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• Topological insulators

• Quantum phases of matter

• Relevance of geometry and topology (geometric phases,
K-theory, operator algebras, NCG,.. )

• The use of topological indices to label phases of matter
predates many of the recent developments (Araki, Carey,
Evans, Lewis, Matsui, Sisson, during the 1970’s and 1980’s)

• ℤ2-index:
𝜎(E1, E2) = (−1)dimE1∧(1−E2 )



Our motivation

Universality, criticality ?←→ Topology



Table of Contents

1 Motivation

2 ℤ2-Index for Quasi-Free Fermions

3 Geometric Phases (T > 0)



Definitions

Definition 1 (Self-dual CAR algebra)
LetH be a (sep.) Hilbert space and Γ : H → H a conjugation
(antiunitary involution).
The self-dual CAR algebra sCAR(H , Γ) is a C∗-algebra generated by
a unit 𝟙 and a family {B(𝜑)}𝜑∈H of elements satisfying:

1 The map 𝜑 ↦→ B(𝜑)∗ is complex linear.

2 B(𝜑)∗ = B(Γ(𝜑)) ∀𝜑 ∈ H .

3 (self-dual) CAR relations:

{B(𝜑1), B(𝜑2)∗} = ⟨𝜑1, 𝜑2⟩𝟙.



Definition 2 (Basis projection)
A basis projection associated with (H , Γ) is an orthogonal
projection P ∈ B(H) satisfying ΓPΓ = P⊥ ≡ 𝟙 − P .
𝔥P := ran(P). The set of all basis projections associated with (H , Γ)
will be denoted by 𝔭(H , Γ).

Remark
𝔥P must satisfy the conditions

Γ(𝔥P ) = 𝔥⊥P and Γ(𝔥⊥P ) = 𝔥P .

Notice also that 𝜑 ↦→ (Γ𝜑)∗ is a unitary map from 𝔥⊥P to the dual
space 𝔥∗P . In this case we can identifyH with the “Nambu space”

H ≡ 𝔥P ⊕ 𝔥∗P .

Hence, P induces a decomposition

B (𝜑) ≡ BP (𝜑) := B (P𝜑) + B
(
ΓP⊥𝜑

)∗
.



Bogoliubov transformations

• A unitary operator U ∈ B(H) s.t. ΓU = U Γ is called
Bogoliubov transformation.

• Such an operator induces a ∗-automorphism 𝜒U of
sCAR(H , Γ) given on generators by

𝜒U (B(𝜑)) = B(U𝜑), 𝜑 ∈ H .

• If 𝟙 − U is trace class, then one can show that

det (U) = ±1.



Definition 3 (Bilinear elements of self–dual CAR algebra)
Given an orthonormal basis {𝜓i}i∈I ofH , we define the bilinear
element associated with H ∈ B(H) to be

⟨B, HB⟩ :=
∑︁
i,j∈I

〈
𝜓i,H𝜓j

〉
H B

(
𝜓j
)
B (𝜓i)∗ .

• ⟨B, HB⟩ does not depend on the particular choice of
orthonormal basis.
• Bilinear elements of sCAR have “adjoints” equal to

⟨B, HB⟩∗ = ⟨B,H∗B⟩, H ∈ B(H).

• Bilinear Hamiltonians are then defined as bilinear elements
associated with self–adjoint operators H = H∗ ∈ B(H).



Definition 4 (Self–dual Hamiltonian)
A self–dual Hamiltonian on (H , Γ) is a self-adjoint operator
H ∈ B(H) satisfying the equality H = −ΓHΓ.

We say that the basis projection P (block–) “diagonalizes” the
self–dual Hamiltonian H ∈ B(H) whenever

PHP⊥ = 0 = P⊥HP .

In this situation, we also say that the basis projection P diagonalizes
⟨B, HB⟩.



Quasi-Free Dynamics

For any H = H∗ ∈ B(H), define a continuous group {𝜏t}t∈ℝ of
∗–automorphisms of sCAR through

𝜏t (A) := e−it ⟨B,HB⟩Aeit ⟨B,HB⟩ , A ∈ sCAR(H , Γ), t ∈ ℝ.

Provided H is a self–dual Hamiltonian on (H , Γ) , this group is a
quasi–free dynamics, that is, a strongly continuous group of
Bogoliubov ∗–automorphisms.
It follows that

exp

(
− it

2
⟨B, HB⟩

)
B (𝜑)∗ exp

(
it
2
⟨B,HB⟩

)
= B

(
eitH𝜑

)∗
,

for any self–dual Hamiltonian H in (H , Γ), t ∈ ℝ and 𝜑 ∈ H .



Quasi-Free States

Definition 5 (Quasi-Free State)
A state 𝜔 in sCAR(H , Γ) is said to be quasi–free when, for all N ∈ ℕ
and 𝜑1, . . . , 𝜑2N+1 ∈ H ,

𝜔 (B (𝜑1) · · ·B (𝜑2N+1)) = 0,

and
𝜔 (B (𝜑1) · · ·B (𝜑2N )) = Pf

[
𝜔
(
B(𝜑i), B(𝜑j)

) ]
.



Quasi–free states are particular states that are uniquely defined by
their two–point correlation functions. In fact, a quasi–free state 𝜔 is
uniquely defined by its so–called symbol, that is, a positive operator
S𝜔 ∈ B(H) such that

0 ≤ S𝜔 ≤ 𝟙H and S𝜔 + ΓS𝜔Γ = 𝟙H ,

through the identity

𝜔 (B(𝜑1)B(𝜑2)∗) = ⟨𝜑1, S𝜔𝜑2⟩H , 𝜑1, 𝜑2 ∈ H .



Definition 6 (Ground state)
A state 𝜔 on sCAR(H , Γ) is a ground state for a self–dual
Hamiltonian H on (H , Γ), if

i𝜔(A∗𝛿(A)) ≥ 0,

for all A ∈ D(𝛿).



• Let A ∈ B(H) be a bounded self–dual operator on (H , Γ),
such that EΣ (A) := 𝜒Σ (A) defines the spectral projection of A
on the Borel set Σ ⊂ ℝ.
• For H a self–adjoint Hamiltonian on (H , Γ), i.e., H = −ΓHΓ,

we denote by E0, E− and E+, the restrictions of the spectral
projections of H on {0}, ℝ− and ℝ+, respectively. We have

H =

∫
spec(H)

_dE_ =

∫
ℝ

_dE_.

• Thus, one verifies that

ΓE_Γ = E−_ for all _ ∈ ℝ and E0 + E− + E+ = 𝟙H .



We will make the following assumptions (C ≡ [0, 1]):
(a) H := {Hs}s∈C ⊂ B(H) is a differentiable family of self–dual

gapped Hamiltonians such that 𝜕H := {𝜕sHs}s∈C ⊂ B(H).
(b) For the infinite volume case we assume that the sequences of

self–dual Hamiltonians Hs, L : C → B(H∞) and
𝜕sHs, L : C → B(H∞) converge in norm and pointwise, that is,
lim
L→∞

Hs,L = Hs,∞ and lim
L→∞

𝜕sHs,L = 𝜕sHs,∞ in the norm sense.

Now, for any self–dual Hilbert space (H , Γ), take 2 basis projections
P1, P2 ∈ 𝔭(H , Γ). If P1 − P2 is H.S., define the “ℤ2–index”

𝜎(P1, P2) := (−1)dim(P1∧P⊥2 ) .

Remark
This index was introduced by Araki and Evans (1983) and used to
classify the thermodynamical phases of the (classical) 2D-Ising
model.



Theorem*
Take C ≡ [0, 1] and let H := {Hs,∞}s∈ ⊂ B(H∞) be a differentiable
family of self–dual Hamiltonians on (H∞, Γ∞), with
𝜕H := {𝜕sHs,∞}s∈C ⊂ B(H∞). For any s ∈ C, E+,s,∞ denotes the
spectral projection associated to the positive part of spec(Hs,∞) and
consider the ℤ2–index given by 𝜎(P1, P2). Then:

1 For any s ∈ C, H0,∞ is unitarily equivalent to Hs,∞ via the
unitary operator V (∞)s ∈ B(H∞) satisfying the differential
equation (1) below.

2 The Bogoliubov ∗–automorphism 𝜒V (∞)s
is inner and maintains

its parity, even V (∞)s ∈ 𝔘∞+ or odd V (∞)s ∈ 𝔘∞− , over the family
H, according to the value of detV (∞)s .

3 For r , s ∈ C, 𝜎(Hr ,∞,Hs,∞) ≡ 𝜎(E+,r ,∞, E+,s,∞) satisfies
𝜎(Hr ,∞,Hs,∞) = 1.

∗N.J.B. Aza, L. Sequera, A.R., Math. Phys. Anal. Geom. 25, 11 (2022)



Lemma
Take C ≡ [0, 1] and let H be a family of Hamiltonians as defined
above. For any s ∈ C, let E+,s be the spectral projection associated to
the positive part of spec(Hs). Then, for the family of spectral
projections {E+,s}s∈C , there exists a family of automorphisms {^s}s∈
on B(H) satisfying

^s
(
E+,s

)
= E+,0.



Idea of proof:

• Use the resolvent equation
RZ (A) − RZ (B) = RZ (A) (B − A)RZ (B), in order to establish
existence of 𝜕sE+,s.
• Show that this derivative can be written in the form

𝜕sE+,s = −i [𝔇𝔤,s, E+,s],

where 𝔇𝔤,s is a suitably defined self-adjoint bounded operator.
• Define ^s

(
E+,s

)
:= V ∗s E+,sVs, where Vs is the solution to

𝜕sVs = −i𝔇,sVs . (1)



• If Vs ∈ B(H) is a unitary operator such that ΓVs = VsΓ and
1 − Vs is trace-class, then we have (Araki-Evans ’83):
𝜎(E+,0,V ∗s E+,0Vs) = det(Vs). We need to show that 1 − Vs is in
fact trace-classs. This is done using Combes-Thomas estimates.



XY chain

H = −1
2

∑︁
j

(
1 + 𝛾

2
𝜎x
j 𝜎

x
j+1 +

1 − 𝛾
2

𝜎
y
j 𝜎

y
j+1 + _𝜎

z
j

)
= −1

2

∑︁
j

(
a∗j aj+1 + 𝛾a∗j a∗j+1 + (_/2)a∗j aj + h.c.

)
.

Longitudinal magnetization→ mx :=
√︃
limn→∞⟨𝜎x

j 𝜎
x
j+n⟩𝛽 ,

⟨𝜎x
j 𝜎

x
j+n⟩𝛽 =

1
4
det

©«
c(−1) c(−2) · · · c(−n)
c(0) c(−1) · · · c(−n + 1)
...

...
. . .

...

c(n − 2) c(n − 3) · · · c(−1)

ª®®®®¬
,

c(n) = 1
2𝜋

∫ 𝜋

−𝜋

dk
Λk

[
cos (nk)

(
_−cos k

)
+𝛾 sin (nk) sin k

]
tanh ( 𝛽Λk

2
).



∗D. Bitko, T.F. Rosenbaum, and G. Aeppli Phys. Rev. Lett. 77, 940 (1996)



Kitaev chain

H =

N∑︁
i=l

t (a†i ai+1 + a
†
i+1ai) + Δ(a

†
i a
†
i+1 − aiai+1) − 2`a†i ai . (2)



Kitaev chain

Explicit evaluation∗ of the ℤ2-index (−1) 1
2dim ker(J+Jh ) :

∗Calderón-Garcı́a, A.R., Mod.Phys.Lett. A 33 (14), 1840001 (2018)



Edge states

• Majorana fermions: ak = 𝛾Ak + i𝛾
B
k .

• H =
∑

k Λkc∗kck → ck =
∑

l Φkl 𝛾
A
l + iΨkl 𝛾

A
l .

• Fermion occupation numbers: ⟨c1a∗kakc
∗
1⟩𝛽

• Edge-to-edge correlation function: ⟨i𝛾A1 𝛾BN ⟩𝛽

• Majorana “wave function”: ⟨(ak + a∗k)c
∗
1c1(ak + a∗k)⟩𝛽 .



Edge states
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Edge states
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Edge states
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Edge states (T > 0)
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Edge states (T > 0)
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Edge states (T > 0)
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Quantum holonomy for mixed states

• H : a finite dimensional Hilbert space (n = dimH < ∞).

• 𝜌: a density matrix.
⇒ ∃ ONB {|ei⟩}1≤i≤n and constants _1, . . . , _n s.t.

𝜌 =

n∑︁
i=1

_iPi, _i ≥ 0,
n∑︁
i=1

_i = 1, (3)

where Pi := |ei⟩⟨ei |.

Purification:
|𝜓(𝜌)⟩ :=

n∑︁
i=1

√︁
_i |ei⟩ ⊗ |ei⟩ ∈ H ⊗ H . (4)

LetM be the space of positive, trace class operators. Define a
projection 𝜋 : H ⊗ H −→M, 𝜓 ↦−→ 𝜋(𝜓) ≡ 𝜌𝜓, by requiring

Tr(𝜌𝜓L) = ⟨𝜓 |L ⊗ 𝟙|𝜓⟩,∀L ∈ B(H). (5)



Ambiguity⇝ if U is any unitary onH , then

|𝜓U (𝜌)⟩ :=
n∑︁
i=1

√︁
_i |ei⟩ ⊗ U∗ |ei⟩ (6)

leads to the same density matrix 𝜌:

𝜋(𝜓U (𝜌)) = 𝜌.

Idea:
Think of the triple (H ⊗ H ,M, 𝜋) as a fibre bundle with gauge
group U (H).
Make use ofH ⊗ H ∗ � H.S.(H) in order to define a connection.

⊲ When suitably implemented, this idea leads to a generalization of
Berry phase to mixed states†.

†Uhlmann ’86, Grosse & Dabrowski ’89



• Restrict the base space to the subsetM× ⊂ M consisting of all
invertible density operators.

• The (right) action of U (H) onH ⊗ H preserves the scalar
product: ⟨𝜓U , 𝜓

′
U⟩H⊗H = ⟨𝜓, 𝜓′⟩H⊗H .

• Identify
∑

i,j Aij |i⟩ ⊗ |j⟩ ∈ H ⊗ H with
∑

i,j Aij |i⟩⟨j | ∈ H.S.(H).

• Put P := 𝜋−1(M+) ⊂ H.S.(H).

• The (right) action of G = U (H) on P is defined as follows:

R : P × G −→ P
(A,U) −→ RU (A) := AU . (7)



A connection on (P, 𝜋,M+)

Vertical spaces
The vertical space at A, denoted VA, can be described in terms of
(equivalence classes of) paths of the form 𝛾U (t) = AU (t), where
U (t) is a path in G = U (H) with U (0) = 𝟙. It follows that

VA = {AS | S : H → H , S∗ = −S}. (8)

Horizontal spaces
P inherits a Riemannian structure from ⟨·, ·⟩HS(H) . It is given by

g(A, B) := 1
2
(
⟨A, B⟩HS(H) + ⟨B,A⟩HS(H)

)
≡ 1

2
Tr (A∗B + B∗A) . (9)

The horizontal space at A is defined as follows:

HA := {X ∈ TAP | g(X , Y ) = 0 for all Y ∈ VA}. (10)



Horizontal lifts

Let 𝜌(t) denote a path inM+. It follows from the definition above
that a curve A(t) is a horizontal lift of 𝜌(t) if and only it satisfies the
following equations:

¤A∗A − A∗ ¤A = 0, (11)

A ¤A∗ + ¤AA∗ = ¤𝜌. (12)

This can be simplified to
¤A = TA, (13)

where T is given by

T =
∑︁
i,j

Pi ¤𝜌 Pj
1

_i + _j
(14)

(recall that 𝜌 =
∑

i _iPi).



Uhlmann phase



Magnetization



Magnetization



“Melting” of edge states



Thermal geometric phases in terms of projectors?

We have computed Uhlmann’s phase for families of symbols
S𝛽 = (1 + e−𝛽H)−1 that define thermal states. But it is also possible
to purify the state defined by S𝛽 (through the GNS construction, for
example) and then compute the usual geometric (Kato/Berry) phase
in an enlarged Hilbert space. For the explicit examples we have
studied, these two quantities coincide!

For us, this is a hint that it might be possible to label certain
thermodynamical regimes using a generalization of the ℤ2 index!



Thanks for your attention!
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