4d $\mathcal{N}=2$ supergravity observables from Nekrasov-like partition functions

Kiril Hristov
Faculty of Physics,
Sofia University

DIAS

Remote seminar, 12 May 2022

Based on..

- Main conjecture - 2111.06903, implication-2204.02992
- General rotating BPS black holes in AdS_{4} - [KH, Katmadas, Toldo'18-19]
- Gravitational building blocks - [Hosseini, KH, Zaffaroni'19]
- Higher derivative asymptotically AdS_{4} backgrounds - [Bobev, Charles, KH, Reys'20-21]
- Supergravity localization - [KH, Lodato, Reys'18-19], [KH, Reys'21]

Main message

- Structure of supersymmetric observables in $4 \mathrm{~d} \mathcal{N}=2$ supergravity in precise analogy with the one in $4 \mathrm{~d} \mathcal{N}=2$ field theory.

Main message

- Structure of supersymmetric observables in $4 \mathrm{~d} \mathcal{N}=2$ supergravity in precise analogy with the one in $4 \mathrm{~d} \mathcal{N}=2$ field theory.
- Nekrasov partition function \rightarrow gravitational Nekrasov-like partition function as a basic building block.

Main message

- Structure of supersymmetric observables in $4 \mathrm{~d} \mathcal{N}=2$ supergravity in precise analogy with the one in $4 \mathrm{~d} \mathcal{N}=2$ field theory.
- Nekrasov partition function \rightarrow gravitational Nekrasov-like partition function as a basic building block.
- Agreement with holographically dual results for 3d $\mathcal{N}=2$ SCFTs.

Field theory localization

- Ω-deformation: exact evaluation of the partition function on \mathbb{C}^{2}, $Z_{\text {Nek }}-\varepsilon_{1,2}$ deformation parameters, χ^{I} Coulomb branch parameters, [Nekrasov'02]. $\varepsilon_{1} \varepsilon_{2} \log Z_{\text {Nek }}-$ expansion in $\varepsilon_{1,2}$.

Field theory localization

- Ω-deformation: exact evaluation of the partition function on \mathbb{C}^{2}, $Z_{\text {Nek }}-\varepsilon_{1,2}$ deformation parameters, χ^{I} Coulomb branch parameters, [Nekrasov'02]. $\varepsilon_{1} \varepsilon_{2} \log Z_{\text {Nek }}-$ expansion in $\varepsilon_{1,2}$.
- "Gluing" copies of $Z_{N e k}$ on fixed points σ to reproduce many localization results, [Nekrasov'03], [Pestun'07].

$$
Z=\int \prod_{I} \mathrm{~d} \chi^{I} \prod_{\sigma} Z_{\mathrm{Nek}}\left(\chi_{\sigma}^{I} ; \varepsilon_{1}^{\sigma}, \varepsilon_{2}^{\sigma}\right)
$$

Conjecture for supergravity backgrounds

- Consider a supersymmetric solution M_{4}, Killing spinor $\epsilon_{M_{4}} \rightarrow$ canonical Killing vector field $\xi_{M_{4}}$ as a Killing spinor bilinear.

Conjecture for supergravity backgrounds

- Consider a supersymmetric solution M_{4}, Killing spinor $\epsilon_{M_{4}} \rightarrow$ canonical Killing vector field $\xi_{M_{4}}$ as a Killing spinor bilinear.
- On-shell action $\mathcal{F}\left(M_{4}\right)=-\log Z\left(M_{4}\right)$ localizes on the fixed point set of $\xi_{M_{4}}$. Works for AIAdS $_{4}$ examples in 22 minimal gauged sugra [Genolini, Ipiña, Sparks'19], and 22 matter-coupled black holes [Hosseini, KH, Zaffaroni'19].

Conjecture for supergravity backgrounds

- Consider a supersymmetric solution M_{4}, Killing spinor $\epsilon_{M_{4}} \rightarrow$ canonical Killing vector field $\xi_{M_{4}}$ as a Killing spinor bilinear.
- On-shell action $\mathcal{F}\left(M_{4}\right)=-\log Z\left(M_{4}\right)$ localizes on the fixed point set of $\xi_{M_{4}}$. Works for AIAdS ${ }_{4}$ examples in 22 minimal gauged sugra [Genolini, Ipiña, Sparks'19], and 22 matter-coupled black holes [Hosseini, KH, Zaffaroni'19].
- Near a fixed point,

$$
\xi=\varepsilon_{1} \partial_{\varphi_{1}}+\varepsilon_{2} \partial_{\varphi_{2}}, \quad \varepsilon_{2} / \varepsilon_{1} \equiv \omega
$$

only the ratio ω is physical in sugra (difference with rigid susy).

Conjecture for supergravity backgrounds

- Consider a supersymmetric solution M_{4}, Killing spinor $\epsilon_{M_{4}} \rightarrow$ canonical Killing vector field $\xi_{M_{4}}$ as a Killing spinor bilinear.
- On-shell action $\mathcal{F}\left(M_{4}\right)=-\log Z\left(M_{4}\right)$ localizes on the fixed point set of $\xi_{M_{4}}$. Works for AIAdS $_{4}$ examples in 2∂ minimal gauged sugra [Genolini, Ipiña, Sparks'19], and 22 matter-coupled black holes [Hosseini, KH, Zaffaroni'19].
- Near a fixed point,

$$
\xi=\varepsilon_{1} \partial_{\varphi_{1}}+\varepsilon_{2} \partial_{\varphi_{2}}, \quad \varepsilon_{2} / \varepsilon_{1} \equiv \omega
$$

only the ratio ω is physical in sugra (difference with rigid susy).

- Here: extend to higher derivative $\mathcal{N}=2$ sugra with $U(1)$ vector multiplets, build intuition with more examples.

Plan of the talk

- Introduction \checkmark
- Higher derivative supergravity formalism
- Formulation of the conjecture
- BPS black holes in Minkowski
- AdS_{4} space
- Static/rotating BPS black holes in AdS_{4}
- Conclusions

Higher derivative supergravity

- The formalism of $4 d \mathcal{N}=2$ superconformal gravity [de Wit, van Proeyen et al'80-84] allows for the construction of large classes of HD terms with $\geq 4 \partial$.
- F-terms from (anti-)chiral superspace integrals, correcting the 2∂ prepotential, D-terms from full superspace integrals, correcting the 2∂ Kähler potential.

Higher derivative supergravity

- The formalism of $4 d \mathcal{N}=2$ superconformal gravity [de Wit, van Proeyen et al'80-84] allows for the construction of large classes of HD terms with $\geq 4 \partial$.
- F-terms from (anti-)chiral superspace integrals, correcting the 2∂ prepotential, D-terms from full superspace integrals, correcting the 2∂ Kähler potential.
- A number of different auxiliary multiplets allow for different off-shell formulations.

Higher derivative supergravity

- The formalism of $4 d \mathcal{N}=2$ superconformal gravity [de Wit, van Proeyen et al'80-84] allows for the construction of large classes of HD terms with $\geq 4 \partial$.
- F-terms from (anti-)chiral superspace integrals, correcting the 2∂ prepotential, D-terms from full superspace integrals, correcting the 2∂ Kähler potential.
- A number of different auxiliary multiplets allow for different off-shell formulations.
- Assume (physical) hypermultiplets are decoupled - consider only extra abelian vector multiplets.
- Argue that D-terms vanish on susy backgrounds, consider only F-terms

Bosonic field content and HD invariants

- Weyl multiplet: vielbein $e_{\mu}{ }^{a}$, auxiliary $\mathrm{U}(1) \times \mathrm{SU}(2)$ R-symmetry gauge fields $A_{\mu}, \mathcal{V}_{\mu}{ }^{i j}$, auxiliary tensor $T_{a b}^{ \pm}$, auxiliary scalar D.

Bosonic field content and HD invariants

- Weyl multiplet: vielbein $e_{\mu}{ }^{a}$, auxiliary $\mathrm{U}(1) \times \mathrm{SU}(2)$ R-symmetry gauge fields $A_{\mu}, \mathcal{V}_{\mu}{ }^{i j}$, auxiliary tensor $T_{a b}^{ \pm}$, auxiliary scalar D.
- n_{V} (phys.) +1 (aux.) vector multiplets: abelian gauge fields W_{μ}^{I}, complex scalar X^{I}, triplet of (aux.) scalars $Y_{i j}^{I}$.

Bosonic field content and HD invariants

- Weyl multiplet: vielbein $e_{\mu}{ }^{a}$, auxiliary $\mathrm{U}(1) \times \mathrm{SU}(2)$ R-symmetry gauge fields $A_{\mu}, \mathcal{V}_{\mu}{ }^{i j}$, auxiliary tensor $T_{a b}^{ \pm}$, auxiliary scalar D.
- n_{V} (phys.) +1 (aux.) vector multiplets: abelian gauge fields W_{μ}^{I}, complex scalar X^{I}, triplet of (aux.) scalars $Y_{i j}^{I}$.
- Aux. hypermultiplet: four real scalars $A_{i}{ }^{\alpha}$, gauging of a $\mathrm{U}(1)$ subgroup of the $\mathrm{SU}(2)_{R}$ via the combination $g_{I} W_{\mu}^{I}$, constant FI parameters g_{I}. Limit to ungauged sugra: $g_{I}=0$.

Bosonic field content and HD invariants

- Weyl multiplet: vielbein $e_{\mu}{ }^{a}$, auxiliary $\mathrm{U}(1) \times \mathrm{SU}(2)$ R-symmetry gauge fields $A_{\mu}, \mathcal{V}_{\mu}{ }^{i j}$, auxiliary tensor $T_{a b}^{ \pm}$, auxiliary scalar D.
- n_{V} (phys.) +1 (aux.) vector multiplets: abelian gauge fields W_{μ}^{I}, complex scalar X^{I}, triplet of (aux.) scalars $Y_{i j}^{I}$.
- Aux. hypermultiplet: four real scalars $A_{i}{ }^{\alpha}$, gauging of a $\mathrm{U}(1)$ subgroup of the $\mathrm{SU}(2)_{R}$ via the combination $g_{I} W_{\mu}^{I}$, constant FI parameters g_{I}. Limit to ungauged sugra: $g_{I}=0$.
- Two different $4 \partial F$-terms: the Weyl ${ }^{2}$ [Bergshoeff, de Roo, de Wit'81] and the T-log [Butter, de Wit, Kuzenko, Lodato'13] invariants. Defined via composite chiral multiplets with lowest components $A_{\mathbb{W}}$ and $A_{\mathbb{T}}$.

HD Lagrangian

- HD invariants encoded in the holomorphic prepotential

$$
\begin{equation*}
F\left(X^{I} ; A_{\mathbb{W}}, A_{\mathbb{T}}\right):=\sum_{m, n=0}^{\infty} F^{(m, n)}\left(X^{I}\right)\left(A_{\mathbb{W}}\right)^{m}\left(A_{\mathbb{T}}\right)^{n} . \tag{1}
\end{equation*}
$$

- Lagrangian specified by the choice for $F\left(X^{I} ; A_{\mathbb{W}}, A_{\mathbb{T}}\right)$ and gauging $g_{I}-4 \partial$ theory off-shell, an infinite derivative expansion on-shell ($A_{\mathbb{W}, \mathbb{T}} \sim 2 \partial$).

HD Lagrangian

- HD invariants encoded in the holomorphic prepotential

$$
\begin{equation*}
F\left(X^{I} ; A_{\mathbb{W}}, A_{\mathbb{T}}\right):=\sum_{m, n=0}^{\infty} F^{(m, n)}\left(X^{I}\right)\left(A_{\mathbb{W}}\right)^{m}\left(A_{\mathbb{T}}\right)^{n} \tag{1}
\end{equation*}
$$

- Lagrangian specified by the choice for $F\left(X^{I} ; A_{\mathbb{W}}, A_{\mathbb{T}}\right)$ and gauging $g_{I}-4 \partial$ theory off-shell, an infinite derivative expansion on-shell $\left(A_{W, T} \sim 2 \partial\right)$.
- $F^{(0,0)}\left(X^{I}\right):=F_{2 \partial}\left(X^{I}\right)$ homogeneous of degree 2, leading to the standard 2-derivative abelian gauged supergravity.

HD Lagrangian

- HD invariants encoded in the holomorphic prepotential

$$
\begin{equation*}
F\left(X^{I} ; A_{\mathbb{W}}, A_{\mathbb{T}}\right):=\sum_{m, n=0}^{\infty} F^{(m, n)}\left(X^{I}\right)\left(A_{\mathbb{W}}\right)^{m}\left(A_{\mathbb{T}}\right)^{n} \tag{1}
\end{equation*}
$$

- Lagrangian specified by the choice for $F\left(X^{I} ; A_{\mathbb{W}}, A_{\mathbb{T}}\right)$ and gauging $g_{I}-4 \partial$ theory off-shell, an infinite derivative expansion on-shell $\left(A_{W, T} \sim 2 \partial\right)$.
- $F^{(0,0)}\left(X^{I}\right):=F_{2 \partial}\left(X^{I}\right)$ homogeneous of degree 2, leading to the standard 2-derivative abelian gauged supergravity.
- Higher order terms $F^{(m, n)}\left(X^{I}\right)$: homogeneous of degree $2(1-m-n)\left(A_{\mathbb{W}, \mathbb{T}}\right.$ of weight 2), giving rise to terms with $2(1+m+n)$ derivatives.

Conjecture, part I: the on-shell action

- On-shell action,

$$
\begin{align*}
\mathcal{F}\left(M_{4}, \chi^{I}, \omega\right) & =\sum_{\sigma \in M_{4}} s_{(\sigma)} \mathcal{B}\left(\kappa^{-1} X_{(\sigma)}^{I}\left(\chi^{I}, \omega\right), \omega_{(\sigma)}(\omega)\right), \tag{2}\\
\mathcal{B}\left(X^{I}, \omega\right) & :=\frac{4 i \pi^{2} F\left(X^{I} ;(1-\omega)^{2},(1+\omega)^{2}\right)}{\omega},
\end{align*}
$$

with $s_{(\sigma)}= \pm 1$ aligned with the chirality of the Killing spinors at each fixed point σ.

Conjecture, part I: the on-shell action

- On-shell action,

$$
\begin{align*}
\mathcal{F}\left(M_{4}, \chi^{I}, \omega\right) & =\sum_{\sigma \in M_{4}} s_{(\sigma)} \mathcal{B}\left(\kappa^{-1} X_{(\sigma)}^{I}\left(\chi^{I}, \omega\right), \omega_{(\sigma)}(\omega)\right), \tag{2}\\
\mathcal{B}\left(X^{I}, \omega\right) & :=\frac{4 i \pi^{2} F\left(X^{I} ;(1-\omega)^{2},(1+\omega)^{2}\right)}{\omega}
\end{align*}
$$

with $s_{(\sigma)}= \pm 1$ aligned with the chirality of the Killing spinors at each fixed point σ.

- Gluing rules: the identification $X_{(\sigma)}^{I}\left(\chi^{I}, \omega\right)$ and $\omega_{(\sigma)}(\omega)$ at the different fixed points, specific to each different susy background.

Conjecture, part I: the on-shell action

- On-shell action,

$$
\begin{align*}
\mathcal{F}\left(M_{4}, \chi^{I}, \omega\right) & =\sum_{\sigma \in M_{4}} s_{(\sigma)} \mathcal{B}\left(\kappa^{-1} X_{(\sigma)}^{I}\left(\chi^{I}, \omega\right), \omega_{(\sigma)}(\omega)\right), \tag{2}\\
\mathcal{B}\left(X^{I}, \omega\right) & :=\frac{4 i \pi^{2} F\left(X^{I} ;(1-\omega)^{2},(1+\omega)^{2}\right)}{\omega}
\end{align*}
$$

with $s_{(\sigma)}= \pm 1$ aligned with the chirality of the Killing spinors at each fixed point σ.

- Gluing rules: the identification $X_{(\sigma)}^{I}\left(\chi^{I}, \omega\right)$ and $\omega_{(\sigma)}(\omega)$ at the different fixed points, specific to each different susy background.
- Additional constraint $\lambda^{M_{4}}\left(g_{I}, \chi^{I}, \omega\right)=0$, restoring the correct number of Coulomb branch parameters (one aux. v.m.).

Conjecture, part I: the entropy function

- For black hole solutions, χ^{I} conjugate to q_{I}, ω conjugate to \mathcal{J} :

$$
\begin{equation*}
\mathcal{I}\left(M_{4}, \chi^{I}, \omega, q_{I}, \mathcal{J}\right)=-\mathcal{F}\left(M_{4}, \chi^{I}, \omega\right)-\frac{8 i \pi^{2}}{\kappa^{2}}\left(\chi^{I} q_{I}-\omega \mathcal{J}\right) \tag{3}
\end{equation*}
$$

Conjecture, part I: the entropy function

- For black hole solutions, χ^{I} conjugate to q_{I}, ω conjugate to \mathcal{J} :

$$
\begin{equation*}
\mathcal{I}\left(M_{4}, \chi^{I}, \omega, q_{I}, \mathcal{J}\right)=-\mathcal{F}\left(M_{4}, \chi^{I}, \omega\right)-\frac{8 i \pi^{2}}{\kappa^{2}}\left(\chi^{I} q_{I}-\omega \mathcal{J}\right) \tag{3}
\end{equation*}
$$

- Recover the BH entropy via extremization,

$$
\begin{equation*}
S_{\mathrm{BH}}\left(M_{4}, q_{I}, \mathcal{J}\right)=\mathcal{I}\left(M_{4},\left.\chi^{I}\right|_{\text {crit. }},\left.\omega\right|_{\text {crit. }}, q_{I}, \mathcal{J}\right) \in \mathbb{R} \tag{4}
\end{equation*}
$$

with a resulting constraint

$$
\hat{\lambda}^{M_{4}}\left(g_{I}, q_{I}, \mathcal{J}\right):=\operatorname{Im}\left(\mathcal{I}\left(M_{4},\left.\chi^{I}\right|_{\text {crit. }},\left.\omega\right|_{\text {crit. }}, q_{I}, \mathcal{J}\right)\right)=0
$$

Conjecture, part II: the partition function

- A gravitational Nekrasov partition function

$$
Z_{\mathrm{Nek}}^{\text {sugra }}\left(X^{I}, \omega\right):=\exp \left(-\frac{4 i \pi^{2} F\left(\kappa^{-1} X^{I} ;(1-\omega)^{2},(1+\omega)^{2}\right)}{\omega}\right)
$$

corrected in a $U V$ complete theory

$$
Z_{\text {Nek }}\left(X^{I}, \omega\right):=Z_{\text {Nek }}^{\text {sugra }}\left(X^{I}, \omega\right) Z_{\text {Nek }}^{\mathrm{UV}}\left(X^{I}, \omega\right) .
$$

Conjecture, part II: the partition function

- A gravitational Nekrasov partition function

$$
Z_{\text {Nek }}^{\text {sugra }}\left(X^{I}, \omega\right):=\exp \left(-\frac{4 i \pi^{2} F\left(\kappa^{-1} X^{I} ;(1-\omega)^{2},(1+\omega)^{2}\right)}{\omega}\right)
$$

corrected in a $U V$ complete theory

$$
Z_{\text {Nek }}\left(X^{I}, \omega\right):=Z_{\text {Nek }}^{\text {sugra }}\left(X^{I}, \omega\right) Z_{\text {Nek }}^{\mathrm{UV}}\left(X^{I}, \omega\right) .
$$

- Grand-canonical partition function via gluing rules

$$
Z\left(M_{4}, \chi^{I}, \omega\right):=\prod_{\sigma \in M_{4}} Z_{\mathrm{Nek}}\left(X_{(\sigma)}^{I}\left(\chi^{I}, \omega\right), \omega_{(\sigma)}(\omega)\right),
$$

Conjecture, part II: the partition function

- A gravitational Nekrasov partition function

$$
Z_{\mathrm{Nek}}^{\text {sugra }}\left(X^{I}, \omega\right):=\exp \left(-\frac{4 i \pi^{2} F\left(\kappa^{-1} X^{I} ;(1-\omega)^{2},(1+\omega)^{2}\right)}{\omega}\right)
$$

corrected in a $U V$ complete theory

$$
Z_{\text {Nek }}\left(X^{I}, \omega\right):=Z_{\text {Nek }}^{\text {sugra }}\left(X^{I}, \omega\right) Z_{\text {Nek }}^{\mathrm{UV}}\left(X^{I}, \omega\right) .
$$

- Grand-canonical partition function via gluing rules

$$
Z\left(M_{4}, \chi^{I}, \omega\right):=\prod_{\sigma \in M_{4}} Z_{\mathrm{Nek}}\left(X_{(\sigma)}^{I}\left(\chi^{I}, \omega\right), \omega_{(\sigma)}(\omega)\right),
$$

- Microcanonical partition function / Quantum entropy function

$$
Z\left(M_{4}, q_{I}, \mathcal{J}\right):=\int \mathrm{d} \chi^{I} \mathrm{~d} \omega \delta\left(\lambda\left(g_{I}, \chi^{I}, \omega\right)\right) e^{-\frac{8 i \pi^{2}}{\kappa^{2}}\left(\chi^{I} q_{I}-\omega \mathcal{J}\right)} Z\left(M_{4}, \chi^{I}, \omega\right)
$$

Plan of the talk

- Introduction \checkmark
- Higher derivative supergravity formalism \checkmark
- Formulation of the conjecture \checkmark
- BPS black holes in Minkowski
- AdS_{4} space
- Static/rotating BPS black holes in AdS_{4}
- Conclusions

BPS black holes in Minkowski

- 2∂ ungauged supergravity,

$$
F_{2 \partial}=-\frac{1}{6} c_{i j k} \frac{X^{i} X^{j} X^{k}}{X^{0}}, \quad g_{I}=0, \quad I=\{0, i\} .
$$

BPS black holes in Minkowski

- 2∂ ungauged supergravity,

$$
F_{2 \partial}=-\frac{1}{6} c_{i j k} \frac{X^{i} X^{j} X^{k}}{X^{0}}, \quad g_{I}=0, \quad I=\{0, i\}
$$

- Half-BPS flow between asymptotic Minkowski and $\mathrm{AdS}_{2} \times \mathrm{S}^{2}$ near-horizon (NH) geometry,

$$
\mathrm{d} s^{2}=v_{1} \mathrm{~d} s_{A d S_{2}}^{2}+v_{2} \mathrm{~d} s_{S^{2}}^{2}
$$

BPS black holes in Minkowski

- 2∂ ungauged supergravity,

$$
F_{2 \partial}=-\frac{1}{6} c_{i j k} \frac{X^{i} X^{j} X^{k}}{X^{0}}, \quad g_{I}=0, \quad I=\{0, i\}
$$

- Half-BPS flow between asymptotic Minkowski and $\mathrm{AdS}_{2} \times \mathrm{S}^{2}$ near-horizon (NH) geometry,

$$
\mathrm{d} s^{2}=v_{1} \mathrm{~d} s_{A d S_{2}}^{2}+v_{2} \mathrm{~d} s_{S^{2}}^{2}
$$

- Fully BPS horizon, $v_{1}=v_{2}$ - Bertotti-Robinson spacetime, $S U(1,1 \mid 2)$ symmetry.

BPS black holes in Minkowski

- 2∂ ungauged supergravity,

$$
F_{2 \partial}=-\frac{1}{6} c_{i j k} \frac{X^{i} X^{j} X^{k}}{X^{0}}, \quad g_{I}=0, \quad I=\{0, i\} .
$$

- Half-BPS flow between asymptotic Minkowski and $\mathrm{AdS}_{2} \times \mathrm{S}^{2}$ near-horizon (NH) geometry,

$$
\mathrm{d} s^{2}=v_{1} \mathrm{~d} s_{A d S_{2}}^{2}+v_{2} \mathrm{~d} s_{S^{2}}^{2}
$$

- Fully BPS horizon, $v_{1}=v_{2}$ - Bertotti-Robinson spacetime, $S U(1,1 \mid 2)$ symmetry.
- Fixed points of the canonical isometry: centre of AdS_{2} and SP/NP of the sphere

$$
\begin{gathered}
\xi=-\partial_{\tau}+\partial_{\varphi}, \\
\Rightarrow \omega_{\mathrm{SP}}=\omega_{\mathrm{NP}}=\omega=-1, \quad s_{\mathrm{SP}}=-s_{\mathrm{NP}}=1 .
\end{gathered}
$$

BPS black holes in Minkowski: attractor mechanism

- Scalars fixed at the horizon, [Ferrara, Kallosh'96]

$$
\frac{1}{2}\left(e^{i \alpha} X^{I}+e^{-i \alpha} \bar{X}^{I}\right)=p^{I}, \quad \frac{1}{2}\left(e^{i \alpha} F_{I}+e^{-i \alpha} \bar{F}_{I}\right)=q_{I}
$$

BPS black holes in Minkowski: attractor mechanism

- Scalars fixed at the horizon, [Ferrara, Kallosh'96]

$$
\frac{1}{2}\left(e^{i \alpha} X^{I}+e^{-i \alpha} \bar{X}^{I}\right)=p^{I}, \quad \frac{1}{2}\left(e^{i \alpha} F_{I}+e^{-i \alpha} \bar{F}_{I}\right)=q_{I}
$$

- In a mixed ensemble, [Ooguri, Strominger, Vafa'04],

$$
e^{i \alpha} X^{I}=p^{I}+\frac{i}{\pi} \phi^{I}
$$

ϕ^{I} conjugate to q_{I},

$$
\begin{aligned}
\mathcal{F}_{\mathrm{OSv}}\left(\phi^{I}, p^{I}\right) & =\frac{i \pi}{2 G_{N}^{(4)}}\left(F_{2 \partial}\left(p^{I}+\frac{i}{\pi} \phi^{I}\right)-F_{2 \partial}\left(p^{I}-\frac{i}{\pi} \phi^{I}\right)\right), \\
\mathcal{I}_{\mathrm{OSv}}\left(\phi^{I}, p^{I}, q_{I}\right) & =\mathcal{F}_{\mathrm{OSv}}\left(\phi^{I}, p^{I}\right)+\frac{1}{G_{N}^{(4)}} \phi^{I} q_{I} .
\end{aligned}
$$

Attractor mechanism from gluing

- Gluing rule: 2 fixed points with constraint $\omega=-1, s_{(1,2)}= \pm 1$,

$$
\omega_{(1)}=\omega, X_{(1)}^{I}=\chi^{I}-\omega p^{I}, \quad \omega_{(2)}=\omega, X_{(2)}^{I}=\chi^{I}+\omega p^{I}
$$

Attractor mechanism from gluing

- Gluing rule: 2 fixed points with constraint $\omega=-1, s_{(1,2)}= \pm 1$,

$$
\omega_{(1)}=\omega, X_{(1)}^{I}=\chi^{I}-\omega p^{I}, \quad \omega_{(2)}=\omega, X_{(2)}^{I}=\chi^{I}+\omega p^{I} .
$$

- Resulting on-shell action/entropy function

$$
\begin{aligned}
\mathcal{F}\left(\chi^{I}, p^{I}\right) & =-\frac{i \pi}{2 G_{N}^{(4)}}\left(F_{2 \partial}\left(\chi^{I}+p^{I}\right)-F_{2 \partial}\left(\chi^{I}-p^{I}\right)\right) \\
\mathcal{I}\left(\chi^{I}, p^{I}, q_{I}\right) & =-\mathcal{F}\left(\chi^{I}, p^{I}\right)-\frac{i \pi}{G_{N}^{(4)}} \chi^{I} q_{I}
\end{aligned}
$$

Attractor mechanism from gluing

- Gluing rule: 2 fixed points with constraint $\omega=-1, s_{(1,2)}= \pm 1$,

$$
\omega_{(1)}=\omega, X_{(1)}^{I}=\chi^{I}-\omega p^{I}, \quad \omega_{(2)}=\omega, X_{(2)}^{I}=\chi^{I}+\omega p^{I} .
$$

- Resulting on-shell action/entropy function

$$
\begin{aligned}
\mathcal{F}\left(\chi^{I}, p^{I}\right) & =-\frac{i \pi}{2 G_{N}^{(4)}}\left(F_{2 \partial}\left(\chi^{I}+p^{I}\right)-F_{2 \partial}\left(\chi^{I}-p^{I}\right)\right) \\
\mathcal{I}\left(\chi^{I}, p^{I}, q_{I}\right) & =-\mathcal{F}\left(\chi^{I}, p^{I}\right)-\frac{i \pi}{G_{N}^{(4)}} \chi^{I} q_{I}
\end{aligned}
$$

- Precise match with OSV form upon $\phi^{I}=-i \pi \chi^{I}$.

Higher derivative generalization

- HD version of the Bertotti-Robinson, [Cardoso, de Wit, Mohaupt'98-99]. Full HD on-shell action,

$$
\mathcal{F}_{\mathrm{OSv}}\left(\phi^{I}, p^{I}\right)=-8 \pi^{2} \operatorname{Im}\left(F\left(p^{I}+\frac{i}{\pi} \phi^{I} ; 4,0\right)\right)
$$

Higher derivative generalization

- HD version of the Bertotti-Robinson, [Cardoso, de Wit, Mohaupt'98-99]. Full HD on-shell action,

$$
\mathcal{F}_{\mathrm{OSv}}\left(\phi^{I}, p^{I}\right)=-8 \pi^{2} \operatorname{Im}\left(F\left(p^{I}+\frac{i}{\pi} \phi^{I} ; 4,0\right)\right)
$$

- Relation with the (unrefined) topological string (OSV conjecture) - infer the explicit form of the \mathbb{W} tower $F^{(m, 0)}$:

$$
F^{(1,0)}=c_{2, i} \frac{X^{i}}{X^{0}} .
$$

Higher derivative generalization

- HD version of the Bertotti-Robinson, [Cardoso, de Wit, Mohaupt'98-99]. Full HD on-shell action,

$$
\mathcal{F}_{\mathrm{OSv}}\left(\phi^{I}, p^{I}\right)=-8 \pi^{2} \operatorname{Im}\left(F\left(p^{I}+\frac{i}{\pi} \phi^{I} ; 4,0\right)\right)
$$

- Relation with the (unrefined) topological string (OSV conjecture) - infer the explicit form of the \mathbb{W} tower $F^{(m, 0)}$:

$$
F^{(1,0)}=c_{2, i} \frac{X^{i}}{X^{0}} .
$$

- $\omega=-1$: unrefined limit of vanishing \mathbb{T}, matches OSV formula

$$
\mathcal{F}\left(\chi^{I}, p^{I}\right)=-4 i \pi^{2}\left(F\left(\kappa^{-1}\left(\chi^{I}+p^{I}\right) ; 4,0\right)-F\left(\kappa^{-1}\left(\chi^{I}-p^{I}\right) ; 4,0\right)\right) .
$$

Higher derivative generalization

- HD version of the Bertotti-Robinson, [Cardoso, de Wit, Mohaupt'98-99]. Full HD on-shell action,

$$
\mathcal{F}_{\mathrm{OSv}}\left(\phi^{I}, p^{I}\right)=-8 \pi^{2} \operatorname{Im}\left(F\left(p^{I}+\frac{i}{\pi} \phi^{I} ; 4,0\right)\right)
$$

- Relation with the (unrefined) topological string (OSV conjecture) - infer the explicit form of the \mathbb{W} tower $F^{(m, 0)}$:

$$
F^{(1,0)}=c_{2, i} \frac{X^{i}}{X^{0}} .
$$

- $\omega=-1$: unrefined limit of vanishing \mathbb{T}, matches OSV formula

$$
\mathcal{F}\left(\chi^{I}, p^{I}\right)=-4 i \pi^{2}\left(F\left(\kappa^{-1}\left(\chi^{I}+p^{I}\right) ; 4,0\right)-F\left(\kappa^{-1}\left(\chi^{I}-p^{I}\right) ; 4,0\right)\right) .
$$

- Part II of the conjecture - agreement with [Denef, Moore'07] and sugra localization [Dabholkar, Gomes, Murthy'10-11]:

$$
Z\left(p^{I}, q_{I}\right):=\int\left(\prod_{I=0}^{n_{V}} \mathrm{~d} \chi^{I}\right) e^{-\mathcal{F}\left(\chi^{I}, p^{I}\right)-\frac{8 i \pi^{2}}{\kappa^{2}} \chi^{I} q_{I}} Z^{\mathrm{UV}}\left(\chi^{I}, p^{I}\right)
$$

AdS_{4} space

- 2∂ gauged supergravity, from $11 d$ on S^{7}

$$
F_{2 \partial}=-2 i \sqrt{X^{0} X^{1} X^{2} X^{3}}, \quad g_{I}=1, \forall I .
$$

AdS_{4} space

- 22 gauged supergravity, from $11 d$ on S^{7}

$$
F_{2 \partial}=-2 i \sqrt{X^{0} X^{1} X^{2} X^{3}}, \quad g_{I}=1, \forall I .
$$

- Fully BPS (Euclidean) AdS_{4} vacuum, choose round S^{3} boundary,

$$
X^{I}=\frac{1}{4}, \forall I
$$

AdS_{4} space

- 22 gauged supergravity, from $11 d$ on S^{7}

$$
F_{2 \partial}=-2 i \sqrt{X^{0} X^{1} X^{2} X^{3}}, \quad g_{I}=1, \forall I .
$$

- Fully BPS (Euclidean) AdS_{4} vacuum, choose round S^{3} boundary,

$$
X^{I}=\frac{1}{4}, \forall I
$$

- A half-BPS generalization with running scalars, radial flow with gradually shrinking S^{3} slices in the bulk. [Freedman, Pufu'13]

AdS_{4} space

- 22 gauged supergravity, from 11d on S^{7}

$$
F_{2 \partial}=-2 i \sqrt{X^{0} X^{1} X^{2} X^{3}}, \quad g_{I}=1, \forall I .
$$

- Fully BPS (Euclidean) AdS_{4} vacuum, choose round S^{3} boundary,

$$
X^{I}=\frac{1}{4}, \forall I
$$

- A half-BPS generalization with running scalars, radial flow with gradually shrinking S^{3} slices in the bulk. [Freedman, Pufu'13]
- Single fixed point: centre of AdS_{4}

$$
\xi=\partial_{\tau}+\partial_{\varphi}, \quad \Rightarrow \quad \omega=1, \quad s=1 .
$$

Holographic (squashed) sphere

- On-shell action from "gluing", $X^{I}=2 \chi^{I}$

$$
\mathcal{F}\left(S^{3}, \chi^{I}, \omega=1\right)=4 i \pi^{2} F\left(2 \kappa^{-1} \chi^{I} ; 0,4\right) .
$$

Holographic (squashed) sphere

- On-shell action from "gluing", $X^{I}=2 \chi^{I}$

$$
\mathcal{F}\left(S^{3}, \chi^{I}, \omega=1\right)=4 i \pi^{2} F\left(2 \kappa^{-1} \chi^{I} ; 0,4\right)
$$

- Constraint $g_{I} \chi^{I}=1, \mathcal{F}$-extremization at 2∂ dual to large N conformal point.

Holographic (squashed) sphere

- On-shell action from "gluing", $X^{I}=2 \chi^{I}$

$$
\mathcal{F}\left(S^{3}, \chi^{I}, \omega=1\right)=4 i \pi^{2} F\left(2 \kappa^{-1} \chi^{I} ; 0,4\right) .
$$

- Constraint $g_{I} \chi^{I}=1, \mathcal{F}$-extremization at 2∂ dual to large N conformal point.
- Squashed sphere generalization $\mathrm{S}_{\omega}^{3}, X^{I}=(1+\omega) \chi^{I}, \omega=b^{2}$:

$$
\mathcal{F}\left(S^{3}, \chi^{I}, b\right)=\frac{4 i \pi^{2}}{b^{2}} F\left(\kappa^{-1}\left(1+b^{2}\right) \chi^{I} ;\left(1-b^{2}\right)^{2},\left(1+b^{2}\right)^{2}\right) .
$$

Holographic (squashed) sphere

- On-shell action from "gluing", $X^{I}=2 \chi^{I}$

$$
\mathcal{F}\left(S^{3}, \chi^{I}, \omega=1\right)=4 i \pi^{2} F\left(2 \kappa^{-1} \chi^{I} ; 0,4\right) .
$$

- Constraint $g_{I} \chi^{I}=1, \mathcal{F}$-extremization at 2∂ dual to large N conformal point.
- Squashed sphere generalization $\mathrm{S}_{\omega}^{3}, X^{I}=(1+\omega) \chi^{I}, \omega=b^{2}$:

$$
\mathcal{F}\left(S^{3}, \chi^{I}, b\right)=\frac{4 i \pi^{2}}{b^{2}} F\left(\kappa^{-1}\left(1+b^{2}\right) \chi^{I} ;\left(1-b^{2}\right)^{2},\left(1+b^{2}\right)^{2}\right) .
$$

- Agreement with 42 minimal sugra results in [Bobev, Charles, KH, Reys'20-21].

Holographic bootstrap

- Exact results for round/squashed sphere of ABJM theory from susy localization - [Fuji et al'11], [Marino, Putrov'11], [Nosaka'15], [Hatsuda'16], [Chester et al'21].

Holographic bootstrap

- Exact results for round/squashed sphere of ABJM theory from susy localization - [Fuji et al'11], [Marino, Putrov'11], [Nosaka'15], [Hatsuda'16], [Chester et al'21].
- Match with supergravity conjecture fixes the higher derivative prepotential uniquely:

$$
\begin{gathered}
F=-2 i \sqrt{X^{0} X^{1} X^{2} X^{3}} \sum_{n=0}^{\infty} f_{n}\left(\frac{k_{\mathbb{W}}(X) A_{\mathbb{W}}+k_{\mathbb{T}}(X) A_{\mathbb{T}}}{64 X^{0} X^{1} X^{2} X^{3}}\right)^{n}, \\
k_{\mathbb{W}}(X)=-2 \sum_{I<J} X^{I} X^{J}, \quad k_{\mathbb{T}}(X)=\sum_{I}\left(X^{I}\right)^{2}+\ldots, \\
\frac{2 \pi f_{n}}{\left(8 \pi G_{N}\right)^{2(1-n)}}=\left(\frac{(2 n-5)!!3}{n!(6 k)^{n}}\right) \frac{\sqrt{2 k}}{3}\left(N-\frac{k}{24}\right)^{3 / 2-n}
\end{gathered}
$$

Airy function

- Supergravity prediction generalizes available matrix model results, complete perturbative answer (field theory parametrization $\chi^{I}=\frac{1}{2} \Delta_{i}$):

$$
\begin{gathered}
Z_{S^{3}}\left(b ; \Delta_{i}\right) \simeq \exp \left(-\frac{2}{3} C_{S^{3}}^{-1 / 2}\left(N-\frac{k}{24}-B_{S^{3}}\right)^{3 / 2}\right) \\
C_{S^{3}}=\frac{2\left(b+b^{-1}\right)^{-4}}{\pi^{2} k \prod_{i} \Delta_{i}}, B_{S^{3}}=\frac{1}{48 k \prod_{i} \Delta_{i}}\left(k_{\mathbb{T}}(\Delta)+\frac{\left(b-b^{-1}\right)^{2}}{\left(b+b^{-1}\right)^{2}} k_{\mathbb{W}}(\Delta)\right),
\end{gathered}
$$

Airy function

- Supergravity prediction generalizes available matrix model results, complete perturbative answer (field theory parametrization $\chi^{I}=\frac{1}{2} \Delta_{i}$):

$$
\begin{gathered}
Z_{S^{3}}\left(b ; \Delta_{i}\right) \simeq \exp \left(-\frac{2}{3} C_{S^{3}}^{-1 / 2}\left(N-\frac{k}{24}-B_{S^{3}}\right)^{3 / 2}\right) \\
C_{S^{3}}=\frac{2\left(b+b^{-1}\right)^{-4}}{\pi^{2} k \prod_{i} \Delta_{i}}, B_{S^{3}}=\frac{1}{48 k \prod_{i} \Delta_{i}}\left(k_{\mathbb{T}}(\Delta)+\frac{\left(b-b^{-1}\right)^{2}}{\left(b+b^{-1}\right)^{2}} k_{\mathbb{W}}(\Delta)\right),
\end{gathered}
$$

- Consistent with the expansion of the Airy function,

$$
Z_{S^{3}}\left(b ; \Delta_{i}\right) \simeq \mathrm{Ai}\left(C_{S^{3}}^{-1 / 3}\left(N-\frac{k}{24}-B_{S^{3}}\right)\right) .
$$

Airy function

- Supergravity prediction generalizes available matrix model results, complete perturbative answer (field theory parametrization $\chi^{I}=\frac{1}{2} \Delta_{i}$):

$$
\begin{gathered}
Z_{S^{3}}\left(b ; \Delta_{i}\right) \simeq \exp \left(-\frac{2}{3} C_{S^{3}}^{-1 / 2}\left(N-\frac{k}{24}-B_{S^{3}}\right)^{3 / 2}\right) \\
C_{S^{3}}=\frac{2\left(b+b^{-1}\right)^{-4}}{\pi^{2} k \prod_{i} \Delta_{i}}, B_{S^{3}}=\frac{1}{48 k \prod_{i} \Delta_{i}}\left(k_{\mathbb{T}}(\Delta)+\frac{\left(b-b^{-1}\right)^{2}}{\left(b+b^{-1}\right)^{2}} k_{\mathbb{W}}(\Delta)\right),
\end{gathered}
$$

- Consistent with the expansion of the Airy function,

$$
Z_{S^{3}}\left(b ; \Delta_{i}\right) \simeq \mathrm{Ai}\left(C_{S^{3}}^{-1 / 3}\left(N-\frac{k}{24}-B_{S^{3}}\right)\right) .
$$

- Subleading corrections interpreted as the UV completion. Single fixed point = Airy function.

Black holes in AdS_{4} : twisted branch

- Rotating black holes, susy with a twist, $\mathrm{NH}: \mathrm{AdS}_{2} \times{ }_{w} \mathrm{~S}^{2}$, [Cacciatori, Klemm'09], [KH, Katmadas, Toldo'18]. 2 fixed points, [Hosseini, KH, Zaffaroni'19], $g_{I} \chi^{I}=1, \sum_{I} p^{I}=-1$,

$$
\omega_{(1)}=\omega, X_{(1)}^{I}=\chi^{I}-\omega p^{I}, \quad \omega_{(2)}=-\omega, X_{(2)}^{I}=\chi^{I}+\omega p^{I}
$$

Black holes in AdS_{4} : twisted branch

- Rotating black holes, susy with a twist, $\mathrm{NH}: \mathrm{AdS}_{2} \times{ }_{w} \mathrm{~S}^{2}$, [Cacciatori, Klemm'09], [KH, Katmadas, Toldo'18]. 2 fixed points, [Hosseini, KH, Zaffaroni'19], $g_{I} \chi^{I}=1, \sum_{I} p^{I}=-1$,

$$
\omega_{(1)}=\omega, X_{(1)}^{I}=\chi^{I}-\omega p^{I}, \quad \omega_{(2)}=-\omega, X_{(2)}^{I}=\chi^{I}+\omega p^{I}
$$

- Prediction for the partition function (topologically twisted index):

$$
\begin{gathered}
Z_{\mathrm{TTI}}\left(\mathfrak{n}_{i}, \omega, \Delta_{i}\right) \simeq \operatorname{Ai}\left[C_{+}^{-1 / 3}\left(N-B_{+}^{0}\right)\right] \times \operatorname{Bi}\left[C_{-}^{-1 / 3}\left(N-B_{-}^{1}\right)\right], \\
C_{ \pm}=\frac{2 \omega^{2}}{\pi^{2} k \prod_{i}\left(\Delta_{i} \pm \omega \mathfrak{n}_{i}\right)}, \\
B_{ \pm}^{s}=\frac{k}{24}+\frac{\left(\omega+(-1)^{s}\right)^{2} k_{\mathbb{T}}\left(\Delta \pm \omega \mathfrak{n}_{i}\right)+\left(\omega-(-1)^{s}\right)^{2} k_{\mathbb{W}}\left(\Delta \pm \omega \mathfrak{n}_{i}\right)}{48 k \prod_{i}\left(\Delta_{i} \pm \omega \mathfrak{n}_{i}\right)} .
\end{gathered}
$$

Black holes in AdS_{4} : static limit of twisted branch

- Asymptotic expansion of the Airy functions,

$$
\mathrm{Ai} / \mathrm{Bi}(z) \sim \frac{e^{\mp 2 / 3 z^{3 / 2}}}{2 \sqrt{\pi} z^{1 / 4}}\left[\sum_{n=0}^{\infty} \frac{(\mp 1)^{n} 3^{n} \Gamma\left(n+\frac{5}{6}\right) \Gamma\left(n+\frac{1}{6}\right)}{2 \pi n!4^{n} z^{3 n / 2}}\right]
$$

Black holes in AdS_{4} : static limit of twisted branch

- Asymptotic expansion of the Airy functions,

$$
\mathrm{Ai} / \mathrm{Bi}(z) \sim \frac{e^{\mp 2 / 3} z^{3 / 2}}{2 \sqrt{\pi} z^{1 / 4}}\left[\sum_{n=0}^{\infty} \frac{(\mp 1)^{n} 3^{n} \Gamma\left(n+\frac{5}{6}\right) \Gamma\left(n+\frac{1}{6}\right)}{2 \pi n!4^{n} z^{3 n / 2}}\right] .
$$

- Admit static/unrefined limit $\omega=0$:

$$
\begin{aligned}
& -\log Z_{\mathrm{TTI}}^{\mathrm{unref}} \simeq \frac{\pi \sqrt{2 k \prod_{i} \Delta_{i}}}{3}\left(\sum_{i} \frac{\mathfrak{n}_{i}}{\Delta_{i}}\left(N_{k, \Delta}-k_{i}\right)\right) N_{k, \Delta}^{1 / 2}+\frac{1}{2} \log N_{k, \Delta}, \\
& N_{k, \Delta}:=N-\frac{k}{24}+\frac{\sum_{i}\left(\Delta_{i}\right)^{-1}}{12 k}, \quad k_{i}:=\frac{\left(2-\Delta_{i}\right) \prod_{j \neq i}\left(\Delta_{i}+\Delta_{j}\right)}{8 k \Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}} .
\end{aligned}
$$

Black holes in AdS_{4} : static limit of twisted branch

- Asymptotic expansion of the Airy functions,

$$
\mathrm{Ai} / \mathrm{Bi}(z) \sim \frac{e^{\mp 2 / 3} z^{3 / 2}}{2 \sqrt{\pi} z^{1 / 4}}\left[\sum_{n=0}^{\infty} \frac{(\mp 1)^{n} 3^{n} \Gamma\left(n+\frac{5}{6}\right) \Gamma\left(n+\frac{1}{6}\right)}{2 \pi n!4^{n} z^{3 n / 2}}\right] .
$$

- Admit static/unrefined limit $\omega=0$:

$$
\begin{aligned}
& -\log Z_{\mathrm{TTI}}^{\mathrm{urref}} \simeq \frac{\pi \sqrt{2 k \prod_{i} \Delta_{i}}}{3}\left(\sum_{i} \frac{\mathfrak{n}_{i}}{\Delta_{i}}\left(N_{k, \Delta}-k_{i}\right)\right) N_{k, \Delta}^{1 / 2}+\frac{1}{2} \log N_{k, \Delta}, \\
& N_{k, \Delta}:=N-\frac{k}{24}+\frac{\sum_{i}\left(\Delta_{i}\right)^{-1}}{12 k}, \quad k_{i}:=\frac{\left(2-\Delta_{i}\right) \prod_{j \neq i}\left(\Delta_{i}+\Delta_{j}\right)}{8 k \Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}} .
\end{aligned}
$$

- Precise agreement with numerical matrix model result in [Bobev, Hong, Reys'22].

Black holes in AdS_{4} : non-twisted branch

- Kerr-Newman-like black holes, no twist, $\mathrm{NH}: \mathrm{AdS}_{2} \times{ }_{w} \mathrm{~S}^{2}$, $[\mathrm{KH}$, Katmadas, Toldo'19]. 2 fixed points, [Hosseini, KH, Zaffaroni'19], $\sum_{I} \chi^{I}=1+\omega, \sum_{I} p^{I}=0$,

$$
\omega_{(1)}=\omega, X_{(1)}^{I}=\chi^{I}-\omega p^{I}, \quad \omega_{(2)}=\omega, X_{(2)}^{I}=\chi^{I}+\omega p^{I}
$$

Black holes in AdS_{4} : non-twisted branch

- Kerr-Newman-like black holes, no twist, NH: $\mathrm{AdS}_{2} \times{ }_{w} \mathrm{~S}^{2},[K H$, Katmadas, Toldo'19]. 2 fixed points, [Hosseini, KH, Zaffaroni'19], $\sum_{I} \chi^{I}=1+\omega, \sum_{I} p^{I}=0$,

$$
\omega_{(1)}=\omega, X_{(1)}^{I}=\chi^{I}-\omega p^{I}, \quad \omega_{(2)}=\omega, X_{(2)}^{I}=\chi^{I}+\omega p^{I}
$$

- Prediction for the partition function (superconformal index):

$$
Z_{\mathrm{SCI}}\left(\mathfrak{n}_{i}, \omega, \Delta_{i}\right) \simeq \operatorname{Ai}\left[C_{+}^{-1 / 3}\left(N-B_{+}^{0}\right)\right] \times \operatorname{Ai}\left[C_{-}^{-1 / 3}\left(N-B_{-}^{0}\right)\right] .
$$

Black holes in AdS_{4} : non-twisted branch

- Kerr-Newman-like black holes, no twist, NH: $\mathrm{AdS}_{2} \times{ }_{w} \mathrm{~S}^{2},[K H$, Katmadas, Toldo'19]. 2 fixed points, [Hosseini, KH, Zaffaroni'19], $\sum_{I} \chi^{I}=1+\omega, \sum_{I} p^{I}=0$,

$$
\omega_{(1)}=\omega, X_{(1)}^{I}=\chi^{I}-\omega p^{I}, \quad \omega_{(2)}=\omega, X_{(2)}^{I}=\chi^{I}+\omega p^{I}
$$

- Prediction for the partition function (superconformal index):

$$
Z_{\mathrm{SCl}}\left(\mathfrak{n}_{i}, \omega, \Delta_{i}\right) \simeq \operatorname{Ai}\left[C_{+}^{-1 / 3}\left(N-B_{+}^{0}\right)\right] \times \operatorname{Ai}\left[C_{-}^{-1 / 3}\left(N-B_{-}^{0}\right)\right] .
$$

- Admit Cardy limit $\omega \rightarrow 0$ (subleading magnetic charges):

$$
-\log Z_{S C I}^{\text {Cardy }} \simeq \frac{2 \pi \sqrt{2 k \Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}}}{3 \omega} N_{k, \Delta}^{3 / 2}+\frac{1}{2} \log N_{k, \Delta}, .
$$

Summary

- A very general conjecture predicting full perturbative expansion of the on-shell action/entropy function based on 2∂ gluing rules.

Summary

- A very general conjecture predicting full perturbative expansion of the on-shell action/entropy function based on 2∂ gluing rules.
- A general proposal for the UV completed form of supersymmetric partition functions.

Summary

- A very general conjecture predicting full perturbative expansion of the on-shell action/entropy function based on 2∂ gluing rules.
- A general proposal for the UV completed form of supersymmetric partition functions.
- A number of sugra predictions testable via holography at finite N.

Summary

- A very general conjecture predicting full perturbative expansion of the on-shell action/entropy function based on 2∂ gluing rules.
- A general proposal for the UV completed form of supersymmetric partition functions.
- A number of sugra predictions testable via holography at finite N.
- Sugra observables closely follow from the structure of susy field theory observables.

Many open questions

- Precise nature of gluing rules? General derivation incorporating holographic renormalization? Build up intuition with more examples - lenses, spindles, regular and irregular punctures, fixed two-submanifolds...

Many open questions

- Precise nature of gluing rules? General derivation incorporating holographic renormalization? Build up intuition with more examples - lenses, spindles, regular and irregular punctures, fixed two-submanifolds...
- Understand better all possible HD terms - lack of full classification for now.

Many open questions

- Precise nature of gluing rules? General derivation incorporating holographic renormalization? Build up intuition with more examples - lenses, spindles, regular and irregular punctures, fixed two-submanifolds...
- Understand better all possible HD terms - lack of full classification for now.
- Derive the explicit HD form of the prepotential from string compactifications?

Many open questions

- Precise nature of gluing rules? General derivation incorporating holographic renormalization? Build up intuition with more examples - lenses, spindles, regular and irregular punctures, fixed two-submanifolds...
- Understand better all possible HD terms - lack of full classification for now.
- Derive the explicit HD form of the prepotential from string compactifications?
- Extend/prove the conjecture for more general theories including gauged hypermultiplets.

Many open questions

- Precise nature of gluing rules? General derivation incorporating holographic renormalization? Build up intuition with more examples - lenses, spindles, regular and irregular punctures, fixed two-submanifolds...
- Understand better all possible HD terms - lack of full classification for now.
- Derive the explicit HD form of the prepotential from string compactifications?
- Extend/prove the conjecture for more general theories including gauged hypermultiplets.
- Extend the conjecture to other dimensions, many similarities and relations with $5 d$ via the $4 d / 5 d$ connection.

Many open questions

- Precise nature of gluing rules? General derivation incorporating holographic renormalization? Build up intuition with more examples - lenses, spindles, regular and irregular punctures, fixed two-submanifolds...
- Understand better all possible HD terms - lack of full classification for now.
- Derive the explicit HD form of the prepotential from string compactifications?
- Extend/prove the conjecture for more general theories including gauged hypermultiplets.
- Extend the conjecture to other dimensions, many similarities and relations with 5 d via the $4 \mathrm{~d} / 5 \mathrm{~d}$ connection.
- Use the conjecture to prove AdS/CFT for supersymmetric observables? Lessons for non-susy quantum gravity? ...

Míle buíochas!

