Geometric Phases for Quasi-Free Fermions at Finite Temperature

A. F. Reyes Lega
Departamento de Física
Universidad de los Andes

School of Theoretical Physics - Seminar - DIAS (23.02.2023)

Table of Contents

(1) Motivation
(2) \mathbb{Z}_{2}-Index for Quasi-Free Fermions

3 Geometric Phases ($T>0$)

Collaborators and students

- Javier B. Aza
- Sebastián Calderón
- Ling Sequera
- Souad Tabban

Table of Contents

(1) Motivation
(2) \mathbb{Z}_{2}-Index for Quasi-Free Fermions
(3) Geometric Phases $(T>0)$

- Topological insulators
- Quantum phases of matter
- Relevance of geometry and topology (geometric phases, K-theory, operator algebras, NCG,..)
- The use of topological indices to label phases of matter predates many of the recent developments (Araki, Carey, Evans, Lewis, Matsui, Sisson, during the 1970's and 1980's)
- \mathbb{Z}_{2}-index:

$$
\sigma\left(E_{1}, E_{2}\right)=(-1)^{\operatorname{dim} E_{1} \wedge\left(1-E_{2}\right)}
$$

Our motivation

Topology

Table of Contents

(1) Motivation

(2) \mathbb{Z}_{2}-Index for Quasi-Free Fermions
(3) Geometric Phases $(T>0)$

Definitions

Definition 1 (Self-dual CAR algebra)
Let \mathcal{H} be a (sep.) Hilbert space and $\Gamma: \mathcal{H} \rightarrow \mathcal{H}$ a conjugation (antiunitary involution).
The self-dual CAR algebra $\operatorname{sCAR}(\mathcal{H}, \Gamma)$ is a C^{*}-algebra generated by a unit $\mathbb{1}$ and a family $\{B(\varphi)\}_{\varphi \in \mathcal{H}}$ of elements satisfying:
(1) The map $\varphi \mapsto B(\varphi)^{*}$ is complex linear.
(2) $B(\varphi)^{*}=B(\Gamma(\varphi)) \quad \forall \varphi \in \mathcal{H}$.
(3) (self-dual) CAR relations:

$$
\left\{B\left(\varphi_{1}\right), B\left(\varphi_{2}\right)^{*}\right\}=\left\langle\varphi_{1}, \varphi_{2}\right\rangle \mathbb{\mathbb { 1 }}
$$

Definition 2 (Basis projection)

A basis projection associated with (\mathcal{H}, Γ) is an orthogonal projection $P \in \mathcal{B}(\mathcal{H})$ satisfying $\Gamma P \Gamma=P^{\perp} \equiv \mathbb{1}-P$.
$\mathfrak{h}_{P}:=\operatorname{ran}(P)$. The set of all basis projections associated with (\mathcal{H}, Γ) will be denoted by $\mathfrak{p}(\mathcal{H}, \Gamma)$.

Remark

\mathfrak{h}_{P} must satisfy the conditions

$$
\Gamma\left(\mathfrak{h}_{P}\right)=\mathfrak{h}_{P}^{\perp} \quad \text { and } \quad \Gamma\left(\mathfrak{h}_{P}^{\perp}\right)=\mathfrak{h}_{P} .
$$

Notice also that $\varphi \mapsto(\Gamma \varphi)^{*}$ is a unitary map from \mathfrak{h}_{P}^{\perp} to the dual space \mathfrak{b}_{P}^{*}. In this case we can identify \mathcal{H} with the "Nambu space"

$$
\mathcal{H} \equiv \mathfrak{h}_{P} \oplus \mathfrak{h}_{P}^{*}
$$

Hence, P induces a decomposition

$$
B(\varphi) \equiv B P(\varphi):=B(P \varphi)+B\left(\Gamma P^{\perp} \varphi\right)^{*} .
$$

Bogoliubov transformations

- A unitary operator $U \in \mathcal{B}(\mathcal{H})$ s.t. $\Gamma U=U \Gamma$ is called Bogoliubov transformation.
- Such an operator induces a *-automorphism χ_{U} of $\operatorname{sCAR}(\mathcal{H}, \Gamma)$ given on generators by

$$
\chi_{U}(B(\varphi))=B(U \varphi), \quad \varphi \in \mathcal{H} .
$$

- If $\mathbb{1}-U$ is trace class, then one can show that

$$
\operatorname{det}(U)= \pm 1
$$

Definition 3 (Bilinear elements of self-dual CAR algebra)

Given an orthonormal basis $\left\{\psi_{i}\right\}_{i \in I}$ of \mathcal{H}, we define the bilinear element associated with $H \in \mathcal{B}(\mathcal{H})$ to be

$$
\langle B, H B\rangle:=\sum_{i, j \in I}\left\langle\psi_{i}, H \psi_{j}\right\rangle_{\mathcal{H}} B\left(\psi_{j}\right) B\left(\psi_{i}\right)^{*} .
$$

- $\langle B, H B\rangle$ does not depend on the particular choice of orthonormal basis.
- Bilinear elements of sCAR have "adjoints" equal to

$$
\langle B, H B\rangle^{*}=\left\langle B, H^{*} B\right\rangle, \quad H \in \mathcal{B}(\mathcal{H}) .
$$

- Bilinear Hamiltonians are then defined as bilinear elements associated with self-adjoint operators $H=H^{*} \in \mathcal{B}(\mathcal{H})$.

Definition 4 (Self-dual Hamiltonian)
A self-dual Hamiltonian on (\mathcal{H}, Γ) is a self-adjoint operator $H \in \mathcal{B}(\mathcal{H})$ satisfying the equality $H=-\Gamma H \Gamma$.

We say that the basis projection P (block-) "diagonalizes" the self-dual Hamiltonian $H \in \mathcal{B}(\mathcal{H})$ whenever

$$
P H P^{\perp}=0=P^{\perp} H P .
$$

In this situation, we also say that the basis projection P diagonalizes $\langle B, H B\rangle$.

Quasi-Free Dynamics

For any $H=H^{*} \in \mathcal{B}(\mathcal{H})$, define a continuous group $\left\{\tau_{t}\right\}_{t \in \mathbb{R}}$ of *-automorphisms of sCAR through

$$
\tau_{t}(A):=e^{-i t\langle B, H B\rangle} A e^{i t\langle B, H B\rangle}, \quad A \in \operatorname{sCAR}(\mathcal{H}, \Gamma), t \in \mathbb{R}
$$

Provided H is a self-dual Hamiltonian on (\mathcal{H}, Γ), this group is a quasi-free dynamics, that is, a strongly continuous group of Bogoliubov*-automorphisms.
It follows that

$$
\exp \left(-\frac{i t}{2}\langle B, H B\rangle\right) B(\varphi)^{*} \exp \left(\frac{i t}{2}\langle B, H B\rangle\right)=B\left(e^{i t H} \varphi\right)^{*},
$$

for any self-dual Hamiltonian H in $(\mathcal{H}, \Gamma), t \in \mathbb{R}$ and $\varphi \in \mathcal{H}$.

Quasi-Free States

Definition 5 (Quasi-Free State)
A state ω in $\operatorname{sCAR}(\mathcal{H}, \Gamma)$ is said to be quasi-free when, for all $N \in \mathbb{N}$ and $\varphi_{1}, \ldots, \varphi_{2 N+1} \in \mathcal{H}$,

$$
\omega\left(B\left(\varphi_{1}\right) \cdots B\left(\varphi_{2 N+1}\right)\right)=0,
$$

and

$$
\omega\left(B\left(\varphi_{1}\right) \cdots B\left(\varphi_{2 N}\right)\right)=\operatorname{Pf}\left[\omega\left(B\left(\varphi_{i}\right), B\left(\varphi_{j}\right)\right)\right] .
$$

Quasi-free states are particular states that are uniquely defined by their two-point correlation functions. In fact, a quasi-free state ω is uniquely defined by its so-called symbol, that is, a positive operator $S_{\omega} \in \mathcal{B}(\mathcal{H})$ such that

$$
0 \leq S_{\omega} \leq \mathbb{1}_{\mathcal{H}} \quad \text { and } \quad S_{\omega}+\Gamma S_{\omega} \Gamma=\mathbb{1}_{\mathcal{H}},
$$

through the identity

$$
\omega\left(B\left(\varphi_{1}\right) B\left(\varphi_{2}\right)^{*}\right)=\left\langle\varphi_{1}, S_{\omega} \varphi_{2}\right\rangle_{\mathcal{H}}, \quad \varphi_{1}, \varphi_{2} \in \mathcal{H}
$$

Definition 6 (Ground state)
A state ω on $\operatorname{sCAR}(\mathcal{H}, \Gamma)$ is a ground state for a self-dual Hamiltonian H on (\mathcal{H}, Γ), if

$$
i \omega\left(A^{*} \delta(A)\right) \geq 0,
$$

for all $A \in \mathcal{D}(\delta)$.

- Let $A \in \mathcal{B}(\mathcal{H})$ be a bounded self-dual operator on (\mathcal{H}, Γ), such that $E_{\Sigma}(A):=\chi_{\Sigma}(A)$ defines the spectral projection of A on the Borel set $\Sigma \subset \mathbb{R}$.
- For H a self-adjoint Hamiltonian on (\mathcal{H}, Γ), i.e., $H=-\Gamma Н \Gamma$, we denote by E_{0}, E_{-}and E_{+}, the restrictions of the spectral projections of H on $\{0\}, \mathbb{R}_{-}$and \mathbb{R}_{+}, respectively. We have

$$
H=\int_{\operatorname{spec}(H)} \lambda d E_{\lambda}=\int_{\mathbb{R}} \lambda d E_{\lambda} .
$$

- Thus, one verifies that

$$
\Gamma E_{\lambda} \Gamma=E_{-\lambda} \quad \text { for all } \quad \lambda \in \mathbb{R} \quad \text { and } \quad E_{0}+E_{-}+E_{+}=\mathbb{1}_{\mathcal{H}} .
$$

We will make the following assumptions $(C \equiv[0,1])$:
(a) $\mathbf{H}:=\left\{H_{s}\right\}_{s \in \mathcal{C}} \subset \mathcal{B}(\mathcal{H})$ is a differentiable family of self-dual gapped Hamiltonians such that $\partial \mathbf{H}:=\left\{\partial_{s} H_{s}\right\}_{s \in C} \subset \mathcal{B}(\mathcal{H})$.
(b) For the infinite volume case we assume that the sequences of self-dual Hamiltonians $H_{s, L}: C \rightarrow \mathcal{B}\left(\mathcal{H}_{\infty}\right)$ and $\partial_{s} H_{s, L}: C \rightarrow \mathcal{B}\left(\mathcal{H}_{\infty}\right)$ converge in norm and pointwise, that is, $\lim _{L \rightarrow \infty} H_{s, L}=H_{s, \infty}$ and $\lim _{L \rightarrow \infty} \partial_{s} H_{s, L}=\partial_{s} H_{s, \infty}$ in the norm sense.

Now, for any self-dual Hilbert space (\mathcal{H}, Γ), take 2 basis projections $P_{1}, P_{2} \in \mathfrak{p}(\mathcal{H}, \Gamma)$. If $P_{1}-P_{2}$ is H.S., define the " \mathbb{Z}_{2}-index"

$$
\sigma\left(P_{1}, P_{2}\right):=(-1)^{\operatorname{dim}\left(P_{1} \wedge P_{2}^{\perp}\right)}
$$

Remark

This index was introduced by Araki and Evans (1983) and used to classify the thermodynamical phases of the (classical) 2D-Ising model.

Theorem*

Take $C \equiv[0,1]$ and let $\mathbf{H}:=\left\{H_{s, \infty}\right\}_{s \in} \subset \mathcal{B}\left(\mathcal{H}_{\infty}\right)$ be a differentiable family of self-dual Hamiltonians on $\left(\mathcal{H}_{\infty}, \Gamma_{\infty}\right)$, with $\partial \mathbf{H}:=\left\{\partial_{s} H_{s, \infty}\right\}_{s \in C} \subset \mathcal{B}\left(\mathcal{H}_{\infty}\right)$. For any $s \in \mathcal{C}, E_{+, s, \infty}$ denotes the spectral projection associated to the positive part of $\operatorname{spec}\left(H_{s, \infty}\right)$ and consider the \mathbb{Z}_{2}-index given by $\sigma\left(P_{1}, P_{2}\right)$. Then:
(1) For any $s \in C, H_{0, \infty}$ is unitarily equivalent to $H_{s, \infty}$ via the unitary operator $V_{s}^{(\infty)} \in \mathcal{B}\left(\mathcal{H}_{\infty}\right)$ satisfying the differential equation (1) below.
(2) The Bogoliubov *-automorphism $\chi_{V_{s}^{(\infty)}}$ is inner and maintains its parity, even $V_{s}^{(\infty)} \in \mathfrak{U}_{+}^{\infty}$ or odd $V_{s}^{(\infty)} \in \mathfrak{U}_{-}^{\infty}$, over the family \mathbf{H}, according to the value of det $V_{s}^{(\infty)}$.
(3) For $r, s \in C, \sigma\left(H_{r, \infty}, H_{s, \infty}\right) \equiv \sigma\left(E_{+, r, \infty}, E_{+, s, \infty}\right)$ satisfies $\sigma\left(H_{r, \infty}, H_{s, \infty}\right)=1$.

[^0]
Lemma

Take $C \equiv[0,1]$ and let \mathbf{H} be a family of Hamiltonians as defined above. For any $s \in C$, let $E_{+, s}$ be the spectral projection associated to the positive part of $\operatorname{spec}\left(H_{s}\right)$. Then, for the family of spectral projections $\left\{E_{+, s}\right\}_{s \in C}$, there exists a family of automorphisms $\left\{\kappa_{s}\right\}_{s \in}$ on $\mathcal{B}(\mathcal{H})$ satisfying

$$
\kappa_{s}\left(E_{+, s}\right)=E_{+, 0} .
$$

Idea of proof:

- Use the resolvent equation $R_{\zeta}(A)-R_{\zeta}(B)=R_{\zeta}(A)(B-A) R_{\zeta}(B)$, in order to establish existence of $\partial_{s} E_{+, s}$.
- Show that this derivative can be written in the form

$$
\partial_{s} E_{+, s}=-i\left[\mathfrak{D}_{\mathfrak{g}, s}, E_{+, s}\right],
$$

where $\mathfrak{D}_{\mathfrak{g}, s}$ is a suitably defined self-adjoint bounded operator.

- Define $\kappa_{s}\left(E_{+, s}\right):=V_{s}^{*} E_{+, s} V_{s}$, where V_{s} is the solution to

$$
\begin{equation*}
\partial_{s} V_{s}=-i \mathfrak{D}_{, s} V_{s} . \tag{1}
\end{equation*}
$$

- If $V_{s} \in \mathcal{B}(\mathcal{H})$ is a unitary operator such that $\Gamma V_{s}=V_{s} \Gamma$ and $1-V_{s}$ is trace-class, then we have (Araki-Evans '83): $\sigma\left(E_{+, 0}, V_{s}^{*} E_{+, 0} V_{s}\right)=\operatorname{det}\left(V_{s}\right)$. We need to show that $1-V_{s}$ is in fact trace-classs. This is done using Combes-Thomas estimates.

XY chain

$$
\begin{aligned}
H & =-\frac{1}{2} \sum_{j}\left(\frac{1+\gamma}{2} \sigma_{j}^{x} \sigma_{j+1}^{x}+\frac{1-\gamma}{2} \sigma_{j}^{y} \sigma_{j+1}^{y}+\lambda \sigma_{j}^{z}\right) \\
& =-\frac{1}{2} \sum_{j}\left(a_{j}^{*} a_{j+1}+\gamma a_{j}^{*} a_{j+1}^{*}+(\lambda / 2) a_{j}^{*} a_{j}+\text { h.c. }\right) .
\end{aligned}
$$

Longitudinal magnetization $\rightarrow \mathrm{m}_{x}:=\sqrt{\lim _{n \rightarrow \infty}\left\langle\sigma_{j}^{x} \sigma_{j+n}^{x}\right\rangle_{\beta}}$,

$$
\left\langle\sigma_{j}^{x} \sigma_{j+n}^{x}\right\rangle_{\beta}=\frac{1}{4} \operatorname{det}\left(\begin{array}{cccc}
c(-1) & c(-2) & \cdots & c(-n) \\
c(0) & c(-1) & \cdots & c(-n+1) \\
\vdots & \vdots & \ddots & \vdots \\
c(n-2) & c(n-3) & \cdots & c(-1)
\end{array}\right)
$$

$$
c(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{d k}{\Lambda_{k}}[\cos (n k)(\lambda-\cos k)+\gamma \sin (n k) \sin k] \tanh \left(\frac{\beta \Lambda_{k}}{2}\right) .
$$

*D. Bitko, T.F. Rosenbaum, and G. Aeppli Phys. Rev. Lett. 77, 940 (1996)

Kitaev chain

$$
\begin{equation*}
H=\sum_{i=l}^{N} t\left(a_{i}^{\dagger} a_{i+1}+a_{i+1}^{\dagger} a_{i}\right)+\Delta\left(a_{i}^{\dagger} a_{i+1}^{\dagger}-a_{i} a_{i+1}\right)-2 \mu a_{i}^{\dagger} a_{i} \tag{2}
\end{equation*}
$$

c)

Kitaev chain

Explicit evaluation ${ }^{*}$ of the \mathbb{Z}_{2}-index $(-1)^{\frac{1}{2} \operatorname{dim} \operatorname{ker}\left(J+J_{h}\right)}$:

Edge states

- Majorana fermions: $a_{k}=\gamma_{k}^{A}+i \gamma_{k}^{B}$.
- $H=\sum_{k} \Lambda_{k} c_{k}^{*} c_{k} \rightarrow c_{k}=\sum_{l} \Phi_{k l} \gamma_{l}^{A}+i \Psi_{k l} \gamma_{l}^{A}$.
- Fermion occupation numbers: $\left\langle c_{1} a_{k}^{*} a_{k} c_{1}^{*}\right\rangle_{\beta}$
- Edge-to-edge correlation function: $\left\langle i \gamma_{1}^{A} \gamma_{N}^{B}\right\rangle_{\beta}$
- Majorana "wave function": $\left\langle\left(a_{k}+a_{k}^{*}\right) c_{1}^{*} c_{1}\left(a_{k}+a_{k}^{*}\right)\right\rangle_{\beta}$.

Edge states
$\left(\mu=1.1, t=\Delta=1 \leadsto \mathbb{Z}_{2}\right.$-index equals +1$)$

Edge states

$$
\left(\mu=0.8, t=\Delta=1 \leadsto \mathbb{Z}_{2} \text {-index equals }-1\right)
$$

Edge states
$\left(\mu=0.8, t=\Delta=1 \leadsto \mathbb{Z}_{2}\right.$-index equals - 1)

Edge states $(T>0)$

$$
(\mu=0.8, t=\Delta=1)
$$

$$
\mathrm{T}=0.1
$$

Edge states $(T>0)$

$(\mu=0.8, t=\Delta=1)$

$$
\mathrm{T}=0.5
$$

Edge states $(T>0)$

$(\mu=0.8, t=\Delta=1)$

$\mathrm{T}=100$

Table of Contents

(1) Motivation

(2) \mathbb{Z}_{2}-Index for Quasi-Free Fermions

3 Geometric Phases ($T>0$)

Quantum holonomy for mixed states

- \mathcal{H} : a finite dimensional Hilbert space $(n=\operatorname{dim} \mathcal{H}<\infty)$.
- ρ : a density matrix.
$\Rightarrow \exists$ ONB $\left\{\left|e_{i}\right\rangle\right\}_{1 \leq i \leq n}$ and constants $\lambda_{1}, \ldots, \lambda_{n}$ s.t.

$$
\begin{equation*}
\rho=\sum_{i=1}^{n} \lambda_{i} P_{i}, \quad \lambda_{i} \geq 0, \quad \sum_{i=1}^{n} \lambda_{i}=1 \tag{3}
\end{equation*}
$$

where $P_{i}:=\left|e_{i}\right\rangle\left\langle e_{i}\right|$.
Purification:

$$
\begin{equation*}
|\psi(\rho)\rangle:=\sum_{i=1}^{n} \sqrt{\lambda_{i}}\left|e_{i}\right\rangle \otimes\left|e_{i}\right\rangle \in \mathcal{H} \otimes \mathcal{H} \tag{4}
\end{equation*}
$$

Let \mathcal{M} be the space of positive, trace class operators. Define a projection $\pi: \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{M}, \psi \longmapsto \pi(\psi) \equiv \rho_{\psi}$, by requiring

$$
\begin{equation*}
\operatorname{Tr}\left(\rho_{\psi} L\right)=\langle\psi| L \otimes \mathbb{1}|\psi\rangle, \forall L \in \mathcal{B}(\mathcal{H}) . \tag{5}
\end{equation*}
$$

Ambiguity $\rightsquigarrow \rightarrow$ if U is any unitary on \mathcal{H}, then

$$
\begin{equation*}
\left|\psi_{U}(\rho)\right\rangle:=\sum_{i=1}^{n} \sqrt{\lambda_{i}}\left|e_{i}\right\rangle \otimes U^{*}\left|e_{i}\right\rangle \tag{6}
\end{equation*}
$$

leads to the same density matrix ρ :

$$
\pi\left(\psi_{U}(\rho)\right)=\rho
$$

Idea:
Think of the triple $(\mathcal{H} \otimes \mathcal{H}, \mathcal{M}, \pi)$ as a fibre bundle with gauge group $U(\mathcal{H})$.
Make use of $\mathcal{H} \otimes \mathcal{H}^{*} \cong \mathrm{H} . \mathrm{S} .(\mathcal{H})$ in order to define a connection.
\triangleright When suitably implemented, this idea leads to a generalization of Berry phase to mixed states ${ }^{\dagger}$.

[^1]- Restrict the base space to the subset $\mathcal{M}^{\times} \subset \mathcal{M}$ consisting of all invertible density operators.
- The (right) action of $U(\mathcal{H})$ on $\mathcal{H} \otimes \mathcal{H}$ preserves the scalar product: $\left\langle\psi_{U}, \psi_{U}^{\prime}\right\rangle_{\mathcal{H} \otimes \mathcal{H}}=\left\langle\psi, \psi^{\prime}\right\rangle_{\mathcal{H} \otimes \mathcal{H}}$.
- Identify $\sum_{i, j} A_{i j}|i\rangle \otimes|j\rangle \in \mathcal{H} \otimes \mathcal{H}$ with $\sum_{i, j} A_{i j}|i\rangle\langle j| \in$ H.S. (\mathcal{H}).
- Put $\mathcal{P}:=\pi^{-1}\left(\mathcal{M}^{+}\right) \subset$ H.S. (\mathcal{H}).
- The (right) action of $G=U(\mathcal{H})$ on \mathcal{P} is defined as follows:

$$
\begin{align*}
R: \mathcal{P} \times G & \longrightarrow \mathcal{P} \\
(A, U) & \longrightarrow R_{U}(A):=A U . \tag{7}
\end{align*}
$$

A connection on $\left(\mathcal{P}, \pi, \mathcal{M}^{+}\right)$

Vertical spaces

The vertical space at A, denoted V_{A}, can be described in terms of (equivalence classes of) paths of the form $\gamma_{U}(t)=A U(t)$, where $U(t)$ is a path in $G=U(\mathcal{H})$ with $U(0)=\mathbb{1}$. It follows that

$$
\begin{equation*}
V_{A}=\left\{A S \mid S: \mathcal{H} \rightarrow \mathcal{H}, S^{*}=-S\right\} \tag{8}
\end{equation*}
$$

Horizontal spaces

\mathcal{P} inherits a Riemannian structure from $\langle\cdot, \cdot\rangle_{\mathrm{HS}(\mathcal{H})}$. It is given by

$$
\begin{equation*}
g(A, B):=\frac{1}{2}\left(\langle A, B\rangle_{\mathrm{HS}(\mathcal{H})}+\langle B, A\rangle_{\mathrm{HS}(\mathcal{H})}\right) \equiv \frac{1}{2} \operatorname{Tr}\left(A^{*} B+B^{*} A\right) . \tag{9}
\end{equation*}
$$

The horizontal space at A is defined as follows:

$$
\begin{equation*}
H_{A}:=\left\{X \in T_{A} \mathcal{P} \mid g(X, Y)=0 \text { for all } Y \in V_{A}\right\} . \tag{10}
\end{equation*}
$$

Horizontal lifts

Let $\rho(t)$ denote a path in \mathcal{M}^{+}. It follows from the definition above that a curve $A(t)$ is a horizontal lift of $\rho(t)$ if and only it satisfies the following equations:

$$
\begin{align*}
\dot{A}^{*} A-A^{*} \dot{A} & =0, \tag{11}\\
A \dot{A}^{*}+\dot{A} A^{*} & =\dot{\rho} . \tag{12}
\end{align*}
$$

This can be simplified to

$$
\begin{equation*}
\dot{A}=T A, \tag{13}
\end{equation*}
$$

where T is given by

$$
\begin{equation*}
T=\sum_{i, j} P_{i} \dot{\rho} P_{j} \frac{1}{\lambda_{i}+\lambda_{j}} \tag{14}
\end{equation*}
$$

(recall that $\rho=\sum_{i} \lambda_{i} P_{i}$).

Uhlmann phase

Uhlmann Phase, $\gamma=1$

Magnetization

Magnetization

"Melting" of edge states

Thermal geometric phases in terms of projectors?

We have computed UhImann's phase for families of symbols $S_{\beta}=\left(1+e^{-\beta H}\right)^{-1}$ that define thermal states. But it is also possible to purify the state defined by S_{β} (through the GNS construction, for example) and then compute the usual geometric (Kato/Berry) phase in an enlarged Hilbert space. For the explicit examples we have studied, these two quantities coincide!

For us, this is a hint that it might be possible to label certain thermodynamical regimes using a generalization of the \mathbb{Z}_{2} index!

Thanks for your attention!

[^0]: *N.J.B. Aza, L. Sequera, A.R., Math. Phys. Anal. Geom. 25, 11 (2022)

[^1]: †Uhlmann '86, Grosse \& Dabrowski '89

