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Abstract

In this project, we study the nature of both the Dirac fermions and the uncon-
ventional Dirac-like fermions. Dirac fermions are a principal contributor to both
particle physics and condensed matter systems, especially topological quantum mat-
ter/materials. The Dirac matrices, αµ, and the Clifford algebra Cl3,1 that they gener-
ate, govern the heart of the Dirac theory. The Clifford algebra Cl3,1 is characterised
by the following anti-commutation relations {αµ, αν} = 2δµν1, where δµν is the Kro-
necker delta and 1 is the identity matrix. An investigation is conducted in order
to construct different matrices, βµ, which do not generate the Clifford algebra Cl3,1.
The purpose of βµ is to replace αµ for our proposed Dirac-like model. These different
matrices can be used to describe exotic Dirac-like fermions, facilitating the construc-
tion of new theoretical fermionic models. The natural environment of these exotic
fermion types would be condensed matter systems, which impose different symmetry
constraints to relativistic particles, allowing for fermion types beyond the standard
categories of Dirac, Majorana and Weyl in quantum field theory (QFT).

In this project, both the Dirac theory and Dirac-like model of fermions is taken in
3+1 dimensions, X = R4 spacetime. In 3+1 dimensions, αµ are the 4 × 4 Dirac
matrices for the Dirac theory. For our proposed Dirac-like model, βµ are n × n
matrices, where 5 ≤ n ≤ 8. The 3+1-dim Dirac theory includes a single mass
term, m1, while our Dirac-like model has two independent mass terms, m1 and m2.
The matrices, αµ and βµ, are used to construct a resultant density Hamiltonian H
which yield eigenvalues corresponding to the energies of the fermionic systems, upon
diagonalisation of H. We also explicitly calculate the spin matrices of Si generators
for the spin-s representation of SO(3) symmetry, in which our model follows. We
further investigate the real spectra of the resulting energy dispersion relations E(k)
as well as the possibility of bullding a β6 matrix associated with a third independent
mass term m3.
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Chapter 1

The Model

1.1 Motivation Behind the Project

As mentioned in the abstract, the Dirac fermions play a fundamental role in both
particle physics and condensed matter physics, especially with regards to topological
quantum matter. The project involves the further investigation of unconventional
Dirac-like fermions which have the potential to construct new theoretical models, a
rich and active area that is especially prevalent in condensed matter physics. Con-
densed matter systems serve as a natural arena for the discovery of fermionic particles,
in the form of quasiparticle excitations. An example of potential uses includes the
topological protection of quantum information, which can play a role in topological
quantum computing.

Topological systems are systems with some quantum information stored non-locally
and the fermionic excitations or emergent quasiparticles are topologically protected.
They are robust to decoherence from local quantum interference, which prompts po-
tential use for topological quantum computation. An example of this is outlined in4[6]
which includes the use of a toy model called the Kitaev chain (KC). A toy model is
a theoretical model constructed in order to highlight the most important features of
a physical system although it is not supposed to directly correspond to it. The KC
is 1-D fermionic chain and the sites can be occupied or unoccupied by an electron,
which is insulating in the bulk (infinite system/periodic boundary conditions) and
also has a superconducting gap. In the topological phase, the chain possesses expo-
nentially localised zero energy bound states. This is quite interesting in the Majorana
representation of the Kitaev chain. The subsitution of the Majorana basis into the
Kitaev Hamiltonian results in a non-local fermionic state that is essentially decou-
pled from the rest of the states. Majorana states are described to be exponentially
well-localised and low energy at the end of the chain. The reconstruction of an entire
fermion is only possible when you take the two Majorana states at the end of the
fermionic chain. However, one is unable to decohere the quantum information of the
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cubit using local perturbations. They would need to perform something simultane-
ously to both ends of the chain in a quantum coherent way in order to perturb this
zero energy state. Thus the topological system is robust. Experimental evidence was
reported from a quantum wire sitting on a superconductor which featured Majorana
zero modes observed at the end of the chain as theorised4[1]. The toy model really
illustrates the fractionalization of electrons into these effective quasiparticles, which
are Majorana fermions.

Majorana fermions also featured in the Sachdev-Ye-Kitaev (SYK) model4[7], which
is a model that was also implemented to approach the problem of quantum grav-
ity. It bears close relevance to the AdS/CFT discrete model which is utilised in
theories of quantum gravity constructed in terms of string/M-theory and conformal
field theories (CFT) for describing elementary particles. It consisted of N interacting
Majorana fermions χj satisfying the Clifford relation {χk, χj} = 2δij, with the most
famous model defined as HSY K = 1

4!

∑
j,k,l,m Jjklmχjχkχlχm.

The following is based from a research paper4[2] which essentially incentivised this
investigation. In quantum field theory (QFT), fermions are classified as three types:
Dirac, Majorana (fermions which are their own antiparticle) and Weyl (massless
fermions). Condensed matters systems are a potential ground for observing fermionic
particles and phenomena, which can have a high energy counterpart. Relativistic
fermions are constrained by Poincaré symmetry, which is the full symmetry of special
relativity. However in condensed matter systems, the fermions are not constrained
by Poincaré symmetry. Instead, they must only conform to the crystal symmetry of
one of the 230 space groups (SG) of the 3-D lattices, providing less constraint on the
types of particles that can arise. Thus, there is potential to observe and categorise
free fermionic excitations in solid state physics which have no counterpart in high en-
ergy physics. Possible exotic fermion types can exist beyond the three classifications
of fermions: Dirac, Majorana and Weyl. These fermions can describe fascinating
surface states, such as Fermi arcs and Dirac lines, ARPES (angle-resolved photoe-
mission spectroscopy) signatures and magnetotransport properties of many material
candidates with time-reversal (TR) symmetry and spin-orbit coupling.

This project involves calculating the eigensystem of the Dirac-like model to obtain the
energies of these free fermionic systems. The real spectrum of the resulting energy
dispersion relations E(k) would then be subsequently plotted using the computa-
tional software Wolfram Mathematica. The investigation is also conducted in order
to determine a possible β6 matrix related to a third mass term, m3, in our proposed
Dirac-like model in 3+1 dimensions.
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Figure 1.1: Surface Fermi arcs of a threefold degeneracy in SG 214 as seen from4[2].
The figure outlines the surface density of states as a function of momentum for a
conventional crystal.

Figure 1.2: Energy dispersion relations E(k) near a threefold degeneracy at a high
symmetry point, as illustrated from4[2]. (A) represents SGs 199 and 214 and (B)
represents SG 220.
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1.2 Introduction to Relativistic Wave Equations

In this section, some background context4[3] is introduced for relativistic wave equa-
tions, that would be somewhat relevant to our investigation. Since the 1920’s, physi-
cists have yearned to develop a relativistic description of a quantum mechanical sys-
tem. The earliest known case of utilising Lorentz invariance, a relativistic concept,
with quantum mechanics, was pioneered by Louis de Broglie in 1923, for the purpose
of constructing the familiar relations between the energy/momentum of a particle
and the frequency/wave vector of the corresponding wave. As a matter of fact, Erwin
Schrödinger initially developed a relativistic version of his famous Schrödinger equa-
tion, now referred to as the Klein-Gordan equation, named after Oskar Klein and
Walter Gordon. Schrödinger analysed the relativistic energy-momentum relation for
an electron

−W
2

c2
+ p2 +m2c2 = 0 (1.1)

and then considered a wavefunction ψ(x, t), which describes the electron, as a solution
by making quantum mechanical substitutions

W

c
=⇒ iℏ

c

∂

∂t
, p =⇒ −iℏ∇ (1.2)

yielding the first relativistic wave equation, the Klein-Gordan (KG) equation(
□+

m2c2

ℏ2

)
ψ = 0 (1.3)

where □ is the d’Alembert operator

□ = ∂µ∂µ = ηµν∂ν∂µ =
1

c2
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
(1.4)

=
1

c2
∂2

∂t2
−∇2 =

1

c2
∂2

∂t2
−∆ (1.5)

and ∇2 := ∆ is the 3-D Laplacian and ηµν is the inverse Minkowski metric.

However, the failure of the KG equation to experimentally verify the fine structure of
the energy levels of the hydrogen atom, led Schrödinger to initially discard this result.
However, in the non-relativistic limit, it produced the standard Schrödinger equation
which proved famous and successful. The discrepancy between theory and experiment
was due to the spin of the electron, in which Schrödinger neglected. However, the issue
of possible negative probabilites associated with the KG equation with its second-
order derivative with respect to time, inspired Paul Dirac to develop a relativistic
wave equation which was first-order differential. He proposed assumptions such as
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the space derivatives being well linear in the wave equation in order to develop a
consistent Lorentz-invariant theory, leading to the following expression(

W

c
+ α · p+ α0mc

)
ψ = 0 (1.6)

His introduced α notation, which act as dynamical variables, were required to fulfil
the desired condition of the problem, that the energy and momentum of the particle
verified the relativistic energy-momentum relation in Eq. (1.1). This is also equivalent
to the fact that the solution of the Dirac equation likewise satisfies the KG equation.
Another problem that Dirac wanted to rectify was the issue of the negative energy
states of the KG equation, but we will not go into detail in this report. The Dirac
theory proved overwhelmingly successful as it provided correct predictions for the fine
structure of the hydrogen atom and the correct value of the magnetic moment of the
electron, with predicted gyromagnetic ratio g = 2. The nature of α, which serve as
the novel dynamical variables, will be addressed in the following sections. As what
was reviewed here, one can develop some understanding of the role of α in the Dirac
theory in 3+1 dimensions and then translate that to β in our proposed Dirac-like
theory in 3+1 dimensions.

1.3 Dirac Theory in 3+1 Dimensions

The Dirac theory of fermions in 3+1 dimensions can be described by the following
Hamiltonian

H = ψ†Hψ (1.7)

where ψ = (ψ1, ψ, . . . , ψn)
T is a n-component spinor with n = 2s, while the density

Hamiltonian H can be written as the following

H = αipi + α0m (1.8)

wherem is the Dirac mass, pi = (px, py, pz) are the momenta and αµ = (α0, αx, αy, αz)
are Dirac matrices that satisfy the following Clifford algebra Cl3,1

{αµ, αν} ≡ αµαν + αναµ = 2δµν1 (1.9)

where δµν is the Kronecker delta and 1 is the identity matrix. One can prove that αµ

are even-order 2s × 2s, as outlined in Sect.(1.3.1), where s is some positive integer.
Upon diagonalisation of the density Hamiltonian H, the following eigenvalues are
obtained

Ej
− = −

√
p2x + p2y + p2z +m2, Ej

+ =
√
p2x + p2y + p2z +m2 (1.10)

where j is the degeneracy of the eigenvalues. One can recognise these eigenvalues as
the expression for the relativistic energy-momentum relations as seen in Eq. (1.1),
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where ℏ = c = 1 in natural units.

As explained in (1.3.1), in 3+1 dimensions, s = 2 which means that j = 2. This
is evident from the Dirac matrices as seen in (1.3.1), which are 4 × 4 matrices, that
compose the density Hamiltonian H

H =


m 0 pz px − ipy
0 m px + ipy −pz
pz px − ipy −m 0

px + ipy −pz 0 −m

 (1.11)

which yield the following eigenvalues upon diagonalisation

E = ±
√
p2x + p2y + p2z +m2, E = ±

√
p2x + p2y + p2z +m2 (1.12)

1.3.1 Properties of the Matrices αi and α0

The intended purpose of this subsection is to just provide context to the αµ matrices
involved in the Dirac theory of 3+1 dimensions, which would hopefully be relevant
to the βµ matrices in our investigation of the Dirac-like model in 3+1 dimensions.
From the description of the free Dirac particle, there follows a number of resulting
properties as proposed by Dirac

1. H is Hermitian: Ĥ = H†. Requirement that αi and α0 are also Hermitian:
αi = α†

i and α0 = α†
0.

2. αi and α0 are square matrices: αi, α0 ∈Mn(C).

3. αi and α0 yield eigenvalues ±1 (α2
i = α2

0 = 1).

4. αi and α0 are constant matrices. They do not depend on r⃗ and t.

5. Anti-commutation relations: {αi, αj} = {αi, α0} = 0.

6. The trace of the matrices αi and α0 are zero: Tr(αi) = 0 and Tr(α0) = 0.

7. αi and α0 are even-order matrices: 2s × 2s, where s is some positive integer.
This follows from conditions 2, 3 and 6.

It is evident that in 3+1 dimensions, the lowest value of s is 2. Consider the following
observation. The well known Pauli spin matrices satisfy all the seven conditions and
so one is tempted to construct a 2× 2 representation in terms of the Pauli matrices

σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
(1.13)

11
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However using this representation, it is impossible to construct α0 that satisfies all
seven conditions. In the Dirac theory in 3+1 dimensions, four matrix components
are required αx, αy, αz, α0. And so with the inability to construct α0 in the 2 × 2
representation, the next available representation is 4× 4. Thus the lowest value of s
is 2 in 3+1 dimensions.

There are numerous examples of 4× 4 matrices that satisfy the Clifford algebra Cl3,1
{αµ, αν} = 2δµν1. One such 4 × 4 representation is also known as the Pauli-Dirac
representation with αi and α0 expressed as the following

αx =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 =

[
0 σx
σx 0

]
αy =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 =

[
0 σy
σy 0

]
(1.14)

αz =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 =

[
0 σz
σz 0

]
α0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 =

[
1 0
0 −1

]
(1.15)

where 0 is the 2× 2 zero-matrix and 1 is the 2× 2 identity matrix.

Using these matrices, it is clear that they construct the density Hamiltonian H out-
lined in matrix (1.11) using Eq. (1.8).

Recall that the Dirac spinor ψ = (ψ1, ψ, . . . ψn)
T is a n-component spinor with n = 2s.

With s = 2 in 3+1 dimensions, ψ can be represented as a 4-component “state”-
function vector

|ψ(r⃗, t)⟩ =


ψ1(r⃗, t)
ψ2(r⃗, t)
ψ3(r⃗, t)
ψ4(r⃗, t)

 (1.16)

where |ψ(r⃗, t)⟩ does not transform like a “four-vector”.

1.3.2 Lorentz Invariance of the Dirac Lagrangian

The following subsection is taken from4[5], which provides the chain of reasoning or
logical progression to delineate the full Lorentz invariance of the Dirac theory.

The transformation of a scalar field under a Lorentz transformation xµ = (x′)µ = Λµ
ν

is as follows:
ϕ(x) = ϕ′(x) = ϕ(Λ−1x) (1.17)

12
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In general, a field can transform as

ϕa(x) = D[Λ]ab ϕ
b(Λ−1x) (1.18)

where the matrices D[Λ] form a representation of the Lorentz group, meaning that

D[Λ1]D[Λ2] = D[Λ1Λ2] (1.19)

and D[Λ−1] = D[λ]−1 and D[1] = 1. In order to find the different representations,
we study the infinitesimal transformations of the Lorentz group and its resulting Lie
algebra. By proposing

Λµ
ν = δµν + ωµ

ν (1.20)

for infinitesimal ω, then the condition for a Lorentz transformation Λµ
σΛ

ν
ρη

σρ = ηµν

requires that ω is anti-symmetric

ωµν + ωνµ = 0 (1.21)

An anti-symmetric 4× 4 matrix has 4× 3/2 = 6 independent components that con-
forms with the 6 transformations of the Lorentz group: 3 rotations and 3 boosts.
These 4× 4 anti-symmetric matrices prove useful to be introduced as a basis, as rep-
resented by (Mρσ)µν where anti-symmetric indices ρ, σ = 0, ..., 3. The anti-symmetry
means that, for instance, M01 = −M10. etc, so that ρ, σ label six different matrices.
The basis of six 4× 4 anti-symmetric matrices can be represented as

(Mρσ)µν = ηρµησν − ησµηρν (1.22)

Using these matrices for practical purposes typically requires lowering one index, via
the Minkowski metric

(Mρσ)µν = ηρµδσν − ησµδρν (1.23)

Two examples of these basis matrices are

(M01)µν =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 and (M12)µν =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 (1.24)

The first, M01 generates boosts in the x1 direction. It is real and symmetric. The
second M12 generates rotations in the (x1, x2)-plane. It is real and anti-symmetric.
Thus, we can write any ωµ

ν as a linear combination of Mρσ

ωµ
ν =

1

2
Ωρσ(Mρσ)µν (1.25)

where Ωρσ are six numbers that tells us the nature of the Lorentz transformation.
The six basis matrices Mρσ are called the generators of the Lorentz transformations.
Crucially, these generators obey the Lie algebra relations of the Lorentz group

[Mρσ,Mτν ] = ηστMρν − ηρτMσν + ηρνMστ − ησνMρτ (1.26)

13
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A finite Lorentz transformation can be expressed as the exponential

Λ = exp

(
1

2
ΩρσMρσ

)
(1.27)

1.3.3 The Spinor Representation

In order to find other matrices which satisfy the Lorentz Lie algebra conditions, the
spinor representation is constructed. To do this, we must find matrices γµ, with
µ = 0, 1, 2, 3 such that it satisfies the following Clifford algebra

{γµ, γν} ≡ γµγν + γνγµ = 2ηµν (1.28)

We can construct many other representations of the Clifford algebra by taking V γµV −1

for any invertible matrix V . Of course, the main point of consideration is the rela-
tionship between the Clifford algebra and the Lorentz group. Let us define

Sρσ =
1

4
[γρ, γσ] =


0 ρ = σ

1
2
γργσ ρ ̸= σ

 =
1

2
γργσ − 1

2
ηρσ (1.29)

From this, we can prove that the matrices Sµν form a representation of the Lorentz
Lie algebra

[Sµν ,Sρσ] = ηνρSµσ − ηµρSνσ + ηµσSνρ − ηνσSµρ (1.30)

When µ ̸= ν, we have

[Sµν , γρ] =
1

2
[γµγν , , γρ]

=
1

2
γµγν , γρ − 1

2
γργµ, γν

=
1

2
γµ{γν , γρ} − 1

2
γµγνγρ − 1

2
γργµγν +

1

2
γµγνγρ

= γµηνρ − γvηρµ

Taking ρ ̸= σ and using the above result

[Sµν , Sρσ] =
1

2
[Sµν , γργσ]

=
1

2
[Sµν , γρ] +

1

2
γρ[Sµν , γσ]

=
1

2
γµγσηνρ − 1

2
γνγσηνµ +

1

2
γργµηνσ − 1

2
γργνησµ

Now substituting the expression γµγσ = 2Sµσ + ηµσ, we obtain,

[Sµν , Sρσ] = Sµσηνρ − Sνσηρµ + Sρµηνσ − Sρνησµ (1.31)
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We construct a new field to work with, the Dirac spinor ψ. The Dirac spinor field
ψα(x) is an object with four complex components labelled by α = 1, 2, 3, 4 in 3+1
dimensions. The field was introduced so that it could be acted upon by the matrices
(Sµν)αβ. The S

µν matrices are 4×4 since the γµ matrices are 4×4 in 3+1 dimensions.
Under Lorentz transformations, we obtain

ψα(x) → S[Λ]αβψ
β(Λ−1x) (1.32)

where

Λ = exp

(
1

2
ΩρσMρσ

)
(1.33)

S[Λ] = exp

(
1

2
ΩρσS

ρσ

)
(1.34)

Since the same six numbers Ωρσ are in both Λ and S[Λ], the same Lorentz trans-
formation is on x and ψ, even although the basis of generators of Mρσ and Sρσ are
different.

1.3.4 The Dirac Action S

From the new Dirac spinor field ψ, we can construct a Lorentz invariant equation of
motion, from a Lorentz invariant action. Let us define the Dirac adjoint where

ψ̄(x) = ψ†(x)γ0 (1.35)

Using this, we can prove that ψ̄ψ is a Lorentz scalar.

Under a Lorentz transformation

ψ̄(x)ψ(x) = ψ†(x)γ0ψ(x)

→ ψ†(Λ−1x)S[Λ]†γ0S[Λ]ψ(Λ−1)

= ψ†(Λ−1x)γ0ψ(Λ−1)

= ψ̄(Λ−1x)ψ(Λ−1x) (1.36)

which is clearly the transformation law for a Lorentz scalar. We can also prove that
ψ̄γµψ is a Lorentz vector as follows

Under a Lorentz transformation, we have

ψ̄S[Λ]−1γµS[Λ]ψ (1.37)

In order to transform as a vector, we must have

S[Λ]−1γµS[Λ] = Λµ
νγ

µ (1.38)
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Working infinitesimally

Λ = exp

(
1

2
Ωρσρσ

)
≈ 1 +

1

2
ΩρσMρσ + · · · (1.39)

S[Λ] = exp

(
1

2
ΩρσS

ρσ

)
≈ 1 +

1

2
ΩρσS

ρσ + · · · (1.40)

−[Sρσ, γµ] = (Mρσ)µνγ
ν (1.41)

Expanding out M
(Mρσ)µνγ

µ = (ηρµδσν − ησρδµν )γ
ν

= ηργµσ − ησµγρ (1.42)

Thus the proof follows
[Sρσ, γµ] = ηργµσ − ησµγρ (1.43)

And similarly, we can also show that ψ̄γµγνψ transforms as a Lorentz tensor. Finally
having obtained three bilinears of the Dirac field, ψ̄ψ, ψ̄γµψ and ψ̄γµγνψ, each of
which transforms covariantly under the Lorentz group, we can construct a Lorentz
invariant action as follows

S =

∫
d4x ψ̄(x) (iγµ∂µ −m)ψ(x) (1.44)

=

∫
d4xL(x) (1.45)

This is defined as the Dirac action. From this, we can extract a first order Lagrangian,
the Dirac Lagrangian L(x), defined as follows

L(x) = ψ̄(x)(iγµ∂µ −m)ψ(x) (1.46)

For spinor fields, the nature of the γµ matrices means that the Dirac Lagrangian is
Lorentz invariant, as desired.

1.3.5 The Dirac Equation

Using the Euler-Lagrange equation in Eq. (1.47), we can vary the Dirac Lagrangian,
L, with respect to ψ and ψ̄ independently to obtain the equation of motion.

∂L
∂ψ

− ∂µ
∂L

∂(∂µψ)
= 0 (1.47)

Varying with respect to ψ yields the Dirac equation

(iγµ∂µ −m)ψ = 0 (1.48)

while varying with respect to ψ̄ yields the conjugate equation

i∂µψ̄γ
µ +mψ̄ = 0 (1.49)

Despite the Dirac equation being first order in derivatives, it is remarkably Lorentz
invariant.
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1.4 Dirac-Like theory in 3+1 Dimensions

A Dirac-like theory of fermions in 3+1 dimensions can be described by the same
Hamiltonian form as Eq. (1.7)

H = ψ†Hψ

where ψ = (ψ1, ψ, . . . , ψn)
T is a n-component spinor where, in this case, n can be even

or odd. This is in contrast to the Dirac case where n = 2s. The density Hamiltonian
H is written as the following

H = βipi + β4m1 + β5m2 (1.50)

where m1 and m2 are two independent mass terms, pi = (px, py, pz) are the momenta
and βµ = (βx, βy, βz, β4, β5) are n×nmatrices which do not satisfy the Clifford algebra
Cl3,1

=⇒ {βµ, βν} ≡ βµβν + βνβµ ̸= 2δµν1 (1.51)

where δµν is the Kronecker delta and 1 is the identity matrix. By diagonalising the
density Hamiltonian H, the following eigenvalues are obtained

Ej
0 = 0, Ek

1,− = −
√
p2x + p2y + p2z +m1

2, Ek
1,+ =

√
p2x + p2y + p2z +m1

2

El
2,− = −

√
p2x + p2y + p2z +m2

2, El
2,+ =

√
p2x + p2y + p2z +m2

2 (1.52)

where j, k, l are degeneracy of the corresponding eigenvalues.

1.4.1 SO(3) Symmetry of the Dirac-like Model

Our model follows SO(3) symmetry. Consider (3+1)-dimensional spacetime, where
the metric is flat, gµν = ηµν . Then consider a field ψ(x) on this spacetime which is a
Lorentz scalar and where x ∈ R1,3 is a point on the spacetime. An assumption can be
made that ψ(x) is transformed by the integer spinor representation of SO(3) gauge
group. We can denote an explicit transformation U(x) ∈ SO(3), where ψ undergoes
transformation

ψ(x) =⇒ ψU(x) := S[U ](x)ψ(x) (1.53)

where S[U ] is the spin-s representation of U(x) ∈ SO(3) and s = 1, 2, 3, . . . A La-
grangian L can be expressed which is invariant under this SO(3) transformation

L = ψ̄iγµ∂µψ (1.54)

The Lie algebra for SO(3) for dimension n is

so(3) :=
{
X : n× n matrix |XT +X = 0,Tr(X) = 0

}
(1.55)
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For any component U ∈ SO(3), it can be expanded as

U = exp(iaJ1 + ibJ2 + icJ3) (1.56)

where J1, J2, J3 are the generators of this algebra and obey the following commutation
relation

[Ji, Jj] = Jkδij (1.57)

For each value of n we consider, it corresponds to different spin, s =⇒ 2s+1 = n. Now,
we can define a field ψs which undergoes a transformation by spin-s representation
of SO(3), where s = 1, 2, 3, . . . .

ψs = (ψ1, · · · , ψ2s−1) (1.58)

where ψj are fields transformed as spin-1/2 representation of SO(3) group. Thus, we
can obtain ψs as a 2s component field.

1.4.2 Non-Lorentz Invariance of Dirac-Like Model

A key distinction of our Dirac-like model is that it is not Lorentz invariant. This
is due to the result of having at least one zero eigenvalue, E = 0, from the density
Hamiltonian H. Consider two inertial frames of reference, S and S ′. Since energy E
is not Lorentz invariant, if we measure the energy of the system in S to be zero, then
it follows from the relativistic kinematic expression that

ES =
√

|p|2c2 +m2c4 ≡ c
√

|p|2 +m2c2 = 0 (1.59)

For fields with non-superluminal speeds, there exists only two possibilities in frame
S:

1. Both momentum |p| and mass m are zero.

2. c = 0

Now consider the new frame S ′, where a Lorentz transformation yields that the mea-
sured energy of the system now is not zero, ES′ ̸= 0

ES′ = c
√
|p|2 +m2c2 ̸= 0 (1.60)

By examining 1., it is clear that this is a trivial case. There is no description of a
tangible system since both the mass m and momentum |p| are zero. Thus the only
other possibility is that c = 0. However, from the postulates of special relativity, the
speed of light c must be the same in all inertial frames of reference. Since we have
taken c = 0 in frame S, then it should hold for frame S ′. This leads to ES′ = 0,
which is an explicit contradiction of the case in Eq. (1.60). Thus, a clear violation
of special relativity can be seen, meaning that our Dirac-like model cannot describe
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relativistic particles.

This is not necessarily problematic since the natural application of these Dirac-like
fermions are generally found in low energy condensed matter systems. As recalled
previously, fermions in these systems are not constrained by Poincaré symmetry, the
full symmetry of special relativity. For instance, in conventional crystals, they are
rather constrained by the crystal symmetry of the 230 space groups of the 3D lattices.
This leads to possible exotic free fermionic quasiparticles with no counterpart in high
energy physics. However, experimental evidence dictates that the relativistic energy
expressions from the eigenvalues are required, which are used to describe the real
spectra of the energy dispersion relations E(k) of these exotic fermion types.
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Chapter 2

Method

The main goals of the project are outlined as follows:

1. Construct n × n matrices βµ = (βx, βy, βz, β4, β5) for 5 ≤ n ≤ 8 such that the
corresponding Hamiltonian has the desired eigenvalues in Eqs. (1.52).

2. Plot the real spectra of energy dispersion relations E(k) for 5 ≤ n ≤ 8.

3. Identify possible β6 associated with a third independent mass term m3.

The primary method to achieve this objective involves using the computational soft-
ware program Wolfram Mathematica. With this, we construct the n×n matrices and
from there, we can straightforwardly decompose the matrix into the five βµ matrix
components. The overall method of construction was governed by an attitude of brute
force, through rigorous trial and error. These eigenvalues would then be plotted to
illustrate the real spectra of energy dispersion relations E(k) for each n.

The search for β6, giving rise tom3, allows us to construct a possible Dirac-like density
Hamiltonian H as shown

H = βipi + β4m1 + β5m2 + β6m3 (2.1)

2.0.1 Characteristic Polynomial

The initial stages of the method involved analysing the form of the resulting char-
acteristic polynomial that would yield the desired eigenvalues of Eqs. (1.52). If we
consider a matrix A, the eigenvalues of A are solutions to the characteristic equation

|A− λ1| = 0 (2.2)

Taking the simplest case, which is n = 5, the characteristic equation must factorise
to

λ(λ2 − p2x − p2y − p2z −m2
1)(λ

2 − p2x − p2y − p2z −m2
2) = 0 (2.3)
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By expanding this quintic expression, we obtain

λ5 + λ3
(
−2p2x − 2p2y − 2p2z −m2

1 −m2
2

)
+ λ

(
p4x + p4y + p4z + 2p2xp

2
y + 2p2xp

2
z + 2p2yp

2
z+

p2xm
2
1 + p2ym

2
1 + p2ym

2
1 + p2xm

2
2 + p2ym

2
2 + p2zm

2
2 +m2

1m
2
2

)
Our approach was to study the coefficients of each power of λ. Through rigorous trial
and error, we aimed to determine a form for the 5 × 5 matrix, such that the even
powers of λ would be eliminated. Eventually, we were able to construct a 5×5 matrix
that yielded the correct coefficient for λ3. However, this ’pen and paper’ approach
proved practically futile to obtain the linear term and, as a result, it was discarded.
Another approach had to be considered.

2.0.2 Gell-Mann Matrices

Our supervisor Gian introduced us to the Gell-Mann matrices, which are a set of
eight linearly independent 3× 3 Hermitian matrices, used in the study of the strong
interaction in particle physics, especially the color quantum number of the gluon fields.
The important property of these Gell-Mann matrices is that they do not satisfy the
Clifford algebra Cl3,1 =⇒ {λi, λj} ̸= 2δij1. There are four Gell-Mann matrices of
interest

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

 0 i 0
−i 0 0
0 0 0


(2.4)

λ6 =

0 0 0
0 0 1
0 1 0

 λ7 =

0 0 0
0 0 i
0 −i 0


It proved satisfactory since by incorporating the Gell-Mann matrices into the expres-
sion for the Dirac density Hamiltonian H in Eq. (1.8)

H = λ1px + λ2py + λ6pz + λ7m (2.5)

we obtain the following matrix

H =

 0 px + ipy 0
px − ipy 0 pz + im

0 pz − im 0

 (2.6)

yielding the desired Dirac-like eigenvalues in Eqs. (1.52),

E1
0 = 0, E1

1,− = −
√
p2x + p2y + p2z +m1

2, E1
1,+ =

√
p2x + p2y + p2z +m1

2 (2.7)
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where the superscript denotes the degeneracy of the corresponding eigenvalues.

From this, we considered that the next approach should, to some degree, incorporate
these matrices or their matrix elements for the construction of the βµ matrices. The
standard matrix elements in our desired configurations would consist of a real compo-
nent and an imaginary component, corresponding to a mass term or a momenta term.
Additional mass terms can also be constructed from two mass terms as mentioned in
Sect.(2.0.4).

2.0.3 Direct Sum

The crucial distinction of the Dirac-like model is the inclusion of a second independent
mass term m2. At this point, there are two known matrices that yielded the desired
eigenvalues of Eqs. (1.52), the Dirac density Hamiltonian and the density Hamiltonian
constructed from the Gell-Mann matrices λi=1,2,6,7. Our intuitive procedure was to
utilise and combine these matrices to construct n × n matrices for n = 5, 6, 7, 8.
A tensor product would be one method of combination, but cannot be considered
since this would result in the emergence of cross terms such as between m1 and
m2. The mass terms of the Dirac-like model must be independent. So a direct sum
was considered, which ensured no mixing between the rows and columns of the two
submatrices, which would each correspond to a mass term, m1 or m2. The following
example of the direct sum is given for the 6 × 6 case with two Gell-Mann density
Hamiltonian submatrices

Hn=6 =


0 px + ipy 0 0 0 0

px − ipy 0 pz + im1 0 0 0
0 pz − im1 0 0 0 0
0 0 0 0 px + ipy 0
0 0 0 px − ipy 0 pz + im2

0 0 0 0 pz − im2 0

 (2.8)

which yielded the following eigenvalues

E2
0 = 0, E1

1,− = −
√
p2x + p2y + p2z +m1

2, E1
1,+ =

√
p2x + p2y + p2z +m1

2

E1
2,− = −

√
p2x + p2y + p2z +m2

2, E1
2,+ =

√
p2x + p2y + p2z +m2

2 (2.9)

in agreement with the desired Dirac-like eigenvalues of Eqs. (1.52).

The most problematic case to address was the 5× 5, as this was the only case where
the direct sum approach supposedly failed, at least one cross term always emerged.
Also, the direct sum approach felt trivial to use since it worked for a low number of
specific cases, where the independent masses were separated.
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2.0.4 Grouping Of Mass Terms

From experimenting with the terms of both the Gell-Mann and Dirac Hamiltonian
densities, and with the direct sum approach, we obtained a number of Hamiltonian
configurations which produced eigenvalues of the following form

E =
√
p2x + p2y + p2z +m2

1 +m2
2 + · · ·+m2

n (2.10)

This form appeared quite often in our search for appropriate βµ matrices, which we
previously discarded since the mass terms appear in the same eigenvalue.

However, an absolutely crucial point to consider is that you can group the mass terms
with sufficient free parameters into a single mass term, which we can effectively treat
as independent. We can take m2

1 +m2
2 + · · ·+m2

n =M2, thus obtaining a mass term
M . Since we can treat, for instance, m1 and M as independent mass terms, this
satisfies our Dirac-like model.

2.0.5 Spin-s Representation of SO(3)

The following general procedure was applied to construct the spin-s representation of
SO(3). An explicit case of 5× 5 is written as a following example.

The dimensionality of the spin-s representation is 2s+ 1, thus for the 5× 5 case

2s+ 1 = 5 =⇒ s = 2 (2.11)

We consider the standard choice of z-axis but since there is nothing special about it
from a basis perspective, we look for a representation in arbitrary oriented axes. The
values of the spin projections, σ, are

σ = ℏ (s, s− 1, · · · , −s+ 1, −s) =⇒ {2ℏ, ℏ, 0, −ℏ, −2ℏ} (2.12)

We obtain Ŝz which is diagonal in its own basis{
Ŝz

}
σ′σ

= ⟨s, σ′| Ŝz |s, σ⟩ = ℏ diag(s, s− 1, · · · , −s+ 1, −s) (2.13)

Writing as a full matrix

⟨σ′| Ŝz |σ⟩ = ℏ


2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

 (2.14)
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Using the well known ladder operators

Ŝ± = Ŝx ± iŜy (2.15)

we obtain the relations

Ŝx =
1

2
(Ŝ+ + Ŝ−) Ŝy = − i

2
(Ŝ+ − Ŝ−) (2.16)

Following the action of these ladder operators on our basis vectors

Ŝ± |s, σ⟩ = ℏc±s,σ |s, σ + 1⟩ c±s,σ =
√
(s∓ σ)(s± σ + 1) (2.17)

Writing explicitly for the 5× 5 case

c+2,σ =
{
0, 2,

√
6,
√
6, 2

}
(2.18)

c−2,σ =
{
2,
√
6,
√
6, 2, 0

}
(2.19)

Hence the matrix representations of Ŝ+ and its Hermitian conjugate Ŝ− are

⟨σ′| Ŝ+ |σ⟩ = ℏ


0 2 0 0 0

0 0
√
6 0 0

0 0 0
√
6 0

0 0 0 0 2
0 0 0 0 0

 ⟨σ′| Ŝ− |σ⟩ = ℏ


0 0 0 0 0
2 0 0 0 0

0
√
6 0 0 0

0 0
√
6 0 0

0 0 0 2 0

 (2.20)

Using Eqs. (2.16), we find

⟨σ′| Ŝx |σ⟩ =
ℏ
2


0 2 0 0 0

2 0
√
6 0 0

0
√
6 0

√
6 0

0 0
√
6 0 2

0 0 0 2 0

 ⟨σ′| Ŝy |σ⟩ =
iℏ
2


0 −2 0 0 0

2 0 −
√
6 0 0

0
√
6 0 −

√
6 0

0 0
√
6 0 −2

0 0 0 2 0


(2.21)

From this, we have obtained the spin-2 representation for SO(3) for the explicit 5×5
case. This general procedure was applied to the higher n-dimensional matrices for
5 ≤ n ≤ 8. The generators, Si, for each spin-s representation should satisfy the
following commutation relation

[Si, Sj] = δijSk i, j, k = x, y, z (2.22)
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Chapter 3

Results

3.1 5× 5 Case

For the 5×5 case, the first successful matrix obtained was proposed by our supervisor
Gian. Our initial procedure to finding appropriate matrices, yielding the desired
eigenvalues of Eqs. (1.52), was with the direct sum approach. It worked for all cases,
except 5×5, since at least one cross-term always emerged. The first successful matrix
is as follows

Hn=5 =


0 px + im1 −m2 + im3 0 ipy − pz

px − im1 0 0 ipy − pz 0
−m2 − im3 0 0 im4 +m5 0

0 −ipy − pz −im4 +m5 0 −px + im1

−ipy − pz 0 0 −px − im1 0

 (3.1)

which yielded the following eigenvalues

E = 0, 0, ±
√
p2x + p2y + p2z +m1

2, ±
√
p2x + p2y + p2z +m1

2 +m2
2 +m3

2 +m4
2 +m5

2

(3.2)

As outlined in Sect.(2.0.4), the grouping of the mass terms with sufficient free pa-
rameters, means we can express

m1
2 +m2

2 +m3
2 +m4

2 +m5
2 =M2 (3.3)

which yields the resulting eigenvalues

E2
0 = 0, E1

1,− = −
√
p2x + p2y + p2z +m1

2, E1
1,+ =

√
p2x + p2y + p2z +m1

2

E1
2,− = −

√
p2x + p2y + p2z +M2, El

2,+ =
√
p2x + p2y + p2z +M2 (3.4)

where the superscript denotes the degeneracies and m1, M can act as independent
mass terms, satisfying our Dirac-like model.
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3.1.1 Non-Hermitian Density Hamiltonian Hn=5?

From experimentation with the previous matrix (3.1), we encountered an unexpected
result. We managed to construct the following density Hamiltonian

Hn=5 =


0 px + im1 m2 0 ipy − pz

px − im1 0 0 ipy − pz 0
m2 0 0 m1 0
0 −ipy − pz −m1 0 −px + im1

−ipy − pz 0 0 −px − im1 0

 (3.5)

which produced the following eigenvalues

E2
0 = 0, E1

1,− = −
√
p2x + p2y + p2z +m1

2, E1
1,+ =

√
p2x + p2y + p2z +m1

2

E1
2,− = −

√
p2x + p2y + p2z +m2

2, E1
2,+ =

√
p2x + p2y + p2z +m2

2 (3.6)

where the superscript denotes the degeneracy of the corresponding eigenvalues.

This is an interesting case to consider, which was not part of our original investigation.
The 5× 5 matrix Hn=5 in (3.5) is clearly not Hermitian, yet the eigenvalues are real,
describing a real spectrum of energy dispersion relations, E(k). This result sparks an
unprecedented interest and research into non-Hermitian quantum mechanics, which
includes specific systems such as parity-time (PT ) symmetry. In this case, the Hamil-
tonian density Hn=5 can be classified as pseudo-Hermitian. Mostafazadeh4[4] men-
tioned that a non-Hermitian Hamiltonian with a real spectrum can be referred to as
pseudo-Hermitian.

3.1.2 5× 5 Spin-s Representation of SO(3)

The entire procedure for the resulting representation of SO(3) is outlined in Sect.(2.0.5),
which explicitly gives the 5× 5 case as an example. However, just to reiterate

⟨σ′| Ŝx |σ⟩ =
ℏ
2


0 2 0 0 0

2 0
√
6 0 0

0
√
6 0

√
6 0

0 0
√
6 0 2

0 0 0 2 0

 ⟨σ′| Ŝy |σ⟩ =
iℏ
2


0 −2 0 0 0

2 0 −
√
6 0 0

0
√
6 0 −

√
6 0

0 0
√
6 0 −2

0 0 0 2 0



⟨σ′| Ŝz |σ⟩ = ℏ


2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2


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The dimensionality of the spin-s representation is 2s+ 1, thus for the 5× 5 case

2s+ 1 = 5 =⇒ s = 2

From the 5× 5 case, we have explicitly obtained the spin-2 representation for SO(3).

3.1.3 5× 5 Real Spectra of Energy Dispersion Relations E(k)

Naturally, we switch notation from momentum p to the standard crystal momentum
k for energy dispersion relations E(k) in condensed matter physics.

Using the eigenvalues in Eqs. (3.4), we plotted E(k) for the 5×5 case using Wolfram
Mathematica as shown

Figure 3.1: The 5×5 real spectra of energy dispersion relations E(k) where m1 ̸=M .

The side view of the real spectra is also plotted in order to explicitly see the separa-
tion between the energy dispersion relations E(k).

This resembles the energy dispersion E(k) of A near a threefold degeneracy of exotic
fermion types in SGs 199 and 214 in Fig (1.2), as illustrated in4[2].
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Figure 3.2: Side view of the 5 × 5 real spectra of energy dispersion relations E(k)
where m1 ̸=M .

3.1.4 Real Spectra of the 5×5 Non-Hermitian Density Hamil-
tonian Hn=5

As previously mentioned in Sect.(3.1.1), a surprising case occurred whereby a non-
Hermitian density Hamiltonian Hn=5 was obtained, yielding eigenvalues which de-
scribe real spectra of the energy dispersion relations E(k). This can be explicitly
seen in the following illustration

Figure 3.3: The real spectra of energy dispersion relations E(k) for the non-Hermitian
density Hamiltonian Hn=5, where m1 ̸= m2
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Figure 3.4: Side view of the real spectra of energy dispersion relations E(k) for the
non-Hermitian density Hamiltonian Hn=5, where m1 ̸= m2.

3.2 6× 6 Case

The initial stages of the 6× 6 case were predominantly influenced by the Gell-Mann
matrices. We produced a straightforward result from the direct sum of two Gell-Mann
Hamiltonian densities, corresponding to the two independent mass terms m1 and m2.
This is outlined in Sect.(2.0.3) as an explicit example, but just to reiterate

Hn=6 =


0 px + ipy 0 0 0 0

px − ipy 0 pz + im1 0 0 0
0 pz − im1 0 0 0 0
0 0 0 0 px + ipy 0
0 0 0 px − ipy 0 pz + im2

0 0 0 0 pz − im2 0


which yielded the following Dirac-like eigenvalues in Eqs. (1.52)

E2
0 = 0, E1

1,− = −
√
p2x + p2y + p2z +m1

2, E1
1,+ =

√
p2x + p2y + p2z +m1

2

E1
2,− = −

√
p2x + p2y + p2z +m2

2, E1
2,+ =

√
p2x + p2y + p2z +m2

2

where the superscript denotes the degeneracy of the corresponding eigenvalues. A
number of matrices were constructed simply by rearrangement of these terms, but
still direct sum was used.

Furthermore, Gian proposed a 6 × 6 example that did not utilise the direct sum
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approach, with some degree of similarity to the 5× 5 example of matrix (3.1)

Hn=6 =


0 px + im1 im2 − py 0 0 im3 − pz

px − im1 0 0 0 0 0
−im2 − py 0 0 im3 − pz 0 0

0 0 −im3 − pz 0 −px im2 + py
0 0 0 −px 0 0

−im3 − pz 0 0 −im2 + py 0 0

 (3.7)

which produced the following eigenvalues

E = 0, 0, ±
√
p2x + p2y + p2z +m2

2 +m3
2, ±

√
p2x + p2y + p2z +m1

2 +m2
2 +m3

2 (3.8)

By manipulating his matrix example, we were able to construct a number of config-
urations, which includes the following

Hn=6 =


0 px + im1 m2 + im3 m4 + im5 0 ipy − pz

px − im1 0 0 0 ipy − pz 0
m2 − im3 0 0 0 0 0
m4 − im5 0 0 0 0 0

0 −ipy − pz 0 0 0 −px + im1

−ipy − pz 0 0 0 −px − im1 0


(3.9)

which yielded the following eigenvalues

E = 0, 0, ±
√
p2x + p2y + p2z +m1

2, ±
√
p2x + p2y + p2z +m1

2 +m2
2 +m3

2 +m4
2 +m5

2

(3.10)
As outlined in Sect.(2.0.4), the grouping of the mass terms with sufficient free pa-
rameters, means we can express

m1
2 +m2

2 +m3
2 +m4

2 +m5
2 =M2 (3.11)

which yields the resulting eigenvalues

E2
0 = 0, E1

1,− = −
√
p2x + p2y + p2z +m1

2, E1
1,+ =

√
p2x + p2y + p2z +m1

2

E1
2,− = −

√
p2x + p2y + p2z +M2, El

2,+ =
√
p2x + p2y + p2z +M2 (3.12)

where the superscript denotes the degeneracy of the corresponding eigenvalues and
m1, M can act as independent mass terms, satisfying our Dirac-like model. A number
of matrix configurations could be constructed by simply rearranging terms, yielding
the same eigenvalues.
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3.2.1 6× 6 Spin-s Representation of SO(3)

The dimensionality of the spin-s representation is 2s+ 1, thus for the 6× 6 case

2s+ 1 = 6 =⇒ s =
5

2
(3.13)

The following procedure outlined in Sect.(2.0.5) can be used to obtain the following
spin matrix representations of the Si generators

⟨σ′| Ŝx |σ⟩ =
ℏ
2



0
√
5 0 0 0 0√

5 0 2
√
2 0 0 0

0 2
√
2 0 3 0 0

0 0 3 0 2
√
2 0

0 0 0 2
√
2 0

√
5

0 0 0 0
√
5 0


(3.14)

⟨σ′| Ŝy |σ⟩ =
iℏ
2



0 −
√
5 0 0 0 0√

5 0 −2
√
2 0 0 0

0 2
√
2 0 −3 0 0

0 0 3 0 −2
√
2 0

0 0 0 2
√
2 0 −

√
5

0 0 0 0
√
5 0


(3.15)

⟨σ′| Ŝz |σ⟩ = ℏ


5 0 0 0 0 0
0 3 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −3 0
0 0 0 0 0 −5

 (3.16)

For 6× 6 case, we have explicitly obtained the spin-5/2 representation for SO(3).

3.2.2 6× 6 Real Spectra of Energy Dispersion Relations E(k)

Using the eigenvalues in (3.12), we plotted the energy dispersion relations E(k) for
the 6× 6 case using Wolfram Mathematica. It is clear that the plot of the 6× 6 real
spectra is identical to the 5 × 5 case. The only difference in the eigenvalues is that
the degeneracy of the zero eigenvalue increases by one in the 6× 6 case, which makes
no visual difference in the actual spectra.
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Figure 3.5: The 6×6 real spectra of energy dispersion relations E(k) where m1 ̸=M .

The side view of the real spectra is also plotted in order to explicitly see the separation
between the energy dispersion relations E(k).

Figure 3.6: Side view of the 6 × 6 real spectra of energy dispersion relations E(k)
where m1 ̸=M .

Like the 5 × 5 case, this resembles the energy dispersion E(k) of A near a threefold
degeneracy of exotic fermion types in SGs 199 and 214 in Fig (1.2), as illustrated
in4[2].

3.3 7× 7 Case

Our starting point for the 7× 7 case was still motivated by the use of the direct sum.
Initially, it involved the Gell-Mann density Hamiltonian as well as the Dirac density
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Hamiltonian corresponding to the two independent mass terms, m1 and m2 as follows

Hn=7 =



0 px + ipy 0 0 0 0 0
px − ipy 0 pz + im1 0 0 0 0

0 pz − im1 0 0 0 0 0
0 0 0 m2 0 pz px − ipy
0 0 0 0 m2 px + ipy −pz
0 0 0 pz px − ipy −m2 0
0 0 0 px + ipy −pz 0 −m2


(3.17)

which yielded the following Dirac-like eigenvalues in Eqs. (1.52)

E1
0 = 0, E1

1,− = −
√
p2x + p2y + p2z +m1

2, E1
1,+ =

√
p2x + p2y + p2z +m1

2

E2
2,− = −

√
p2x + p2y + p2z +m2

2, E2
2,+ =

√
p2x + p2y + p2z +m2

2 (3.18)

where the superscript denotes the degeneracy of the corresponding eigenvalues.

Furthermore, we have shown it is possible to build 7× 7 matrices without use of the
direct sum. Attempting to generalise the examples of matrix (3.1) and matrix (3.9)
for the 7× 7 case, we have

Hn=7 =



0 px + im1 0 m2 + im3 0 0 ipy − pz
px − im1 0 0 0 0 ipy − pz 0

0 0 0 0 0 0 0
m2 − im3 0 0 0 0 m4 + im5 0

0 0 0 0 0 0 0
0 −ipy − pz 0 m4 − im5 0 0 px + im1

−ipy − pz 0 0 0 0 −px − im1 0


(3.19)

which yielded the following eigenvalues

E = 0, 0, 0, ±
√
p2x + p2y + p2z +m1

2, ±
√
p2x + p2y + p2z +m1

2 +m2
2 +m3

2 +m4
2 +m5

2

(3.20)
in agreement with the desired Dirac-like eigenvalues of Eqs. (1.52).

As outlined in Sect.(2.0.4), the grouping of the mass terms with sufficient free pa-
rameters, means we can express

m1
2 +m2

2 +m3
2 +m4

2 +m5
2 =M2 (3.21)

which yields the resulting eigenvalues

E3
0 = 0, E1

1,− = −
√
p2x + p2y + p2z +m1

2, E1
1,+ =

√
p2x + p2y + p2z +m1

2

E1
2,− = −

√
p2x + p2y + p2z +M2, El

2,+ =
√
p2x + p2y + p2z +M2 (3.22)
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where the superscript denotes the degeneracy of the corresponding eigenvalues and
m1, M can act as independent mass terms, satisfying our Dirac-like model.

The larger dimensional 7 × 7 matrix can accommodate the direct sum of two Gell-
Mann density Hamiltonians, leading to further configurations which appear more
trivial. It simply involves an additional zero row and column, which increases the
degeneracy of the zero eigenvalue by one. While it obviously yields the correct eigen-
values, it is otherwise an unsatisfactory approach since it does not feel rewarding
given its seemingly trivial nature. At least 27 different matrix configurations can be
constructed using this method, which does not seem to introduce any extra informa-
tion which appears beneficial or useful. This can be generalised to higher dimensional
matrices such as the 8× 8 case. A number of examples are included in the appendix.

3.3.1 7× 7 Spin-s Representation of SO(3)

With the dimensionality of the spin-s representation being 2s+1, the 7×7 case yields

2s+ 1 = 7 =⇒ s = 3 (3.23)

The following procedure outlined in Sect.(2.0.5) can be used to obtain the following
spin matrix representations of the Si generators

⟨σ′| Ŝ+ |σ⟩ = ℏ
2



0
√
6 0 0 0 0 0√

6 0
√
10 0 0 0 0

0
√
10 0 2

√
3 0 0 0

0 0 2
√
3 0 2

√
3 0 0

0 0 0
√
10 0

√
10 0

0 0 0 0
√
10 0

√
6

0 0 0 0 0
√
6 0


(3.24)

⟨σ′| Ŝ+ |σ⟩ = iℏ
2



0 −
√
6 0 0 0 0 0√

6 0 −
√
10 0 0 0 0

0
√
10 0 −2

√
3 0 0 0

0 0 2
√
3 0 −2

√
3 0 0

0 0 0
√
10 0 −

√
10 0

0 0 0 0
√
10 0 −

√
6

0 0 0 0 0
√
6 0


(3.25)

⟨σ′| Ŝ+ |σ⟩ = ℏ



3 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −2 0
0 0 0 0 0 0 −3


(3.26)
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For 7× 7 case, we have explicitly obtained the spin-3 representation for SO(3).

3.3.2 7× 7 Real Spectra of Energy Dispersion Relations E(k)

Using the eigenvalues in Eqs. (3.22), we plotted the energy dispersion relations E(k)
for the 7× 7 case using Wolfram Mathematica. It is clear that the plot of the 7× 7
real spectra is identical to the 5 × 5 case. The only difference in the eigenvalues is
that the degeneracy of the zero eigenvalue increases by two in the 7 × 7 case, which
makes no visual difference in the actual spectra.

Figure 3.7: The 7×7 real spectra of energy dispersion relations E(k), where m1 ̸=M .

The side view of the real spectra is also plotted in order to explicitly see the separa-
tion between the energy dispersion relations E(k).

Like the 5 × 5 and 6 × 6 cases, this resembles the energy dispersion E(k) of A near
a threefold degeneracy of exotic fermion types in SGs 199 and 214 in Fig (1.2), as
illustrated in4[2].
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Figure 3.8: Side view of the 7 × 7 real spectra of energy dispersion relations E(k),
where m1 ̸=M .

3.4 8× 8 Case

The following matrix was included for the sake of completeness, in order to illustrate
our chain of reasoning. Systematically, our initial method for the 8×8 case, from the
previous cases, involved a direct sum consisting of two Dirac density Hamiltonians,
for the two independent masses m1 and m2

Hn=8 =



m1 0 pz px − ipy 0 0 0 0
0 m1 px + ipy −pz 0 0 0 0
pz px − iky −m1 0 0 0 0 0

px + ipy −pz 0 −m1 0 0 0 0
0 0 0 0 m2 0 pz px − ipy
0 0 0 0 0 m2 px + ipy −pZ
0 0 0 0 pz px − ipy −m2 0
0 0 0 0 px + ipy −pz 0 −m2


(3.27)

which yielded the following eigenvalues

E =±
√
p2x + p2y + p2z +m1

2, ±
√
p2x + p2y + p2z +m1

2,

±
√
p2x + p2y + p2z +m2

2, ±
√
p2x + p2y + p2z +m2

2 (3.28)

However, since this matrix does not yield the zero eigenvalue, E = 0, in accordance
to Eqs. (1.52), this Hn=8 cannot describe fermions of our Dirac-like model. This is
expected since it consists of Dirac density Hamiltonians, which satisfy the Clifford
algebra Cl3,1 =⇒ {βµ, βν} = 2δµν1. Therefore, this matrix must be abandoned.

Based on previous cases, we anticipated that it is possible to build 8×8 matrices that
do not rely on the direct sum. The most notable example is perhaps the generalisation
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or extension of the examples shown in matrix (3.1), matrix (3.9) and matrix (3.19)
to the 8× 8 case. The following example of Hn=8 is shown

0 px + im1 0 m2 + im3 0 0 0 ipy − pz
px + im1 0 0 0 0 0 ipy − pz 0

0 0 0 m4 + im5 px + im1 ipy − pz 0 0
m2 − im3 0 m4− im5 0 0 0 m6 + im7 0

0 0 px − im1 0 0 0 0 0
0 0 −ipy − pz 0 0 0 0 0
0 −ipy − pz 0 m6 − im7 0 0 0 −px + im1

−ipy − pz 0 0 0 0 0 −px − im1 0


(3.29)

which yielded the following eigenvalues

E =0, 0, ±
√
p2x + p2y + p2z +m1

2, ±
√
p2x + p2y + p2z +m1

2

±
√
p2x + p2y + p2z +m1

2 +m2
2 +m3

2 +m4
2 +m5

2 +m6
2 +m7

2 (3.30)

As outlined in Sect.(2.0.4), the grouping of the mass terms with sufficient free pa-
rameters, means we can express

m1
2 +m2

2 +m3
2 +m4

2 +m5
2 +m6

2 +m7
2 =M2 (3.31)

which yields the resulting eigenvalues

E2
0 = 0, E2

1,− = −
√
p2x + p2y + p2z +m1

2, E2
1,+ =

√
p2x + p2y + p2z +m1

2

E1
2,− = −

√
p2x + p2y + p2z +M2, E1

2,+ =
√
p2x + p2y + p2z +M2 (3.32)

where the superscript denotes the degeneracy of the corresponding eigenvalues and
m1, M can act as independent mass terms, satisfying our Dirac-like model. A num-
ber of matrix configurations could be constructed by simply rearranging terms or
exchanging the momenta and mass terms, yielding the same eigenvalues.

The larger dimensional 8× 8 matrix can also accommodate the direct sum of either
two Gell-Mann density Hamiltonians or one Gell-Mann and one Dirac density Hamil-
tonian. Despite them clearly producing the required Dirac-like eigenvalues, this leads
to more trivial matrices which, as mentioned in the 7×7 case, is rather unsatisfactory.
The additional zero rows and columns will simply increase the degeneracy of the zero
eigenvalue, with no additional information that will prove useful or interesting.

3.4.1 8× 8 Spin-s Representation of SO(3)

With the dimensionality of the spin-s representation being 2s+1, the 8×8 case yields

2s+ 1 = 8 =⇒ s =
7

2
(3.33)
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The following procedure outlined in Sect.(2.0.5) can be used to obtain the following
spin matrix representations of the Si generators

⟨σ′| Ŝx |σ⟩ =
ℏ
2



0
√
7 0 0 0 0 0 0√

7 0 2
√
3 0 0 0 0 0

0 2
√
3 0

√
15 0 0 0 0

0 0
√
15 0 4 0 0 0

0 0 0 4 0
√
15 0 0

0 0 0 0
√
15 0 2

√
3 0

0 0 0 0 0 2
√
3 0

√
7

0 0 0 0 0 0
√
7 0


(3.34)

⟨σ′| Ŝy |σ⟩ =
iℏ
2



0 −
√
7 0 0 0 0 0 0√

7 0 −2
√
3 0 0 0 0 0

0 2
√
3 0 −

√
15 0 0 0 0

0 0
√
15 0 −4 0 0 0

0 0 0 4 0 −
√
15 0 0

0 0 0 0
√
15 0 −2

√
3 0

0 0 0 0 0 2
√
3 0 −

√
7

0 0 0 0 0 0
√
7 0


(3.35)

⟨σ′| Ŝz |σ⟩ = ℏ



7 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −3 0 0
0 0 0 0 0 0 −5 0
0 0 0 0 0 0 0 −7


(3.36)

For 8× 8 case, we have explicitly obtained the spin-7/2 representation for SO(3).

3.4.2 8× 8 Real Spectra of Energy Dispersion Relations E(k)

Using the eigenvalues in (3.32), we plotted the energy dispersion relations E(k) for
the 8 × 8 case using Wolfram Mathematica. This differs from the previous cases by
having two additional eigenvalues associated with m1. However, it makes no visual
difference, as the extra dispersion relations overlap exactly with each other. As usual,
there is greater separation between the energy dispersions, as you increase the differ-
ence between the independent mass terms.

The side view of the real spectra is also plotted in order to explicitly see the separa-
tion between the energy dispersion relations E(k).
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Figure 3.9: The 8 × 8 real spectra of the energy dispersion relations E(k), where
m1 ̸=M .

Likewise, this resembles the energy dispersion E(k) of A near a threefold degeneracy
of exotic fermion types in SGs 199 and 214 in Fig (1.2), as illustrated in4[2].

Figure 3.10: Side view of the 8 × 8 real spectra of the energy dispersion relations
E(k).

3.4.3 Possible Third Mass Term m3

The 8×8 case is perhaps the most interesting case to study for 5 ≤ n ≤ 8. So far, this
is the only case where we were able to build a matrix that incorporated a third inde-
pendent mass term, m3. The resulting expression for the density Hamiltonian Hn=8

is outlined in matrix (3.37). The construction of such a matrix is heavily influenced
by matrix (3.29), which involves a substitution of m2 and minimal rearrangement of
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the matrix elements, as follows

0 px + im1 0 m2 + im3 0 0 0 ipy − pz
px − im1 0 0 0 0 0 ipy − pz 0

0 0 0 0 px + im2 ipy − pz 0 0
m2 − im3 0 0 0 0 0 m4 + im5 0

0 0 px − im2 0 0 0 0 0
0 0 −ipy − pz 0 0 0 0 0
0 −ipy − pz 0 m4 − im5 0 0 0 −px + im1

−ipy − pz 0 0 0 0 0 −px − im1 0


(3.37)

which yielded the following eigenvalues

E =0, 0, ±
√
p2x + p2y + p2z +m1

2, ±
√
p2x + p2y + p2z +m2

2

±
√
p2x + p2y + p2z +m1

2 +m2
2 +m3

2 +m4
2 +m5

2 (3.38)

As outlined in Sect.(2.0.4), the grouping of the mass terms with sufficient free pa-
rameters, means we can express the following

m1
2 +m2

2 +m3
2 +m4

2 +m5
2 =M2

which yields the resulting eigenvalues

E2
0 = 0, E1

1,− = −
√
p2x + p2y + p2z +m1

2, E1
1,+ =

√
p2x + p2y + p2z +m1

2

E1
2,− = −

√
p2x + p2y + p2z +m2

2, E1
2,+ =

√
p2x + p2y + p2z +m2

2

E1
3,− = −

√
p2x + p2y + p2z +M2, E1

3,+ =
√
p2x + p2y + p2z +M2 (3.39)

where the superscript denotes the degeneracy of the corresponding eigenvalues and
m1, m2, M can act as three independent mass terms, satisfying our Dirac-like model.
By rearranging elements, we obtained four 8×8 matrices that incorporated β6, yield-
ing a third mass term m3.

3.4.4 8× 8 Real Spectra involving m3

Using the eigenvalues in Eqs. (3.39), we plotted the energy dispersion relations E(k)
for the 8× 8 case using Wolfram Mathematica. This is clearly the most distinct plot
with the inclusion of the third mass term. Compared to the previous plots, there
are seven energy dispersions which are clearly visible with the zero eigenvalue doubly
degenerate. As usual, there is greater separation between the energy dispersions, as
you increase the difference between the independent mass terms.
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Figure 3.11: The 8 × 8 real spectra of the energy dispersion relations E(k) where
m1 ̸= m2 ̸=M .

The side view of the real spectra is also plotted in order to explicitly see the separa-
tion between the energy dispersion relations E(k)

Likewise, this resembles the energy dispersion E(k) of A near a threefold degeneracy
of exotic fermion types in SGs 199 and 214 in Fig (1.2), as illustrated in4[2].

Figure 3.12: Side view of the 8×8 real spectra of the energy dispersion relations E(k)
where m1 ̸= m2 ̸=M .
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Chapter 4

Conclusion

Our proposed Dirac-like model in 3+1 dimensions was constructed in order to describe
exotic and unconventional fermionic particles. The natural arena for the discovery
of such particles is within condensed matter systems, which impose symmetry laws
that are less constrained than relativistic particles, diversifying the type of particles
that can occur. This leads to the potential to classify fermions that lie outside the
standard categories of Dirac, Majorana and Weyl fermions, according to QFT. The
density Hamiltonian H of our Dirac-like model is composed of n × n matrices βµ
associated with the momenta, pi = px, py, pz, and the independent mass terms m1

and m2. These yield the energies of our fermionic system upon diagonalisation of
H, expressed as the standard relativistic energy-momentum relations in Eqs. (1.52).
In essence, the main goal of the project was to construct these n × n matrices for
5 ≤ n ≤ 8. For each n, we also constructed the explicit spin matrices of Si generators
for the spin-s representation of the SO(3) gauge group. We managed to achieve more
than fifty matrix configurations for the n × n cases, albeit there were more trivial
cases for the higher dimensional matrices, most notably the 7 × 7 and 8 × 8 cases.
Despite obtaining a substantial number of matrices, progress still needs to be made in
order to construct a general method of building such Dirac-like matrices. The most
noteworthy H configurations for the 5 × 5 and 6 × 6 cases (matrices (3.1) and (3.9)
respectively), delightfully proposed by our brilliant supervisor Gian, had undergone
attempted generalisation to the 7 × 7 and 8 × 8 cases (matrices (3.19) and (3.29)
respectively), which we feel was somewhat successful. The real spectra of the energy
dispersion relations E(k), were plotted using Wolfram Mathematica for each n × n
case, which appeared to resemble the E(k) of A as seen in Fig. (1.2). Furthermore,
one of the goals was to construct a possible β6 matrix associated with a third inde-
pendent mass term, m3, which we accomplished for the 8× 8 case as seen in matrix
(3.37). The possibility of obtaining β6 for cases n = 5, 6, 7 has not been ruled out,
which therefore merits further study. The general method of building such matrices
would be predicated upon discovering the algebra, especially the anti-commutation
relations that βµ would satisy, which is also an area of further study.

42



Chapter 4 – Conclusion A. Mohd Nazir August 2023

One of the most startling results obtained was the non-Hermitian density Hamiltonian
Hn=5 in the 5× 5 case as outlined in Sect.(3.1.1). This prompted an unprecedented
venture into the realm of non-Hermitian quantum mechanics or pseudo-Hermitian
QM, in which a specific system would be parity-time (PT ) symmetry. If we consider
a wavefunction ψ(x), then parity, the spatial inversion operator P , and the time
reversal operator, T , can be applied as

Pψ(x) = ψ(−x) T ψ(x) = ψ(x)* (4.1)

The PT symmetry imposes a constraint which will lead to a real spectrum despite the
non-Hermiticity property, a complete set of PT invariant eigenvectors. Mostafazadeh
showed that a non-Hermitian Hamiltonian endowed with a real spectrum is pseudo-
Hermitian4[4].

One possible direction to research is to consider the situation of restricting the mo-
mentum components of the fermion to 2+1 dimensions or 1+1 dimensions. If we
consider for instance, the 1+1 dimensional system which serves as a ground for the
discovery of Majorana fermions, it can constitute a more varied non-Abelian statisti-
cal nature. This can also serve as potential use for topological quantum computing,
just as in the case of substitution of the Majorana basis into the Kitaev Hamiltonian
of the 1-D fermionic chain4[6].

Potentially, what was reviewed and investigated here poses substantial interest and
activity for modern day research, with the most notable physical environment be-
ing solid state systems. However as previously mentioned, there is still progress to
undertake, regarding our proposed Dirac-like model in 3+1 dimensions which would
include algebra, general theory, precise applications to band models, etc. Although,
we experienced an introductory immersion into emergent quasiparticles and exotic
fermion types, the nature and potential applications of such particles is compelling
enough to warrant further research and specialisation into the wonderful realm of
condensed matter physics.
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Appendix A

A.1 Other Matrix Examples Obtained

A.1.1 6× 6

Hn=6 =


0 px + ipy 0 0 0 0

px − ipy 0 0 pz + im1 0 0
0 0 0 0 pz + im2 0
0 pz − im1 0 0 i 0
0 0 pz − im2 0 0 px + ipy
0 0 0 0 px − ipy 0

 (A.1)

Hn=6 =


0 0 pz + im1 0 px + ipy 0
0 0 0 px + ipy 0 0

pz − im1 0 0 0 0 0
0 px − ipy 0 0 0 pz + im2

px − ipy 0 0 0 0 0
0 0 0 pz − im2 0 0

 (A.2)

Hn=6 =


0 px + im1 py + ipz 0 0 0

px − im1 0 0 0 0 0
py − ipz 0 0 0 0 0

0 0 0 0 0 py + ipz
0 0 0 0 0 px + im2

0 0 0 py − ipz px − im2 0

 (A.3)

Hn=6 =


0 px + im1 0 py + ipz 0 0

px − im1 0 0 0 0 0
0 0 0 0 0 py + ipz

py − ipz 0 0 0 0 0
0 0 0 0 0 px + im2

0 0 py − ipz 0 px − im2 0

 (A.4)
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A.1.2 7× 7

Examples which include the more 7 × 7 trivial cases as mentioned in Sect.(3.3),
initiated from the direct sum of two density Hamiltonians constructed from the Gell-
Mann matrices λi=1,2,6,7, yielding one additional zero row and column. At least 27
matrices could be obtained by moving different element positions and exchanging
momenta and mass terms.

Hn=7 =



0 px + ipy 0 0 0 0 0
px − ipy 0 pz + im1 0 0 0 0

0 pz − im1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 px + ipy 0
0 0 0 0 px − ipy 0 pz + im2

0 0 0 0 0 pz − im2 0


(A.5)

Hn=7 =



0 0 pz + im1 0 0 0 0
0 0 0 0 0 px + ipy 0

pz − im1 0 0 0 px + ipy 0 0
0 0 0 0 0 0 0
0 0 px − ipy 0 0 0 0
0 px − ipy 0 0 0 0 pz + im2

0 0 0 0 0 pz − im2 0


(A.6)

Hn=7 =



0 px + im1 0 0 py + ipz 0 0
px − im1 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 pz + im2 0

py − ipz 0 0 0 0 0 0
0 0 0 pz − im2 0 0 py + ipz
0 0 0 0 0 py − ipz 0


(A.7)

Hn=7 =



0 0 pz + im1 0 0 0 px + ipy
0 0 0 0 0 px + ipy 0

pz − im1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 pz + im2 0
0 px − ipy 0 0 pz − im2 0 0

px − ipy 0 0 0 0 0 0


(A.8)
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A.1.3 8× 8

Examples include the more trivial 8×8 cases, initiated from the direct sum of one Gell-
Mann density Hamiltonian and one Dirac density Hamiltonian (one additional zero
row and column), followed by the direct sum of two Gell-Mann density Hamiltonians
(two additional zero row and columns) in Sect.(3.4). A substantial number of the
matrices could be obtained by moving different element positions and exchanging
momenta and mass terms.

Hn=8 =



0 px + ipy 0 0 0 0 0 0
px − ipy 0 pz + im1 0 0 0 0 0

0 pz − im1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 m2 0 pz px − ipy
0 0 0 0 0 m2 px + ipy −pZ
0 0 0 0 pz px − ipy −m2 0
0 0 0 0 px+ ipy −pz 0 −m2


(A.9)

Hn=8 =



0 px − ipy 0 pz + im1 0 0 0 0
px − ipy 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
pz − im1 0 0 0 0 0 0 0

0 0 0 0 m2 0 pz px − ipy
0 0 0 0 0 m2 px + ipy −pZ
0 0 0 0 pz px − ipy −m2 0
0 0 0 0 px+ ipy −pz 0 −m2


(A.10)

Hn=8 =



0 px + im2 0 0 0 0 0 py + ipz
px − im2 0 0 0 0 0 py + ipz 0

0 0 0 0 0 py + ipz 0 0
0 0 0 0 0 px + im1 0 0
0 0 0 0 0 0 0 0
0 0 py − ipz px − im1 0 0 0 0
0 py − ipz 0 0 0 0 0 −px + im2

py − ipz 0 0 0 0 0 −px − im2 0


(A.11)
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Hn=8 =



0 px + im2 0 0 0 0 0 py + ipz
px − im2 0 0 0 0 0 py + ipz 0

0 0 0 px + im1 0 py + ipz 0 0
0 0 px − im1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 py − ipz 0 0 0 0 0
0 py − ipz 0 0 0 0 0 −px + im2

py − ipz 0 0 0 0 0 −px − im2 0


(A.12)

Hn=8 =



0 px + ipy 0 0 0 0 0 0
px − ipy 0 pz + im1 0 0 0 0 0

0 pz − im1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 px + ipy 0
0 0 0 0 0 px + ipy 0 pz + im2

0 0 0 0 0 0 pz − im2 0


(A.13)

Hn=8 =



0 px + im1 0 0 0 py + ipz 0 0
px − im1 0 0 0 0 0 py + ipz 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 py − ipz 0 0 0 0 0 0
0 0 py − ipz 0 0 0 0 px + im2

0 0 0 0 0 0 px − im2 0


(A.14)

Hn=8 =



0 0 pz + im1 0 0 0 0 px + ipy
0 0 0 0 0 0 px + ipy 0

pz − im1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 pz + im2 0
0 px − ipy 0 0 0 pz − im2 0 0

px − ipy 0 0 0 0 0 0 0


(A.15)

48


	The Model
	Motivation Behind the Project
	Introduction to Relativistic Wave Equations
	Dirac Theory in 3+1 Dimensions
	Properties of the Matrices i and 0
	Lorentz Invariance of the Dirac Lagrangian
	The Spinor Representation
	The Dirac Action S
	The Dirac Equation

	Dirac-Like theory in 3+1 Dimensions
	SO(3) Symmetry of the Dirac-like Model
	Non-Lorentz Invariance of Dirac-Like Model


	Method
	Characteristic Polynomial
	Gell-Mann Matrices
	Direct Sum
	Grouping Of Mass Terms
	Spin-s Representation of SO(3)


	Results
	55 Case
	Non-Hermitian Density Hamiltonian Hn=5?
	55 Spin-s Representation of SO(3)
	55 Real Spectra of Energy Dispersion Relations E(k)
	Real Spectra of the 55 Non-Hermitian Density Hamiltonian Hn=5

	66 Case
	66 Spin-s Representation of SO(3)
	66 Real Spectra of Energy Dispersion Relations E(k)

	77 Case
	77 Spin-s Representation of SO(3)
	77 Real Spectra of Energy Dispersion Relations E(k)

	88 Case
	88 Spin-s Representation of SO(3)
	88 Real Spectra of Energy Dispersion Relations E(k)
	Possible Third Mass Term m3
	88 Real Spectra involving m3


	Conclusion
	
	Other Matrix Examples Obtained
	66
	77
	88



