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Based on..

» Main conjecture - 2111.06903, implication - 2204.02992

» General rotating BPS black holes in AdS, - [KH, Katmadas,
Toldo'18-19]

» Gravitational building blocks - [Hosseini, KH, Zaffaroni’19]

» Higher derivative asymptotically AdS, backgrounds - [Bobey,
Charles, KH, Reys’20-21]

» Supergravity localization - [KH, Lodato, Reys’18-19], [KH, Reys’21]
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» Structure of supersymmetric observables in 4d N = 2
supergravity in precise analogy with the one in 4d A/ = 2 field
theory.

» Nekrasov partition function — gravitational Nekrasov-like
partition function as a basic building block.

> Agreement with holographically dual results for 3d A" = 2 SCFTs.
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Field theory localization
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> (-deformation: exact evaluation of the partition function on C?2,
Znek - €12 deformation parameters, ! Coulomb branch
parameters, [Nekrasov'02]. €1e2 log Znek - €Xpansion in e o.

» “Gluing” copies of Z . on fixed points o to reproduce many
localization results, [Nekrasov'03], [Pestun’07].

7= /HdXIHZNek(xi;Ei’,fé’)
I o
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Conjecture for supergravity backgrounds

» Consider a supersymmetric solution My, Killing spinor ey, —
canonical Killing vector field £,,, as a Killing spinor bilinear.

» On-shell action 7(M,) = —log Z(M,) localizes on the fixed point
set of £,,. Works for AIAdS, examples in 20 minimal gauged
sugra [Genolini, Ipifia, Sparks’19], and 20 matter-coupled black
holes [Hosseini, KH, Zaffaroni’19].

» Near a fixed point,
f = 518% “1‘528@2 R 52/61 =w,
only the ratio w is physical in sugra (difference with rigid susy).

> Here: extend to higher derivative A" = 2 sugra with U(1) vector
multiplets, build intuition with more examples.
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Higher derivative supergravity

» The formalism of 4d A = 2 superconformal gravity [de Wit, van
Proeyen et al'80-84] allows for the construction of large classes of
HD terms with > 40.

» [-terms from (anti-)chiral superspace integrals, correcting the 20
prepotential, D-terms from full superspace integrals, correcting
the 20 K&hler potential.

» A number of different auxiliary multiplets allow for different
off-shell formulations.

» Assume (physical) hypermultiplets are decoupled - consider only
extra abelian vector multiplets.

» Argue that D-terms vanish on susy backgrounds, consider only
F-terms
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Bosonic field content and HD invariants

» Weyl multiplet: vielbein e,,%, auxiliary U(1) x SU(2) R-symmetry
gauge fields A,,,V,,, auxiliary tensor 7=, auxiliary scalar D.

> ny (phys.) +1 (aux.) vector multiplets: abelian gauge fields Wlf,
complex scalar X, triplet of (aux.) scalars Y.

> Aux. hypermultiplet: four real scalars A;%, gauging of a U(1)
subgroup of the SU(2)  via the combination g; W/, constant FI
parameters g;. Limit to ungauged sugra: g; =0 .

» Two different 40 F-terms: the Weyl? [Bergshoeff. de Roo, de Wit'81]
and the T-log [Butter, de Wit, Kuzenko, Lodato’13] invariants.
Defined via composite chiral multiplets with lowest components
AW and Ar.
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HD Lagrangian

» HD invariants encoded in the holomorphic prepotential

o

F(X5 Ay, Ap) = > F(XT) (Aw)™ (AD)™ . (1)

m,n=0

» Lagrangian specified by the choice for F(X; Ay, At) and
gauging g - 40 theory off-shell, an infinite derivative expansion
on-shell (Aw,  ~ 20).

» FO0(XT) .= F5(XT) homogeneous of degree 2, leading to the
standard 2-derivative abelian gauged supergravity.

» Higher order terms F("™™)(X!): homogeneous of degree
2(1 —m —n) (Aw r of weight 2), giving rise to terms with
2(1 +m + n) derivatives.
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Conjecture, part I: the on-shell action

» On-shell action,

‘F(M41XI7W) = Z S(o) B(K_l X(IU) (XI,LU)7LU(J)(OJ)) )
retn @
i (X (1 —w)?, (1+w)?)

I .
B(X*,w): "

)

with s,y = %1 aligned with the chirality of the Killing spinors at
each fixed point o.

> Gluing rules: the identification X, (x",w) and w(,)(w) at the
different fixed points, specific to each different susy background.

» Additional constraint A+ (g7, x!,w) = 0, restoring the correct
number of Coulomb branch parameters (one aux. v.m.).
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Conjecture, part I: the entropy function

» For black hole solutions, x! conjugate to ¢;, w conjugate to 7:

8im?

LMy, w,qr, T) = =F(Ma,x'w) = —=(x'ar —wJ) . (3)

» Recover the BH entropy via extremization,

Sen(Mu,ar, J) = (M, x| w| anJ)ER,  (4)
with a resulting constraint
5\M4(gj,q1,j) :=Im (I(M4,XI Lw| ,qI,j)) =0.
crit. crit.
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Conjecture, part Il: the partition function

> A gravitational Nekrasov partition function

. 2 —1 I. _ 2 2
Zner (X!, w) == exp (—4m Flom XG0 7)1+ w) )> ;

w
corrected in a UV complete theory
Inek (X1, w) i= Zyngp (X', w) Zg (X, ) .

» Grand-canonical partition function via gluing rules

Z(My,x"w) = J] Zne(X( (X' ) wio) ()
oeMy

» Microcanonical partition function / Quantum entropy function

_ 8in?2

Z(M47q17j) = /dXIdwé()\(g[,XI7w))€ o) (x'ar—w7) Z(M4,Xj,w) )
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BPS black holes in MinkowskKi

> 20 ungauged supergravity,

1 XiXI Xk
Fop = — = ciji Y0

6 91:0, [:{O,i}.

» Half-BPS flow between asymptotic Minkowski and AdS; x S?
near-horizon (NH) geometry,

ds® = vy dsid& + vg dS%z .

» Fully BPS horizon, v; = v, - Bertotti-Robinson spacetime,
SU(1,1]2) symmetry.

» Fixed points of the canonical isometry: centre of AdS, and
SP/NP of the sphere

€=-0,+0,,

= wsp =wNp =w = —1, ssp=—snp=1.
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BPS black holes in Minkowski: attractor mechanism

» Scalars fixed at the horizon, [Ferrara, Kallosh’96]

(eiaXI +67iaXI) :pI , (eiaFI +e*i0¢F]) =qr .

N —
N |

» In a mixed ensemble, [Ooguri, Strominger, Vafa'04],
ela x 1 :pl_i_iqsf,
™
¢! conjugate to ¢,
i 1 )
Fosu(o!.1") = =5 (Faolp? + £.61) = Pt — L 61)) |
2 GN Y ™

1
Tosv(¢",p", ar) = Fosv(e’,p") + o qr .
N
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Attractor mechanism from gluing

» Gluing rule: 2 fixed points with constraint w = —1, 51 2y = *£1,
W) =w ’X(I1) =x'—wp', W) =W ,X(IQ) = +wpl.
» Resulting on-shell action/entropy function

%
FOdph) ==y Pk’ +2) = oo’ = ")

N

e
I(Xlaplvql) = 7‘/—:(Xlap1) - @ XIQI .
N

» Precise match with OSV form upon ¢! = —im x?!.
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Higher derivative generalization

» HD version of the Bertotti-Robinson, [Cardoso, de Wit,
Mohaupt’'98-99]. Full HD on-shell action,

1
Fosu(!.p) =~ (F 7 + L oTi0.0))

» Relation with the (unrefined) topological string (OSV conjecture)
- infer the explicit form of the W tower F("-0):

(1.0) — o, . 2
F =C2,; X0 .

> w = —1: unrefined limit of vanishing T, matches OSV formula
Fix!'ph) = —din® (F(™ (X" +"):4,0) = F(7 (X" = p");4,0)) .

» Part Il of the conjecture - agreement with [Denef, Moore’07] and
sugra localization [Dabholkar, Gomes, Murthy’10-11].:

Z(p",qr) /(chc) PO=SE X0 W (T Ty
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AdS, space

» 20 gauged supergravity, from 11d on S
Foy = —2iVXOX1X2X3 | g, =1,VI.

» Fully BPS (Euclidean) AdS, vacuum, choose round S3 boundary,

1

I
== ,VI.
X'=2v

» A half-BPS generalization with running scalars, radial flow with
gradually shrinking S? slices in the bulk. [Freedman, Pufu’13]

» Single fixed point: centre of AdS,

£€=0;+0,, = w=1, s=1.
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Holographic (squashed) sphere

> On-shell action from “gluing”, X' = 2)/
F(S3, xI,w=1)=4ir> F(2x~' x1;0,4) .

» Constraint g;x! = 1, F-extremization at 20 dual to large N
conformal point.

» Squashed sphere generalization S3, X! = (1 + w)x!,w = b*:

4im?
b2

F(S%,x1,b) = F(smH (1 +0°)x"5 (1= 6%)%, (1+ %)) .

» Agreement with 40 minimal sugra results in [Bobev, Charles, KH,
Reys’20-21].
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Holographic bootstrap

» Exact results for round/squashed sphere of ABJM theory from
susy localization - [Fuji et al’11], [Marino, Putrov’11], [Nosaka’'15],
[Hatsuda’16], [Chester et al’21].

» Match with supergravity conjecture fixes the higher derivative
prepotential uniquely:

F=-2iVXXTX2X3 Y f, (kW(X)AW ai kT(X)AT) 7
n=0

64 XO0X1X2X3

bw(X)==2> X'X7 | kp(X) =) (X)) + ..,
I<J I

27 fn [ (2n =513\ V2k k59

(871G N )2(0-1) _( n! (6k)n > 3 (N =g




Airy function

» Supergravity prediction generalizes available matrix model
results, complete perturbative answer (field theory
parametrization x’ = 1 A;):

2 k
Zgs(b; A;) ~ exp (—3 Coi?(N — 51 353)3/2> ,

2 -1y 1
Oy = 200707
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Airy function

» Supergravity prediction generalizes available matrix model
results, complete perturbative answer (field theory
parametrization x’ = 1 A;):

2 k
Zgs(b; A;) ~ exp (—3 Coi?(N — 51 353)3/2> ,

C2(b+b7) 1

B (b— b_1)2
Css = IS ,Bgs = 8EL A (kT(A) + s Fw(d) )

b+00)

» Consistent with the expansion of the Airy function,
. ~1/3 k
Zss(b,A,)ﬁAl ng (N—ﬂ—Bss) .

» Subleading corrections interpreted as the UV completion. Single
fixed point = Airy function.



Black holes in AdS,: twisted branch

» Rotating black holes, susy with a twist, NH: AdS, x,, S?,
[Cacciatori, Klemm’09], [KH, Katmadas, Toldo’'18]. 2 fixed points,
[Hosseini, KH, Zaffaroni’19], grx! =1, >, p' = —1,

wy =w, Xy =x"—wp’, we =-w, X =x"+wp’



Black holes in AdS,: twisted branch

» Rotating black holes, susy with a twist, NH: AdS, x,, S?,
[Cacciatori, Klemm’09], [KH, Katmadas, Toldo’'18]. 2 fixed points,
[Hosseini, KH, Zaffaroni’19], grx! =1, >, p' = —1,

way =w, Xy =x"—wp', we)=—w, X =x" +wp'
» Prediction for the partition function (topologically twisted index):
Zrmi(ng,w, Ay) ~ A[CT VP (N — BY)] x BilcZ (N — BL)],

_ 2 w?
- w2k HZ(AZ :i:wni) ’

ko (w+ (=1)%)%kr(A £wng) + (w— (—1)*)?kw(A £ wny) .

Cy

S

SR 48k 1, (A + wny)



Black holes in AdS,: static limit of twisted branch

> Asymptotic expansion of the Airy functions,
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Black holes in AdS,: static limit of twisted branch

> Asymptotic expansion of the Airy functions,

S5 G T )

N 27nl4n z3n/2

Ai/Bi(z) ~

» Admit static/unrefined limit w = 0:

2k [T A ; 1
ez = PILES (520 ) W s
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Black holes in AdS,: static limit of twisted branch

> Asymptotic expansion of the Airy functions,

Ai/Bi(z) ~

S5 G T )

N 27nl4n z3n/2

» Admit static/unrefined limit w = 0:

V2RI A ;
Z_Iq_rlm_ll'ef ~ ™ Hz ( L(Nk,A _ kz)) N1/2

1
—log 3 A, k’A+§10gNk,A,

— ko 2i(A)! 2= AT (A + Ay)
Mea =N 250" Ty N T mA A,

24 12k ’

» Precise agreement with numerical matrix model result in [Bobey,
Hong, Reys’22].
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Black holes in AdS,: non-twisted branch

» Kerr-Newman-like black holes, no twist, NH: AdS,x,, S?, [KH,
Katmadas, Toldo’19]. 2 fixed points, [Hosseini, KH, Zaffaroni’19],

Yoxt=14w 30" =0,
wa) =w ,X(Il) =x! —wp!, W) =w ,X(IQ) =x! +wp!
» Prediction for the partition function (superconformal index):
Zsci(ni,w, A;) ~ A[CT*(N — BY)] x Ai[c=*(N — B)] .
» Admit Cardy limit w — 0 (subleading magnetic charges):

ZCardy 271’\/ 2/€A1A2A3A4 N]::/AQ
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Summary

> A very general conjecture predicting full perturbative expansion
of the on-shell action/entropy function based on 20 gluing rules.

» A general proposal for the UV completed form of supersymmetric
partition functions.

» A number of sugra predictions testable via holography at finite N.

» Sugra observables closely follow from the structure of susy field
theory observables.
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Many open questions

>

Precise nature of gluing rules? General derivation incorporating
holographic renormalization? Build up intuition with more
examples - lenses, spindles, regular and irregular punctures,
fixed two-submanifolds...

Understand better all possible HD terms - lack of full
classification for now.

Derive the explicit HD form of the prepotential from string
compactifications?

Extend/prove the conjecture for more general theories including
gauged hypermultiplets.

Extend the conjecture to other dimensions, many similarities and
relations with 5d via the 4d/5d connection.

Use the conjecture to prove AdS/CFT for supersymmetric
observables? Lessons for non-susy quantum gravity? ...



Mile buiochas!



