_{\mathrm{j}_{1}}\right) \\
\left(\cdot \mathrm{e}_{\mathrm{j}_{2}}\right)
\end{gathered} \quad \ldots \quad\left(\cdot \mathrm{e}_{\mathrm{j}_{6}}\right) \quad\left(\left(\cdot \mathrm{e}_{\mathrm{j}_{5}}\right) \mathrm{e}_{\mathrm{j}_{6}}\right)
$$

Octonion
Right multiplication

$$
\left(\cdot \mathrm{e}_{7}\right)=1 / 2\left(\mathrm{e}_{1}\left(\mathrm{e}_{3} \cdot\right)+\mathrm{e}_{2}\left(\mathrm{e}_{6} \cdot\right)+\mathrm{e}_{4}\left(\mathrm{e}_{5} \cdot\right)-\left(\mathrm{e}_{7} \cdot\right)\right)
$$

$\Rightarrow \mathrm{Cl}(0,6)$

© (0) multiplication algebra

\downarrow
 Idempotents

$$
\begin{array}{l|}
s:=\frac{1}{2}\left(1+i L_{e_{7}}\right) \\
s^{*}:=\frac{1}{2}\left(1-i L_{e_{7}}\right)
\end{array} \quad \begin{array}{ll}
S:=\frac{1}{2}\left(1+i R_{e_{7}}\right) \\
S^{*}:=\frac{1}{2}\left(1-i R_{e_{7}}\right)
\end{array}
$$

Quaternion
Left and Right multiplication

Quaternion
Left and Right multiplication

Quaternion
Left and Right multiplication

Quaternion
Left and Right multiplication

Quaternion
Left and Right multiplication

Quaternion
Left and Right multiplication

Quaternion
Left and Right multiplication

Quaternion
Left and Right multiplication

Quaternion
Left and Right multiplication

Quaternion
Left and Right multiplication

Quaternion
Left and Right multiplication

Quaternion
Left and Right multiplication

Quaternion
Left and Right multiplication

Quaternion
Left and Right multiplication

$\mathrm{Cl}(0,2)$

Quaternion
Left and Right multiplication

$\mathrm{Cl}(0,2)$

$\mathrm{Cl}(0,2)$

Idempotents

$$
\begin{array}{ll}
s:=\frac{1}{2}\left(1+i L_{e_{7}}\right) & S:=\frac{1}{2}\left(1+i R_{e_{7}}\right) \\
s^{*}:=\frac{1}{2}\left(1-i L_{e_{7}}\right) & S^{*}:=\frac{1}{2}\left(1-i R_{e_{7}}\right)
\end{array}
$$

Idempotents

$$
\begin{array}{ll}
s:=\frac{1}{2}\left(1+i L_{e_{7}}\right) & S:=\frac{1}{2}\left(1+i R_{e_{7}}\right) \\
s^{*}:=\frac{1}{2}\left(1-i L_{e_{7}}\right) & S^{*}:=\frac{1}{2}\left(1-i R_{e_{7}}\right) \\
t:=\frac{1}{2}\left(1+i L_{\epsilon_{3}}\right) & T:=\frac{1}{2}\left(1+i R_{\epsilon_{3}}\right) \\
t^{*}:=\frac{1}{2}\left(1-i L_{\epsilon_{3}}\right) & T^{*}:=\frac{1}{2}\left(1-i R_{\epsilon_{3}}\right)
\end{array}
$$

Idempotents

$$
\begin{array}{l|l}
s:=\frac{1}{2}\left(1+i L_{e_{7}}\right) & S:=\frac{1}{2}\left(1+i R_{e_{7}}\right) \\
s^{*}:=\frac{1}{2}\left(1-i L_{e_{7}}\right) & S^{*}:=\frac{1}{2}\left(1-i R_{e_{7}}\right)
\end{array}
$$

$$
\begin{array}{l|l}
t:=\frac{1}{2}\left(1+i L_{\epsilon_{3}}\right) & T:=\frac{1}{2}\left(1+i R_{\epsilon_{3}}\right) \\
t^{*}:=\frac{1}{2}\left(1-i L_{\epsilon_{3}}\right) & T^{*}:=\frac{1}{2}\left(1-i R_{\epsilon_{3}}\right)
\end{array}
$$

Idempotents

Idempotents

$$
\begin{aligned}
& s S t \\
& s S t^{*} \\
& s S^{*} t \\
& s S^{*} t^{*} \\
& s^{*} S t \\
& s^{*} S t^{*} \\
& s^{*} S^{*} t \\
& s^{*} S^{*} t^{*}
\end{aligned}
$$

Idempotents

$s S t$	helicity \uparrow lepton
$s S t^{*}$	helicity \downarrow lepton
$s S^{*} t$	helicity \uparrow baryon
$s S^{*} t^{*}$	helicity \downarrow baryon
$s^{*} S t$	isospin $\uparrow \mathrm{LH}$
$s^{*} S t^{*}$	isospin $\downarrow \mathrm{LH}$
$s^{*} S^{*} t$	isospin $\uparrow \mathrm{RH}$
$s^{*} S^{*} t^{*}$	isospin $\downarrow \mathrm{RH}$

Idempotents

$s S t$	helicity \uparrow lepton
$s S t^{*}$	helicity \downarrow lepton
$s S^{*} t$	helicity \uparrow baryon
$s S^{*} t^{*}$	helicity \downarrow baryon
$s^{*} S t$	isospin $\uparrow \mathrm{LH}$
$s^{*} S t^{*}$	isospin $\downarrow \mathrm{LH}$
$s^{*} S^{*} t$	isospin $\uparrow \mathrm{RH}$
$s^{*} S^{*} t^{*}$	isospin $\downarrow \mathrm{RH}$

Observation: no projections on colour.

Unfinished business

Unfinished business

Consider hermitian parts of

Unfinished business

Consider hermitian parts of
Left:

Unfinished business

Consider hermitian parts of
Left:
$L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} \simeq \mathbb{C l}(8)$

Unfinished business

Consider hermitian parts of
Left: $\quad L_{\mathbb{C} \otimes H \otimes \mathbb{O}} \simeq \mathbb{C l}(8)$
Left and right:

Unfinished business

Consider hermitian parts of
Left:
$L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} \simeq \mathbb{C l}(8)$
Left and right:
$M_{\mathbb{C} \otimes \mathbb{H} \otimes \mathcal{O}} \simeq \mathbb{C l}(8) \otimes_{\mathbb{C}} \mathbb{C l}(2)$

Unfinished business

Consider hermitian parts of
Left:
$L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} \simeq \mathbb{C l}(8)$
Left and right: $\quad M_{\mathbb{C} \otimes H \otimes \mathcal{O}} \simeq \mathbb{C l}(8) \otimes_{\mathbb{C}} \mathbb{C l}(2) \simeq \mathbb{C l}(10)$

Unfinished business

Consider hermitian parts of
Left:
$L_{\mathbb{C} \otimes \mathbb{H} \otimes \mathbb{O}} \simeq \mathbb{C l}(8)$
Left and right: $\quad M_{\mathbb{C} \otimes H \otimes \mathbb{O}} \simeq \mathbb{C l}(8) \otimes_{\mathbb{C}} \mathbb{C l}(2) \simeq \mathbb{C l}(10)$
\uparrow
\sim vielbein

Unfinished business

Consider hermitian parts of
Left:
$L_{\mathbb{C} \otimes H \otimes \mathbb{O}} \simeq \mathbb{C l}(8)$
Left and right: $\quad M_{\mathbb{C} \otimes H \otimes \mathbb{O}} \simeq \mathbb{C l}(8) \otimes_{\mathbb{C}} \mathbb{C l}(2) \simeq \mathbb{C l}(10)$

covariant derivative
(spin connection)

Unfinished business

Consider hermitian parts of
Left:
$L_{\mathbb{C} \otimes H \otimes \mathbb{O}} \simeq \mathbb{C l}(8)$
Left and right: $\quad M_{\mathbb{C} \otimes H \otimes \mathbb{O}} \simeq \mathbb{C l}(8) \otimes_{\mathbb{C}} \mathbb{C l}(2) \simeq \mathbb{C l}(10)$

covariant derivative
(spin connection)
\sim vielbein
\rightarrow Gravity...

Summary

Action of $\ell_{s m}$ on $\mathcal{H}_{16}(\mathbb{C})$

$$
\begin{aligned}
& \delta b=\ell_{s m} b+b \ell_{s m}^{\dagger} \\
& \delta f_{0}=\ell_{s m} s f_{0} s^{*}+s f_{0} s^{*} \ell_{s m}+h . c . \\
& \delta f_{+}=\ell_{s m}\left(s S^{*} f_{+} s S+s^{*} S^{*} f_{+} s^{*} S\right)
\end{aligned}
$$

$$
+\left(s S^{*} f_{+} s S+s^{*} S^{*} f_{+} s^{*} S\right) \ell_{s m}^{\dagger *}+h . c . \quad \text { inner off-diagonal }
$$

$(u, d)_{L}$	$\left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}$
$(c, s)_{L}$	$\left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}$
$(t, b)_{L}$	$\left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}$

$\left(\nu_{e}, e\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\mu}, \mu\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$
$\left(\nu_{\tau}, \tau\right)_{L}$	$\left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}$

u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

p_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
p_{μ}^{\prime}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
G_{μ}	$(\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$
W_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
B_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$

$232 \mathbb{R}$
$\mathcal{H}_{16}(\mathbb{C})$

$s S \mathcal{H}_{16}(\mathbb{C}) s S$	$s S \mathcal{H}_{16}(\mathbb{C}) ~ s S^{\star}$	s S $\mathcal{H}_{16}(\mathbb{C}) s^{*} S$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
${ }^{\text {s }} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$

$\mathcal{H}_{16}(\mathbb{C})$
"Peirce decomposition"

$s S \mathcal{H}_{16}(\mathbb{C}) ~ s S$	$s S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$

$$
\begin{aligned}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{\mathbf{2}}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
\nu_{e R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2} \\
\nu_{\mu R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2} \\
\nu_{\tau R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2} \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{aligned}
$$

p_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
p_{μ}^{\prime}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
G_{μ}	$(\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$
W_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
B_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$

Covariant derivative

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$$
\begin{array}{ll}
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$

Fermions

$s S \mathcal{H}_{16}(\mathbb{C}) s$,	$s S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{*} S$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) ~ s S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$

$$
\begin{aligned}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
u_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{\mathbf{2}}{3}\right)_{2} \\
c_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
t_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2} \\
d_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
s_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
b_{R} & \left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2} \\
\nu_{e R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2} \\
\nu_{\mu R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2} \\
\nu_{\tau R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2} \\
e_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\mu_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2} \\
\tau_{R} & (\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}
\end{aligned}
$$

p_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
p_{μ}^{\prime}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
G_{μ}	$(\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$
W_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
B_{μ}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$

Covariant derivative

$$
\begin{array}{ll}
(u, d)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(c, s)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2} \\
(t, b)_{L} & \left(\underline{\mathbf{3}}, \underline{\mathbf{2}}, \frac{1}{6}\right)_{2}
\end{array}
$$

$$
\begin{array}{ll}
\left(\nu_{e}, e\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\mu}, \mu\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2} \\
\left(\nu_{\tau}, \tau\right)_{L} & \left(\underline{\mathbf{1}}, \underline{\mathbf{2}},-\frac{1}{2}\right)_{2}
\end{array}
$$

u_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
c_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
t_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, \frac{2}{3}\right)_{2}$
d_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
s_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$
b_{R}	$\left(\underline{\mathbf{3}}, \underline{\mathbf{1}},-\frac{1}{3}\right)_{2}$

$\nu_{e R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\mu R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
$\nu_{\tau R}$	$(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{2}$
e_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
μ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$
τ_{R}	$(\underline{\mathbf{1}}, \underline{\mathbf{1}},-1)_{2}$

$p_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$p_{\mu}^{\prime} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$
$G_{\mu} \quad(\underline{\mathbf{8}}, \underline{\mathbf{1}}, 0)_{4}$
$W_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{3}}, 0)_{4}$
$B_{\mu} \quad(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0)_{4}$

Fermions

$s S \mathcal{H}_{16}(\mathbb{C}) s$,	$s S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{*} S$	$s S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) ~ s S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$
$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s S^{\star}$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S$	$s^{\star} S^{\star} \mathcal{H}_{16}(\mathbb{C}) s^{\star} S^{\star}$

Standard model irreps as an extension of 4-momentum:
 our first attempt

N. Furey and B. Romano
Humboldt-Universität zu Berlin
University of Oxford

