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Abstract

We study classical chaos in a matrix system that can be thought
of as describing N D0 branes. In particular, we compute Lya-
punov exponents for the system. We define a classical analogue
of the scrambling time and proceed to show that this system is
a fast scrambler. We also investigate the energy dependence of
Lyapunov exponents and we find that a bound on this energy
dependence is satisfied.
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1 Introduction
In classical physics a black hole is a region of spacetime where the gravi-
tational field is so strong that nothing can escape it. The geometry of a
spherically symmetric black hole is described by the Schwarzchild metric

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2dΩ2 (1)

written in natural units, where for r > 2M , t is the time coordinate, r is
the radial coordinate, and dΩ2 = dθ2 + sin2 θdϕ2, where θ is the polar angle
and ϕ is the azimuthal angle. The surface r = 2M is known as the event
horizon of the black hole. Anything that crosses the event horizon will never
be able to get back outside it. The Schwarzchild metric describes black holes
with no electric charge or angular momentum. In 1974, by studying quantum
field theory in the backgroumd geometry of a black hole, Stephen Hawking
was able to show that black holes are thermal systems that continuously
radiate energy. Hawking produced a formula, now known as the Bekenstein-
Hawking entropy, relating the entropy of a black to the area of its even
horizon [1,2,3]

SBH =
kBA

4ℏ
(2)

where kB is Boltzmans constant, ℏ is the reduced Planck constant, and
A is the area of the event horizon. In most thermal systems, there is a mi-
croscopic interpretation of the thermodynamic entropy in terms of counting
the number of microstates corresponding to the same macroscopic properties.
However, the Bekenstein-Hawking entropy has no obvious microscopic origin.
As a candidate theory of quantum gravity, string theory should be able to
describe black holes. Indeed, string theory was able to make progress towards
a microscopic description of black hole entropy when Strominger and Vafa [4]
were able to produce the Bekenstein-Hawking entropy for a certain class of
five dimensional extremal black holes in string theory. String theory contains
D-brane solitons that are extended membranes of spacial dimensions [5,6].
Superimposing many of these objects gives rise to a soliton with properties
of a black hole. There is a large degeneracy associated with this process that
allows for a microscopic description of the black hole entropy.

There is a deep connection between thermal behaviour and chaos. Sta-
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tistical descriptions of thermal systems depends upon these systems being
ergodic. Ergodicity means that if we choose a point in the phase space of
the system and consider its trajectory through phase space, then given a
sufficient amount of time, the trajectory will eventually have passed through
every point in the phase space. The ergodic nature of thermal systems arises
from the exponential divergence of trajectories in phase space. Exponential
divergence of nearby trajectories is also one of the defining characteristics
of a chaotic system. Thus, we expect thermal systems to exhibit chaotic
behaviour, and since black holes are thermal systems, it is natural to look
for characteristics of chaos among black holes. Recent work in quantum in-
formation theory has conjectured an upper bound on the rate of growth of
chaos in thermal systems with a large number of degrees of freedom. In [7],
the authors conjecture that chaos can develop no faster than exponentially,
with Lyapunov exponent

λL ≤ 2πkBT

ℏ
(3)

Furthermore, black holes saturate this bound and so are not only chaotic,
but are the most chaotic systems found in nature. Sekino and Susskind
have studied the notion of a "scrambling time" for black hole horizons [8].
To define the scrambling time they consider a chaotic system with a large
number of degrees of freedom that has been prepared in a pure state. Suppose
the system has N degrees of freedom. Then they consider the density matrix
of a subsystem of m << N degrees of freedom. Over time, the entanglement
entropy of the subsystem will tend towards is maximum value. They call
the system "scrambled" when any subsystem with m < N/2 has achieved
maximum entanglement entropy. Beginning with a scrambled system, they
declare that one could add a single degree of freedom in a pure state and then
the system would no longer be scrambled. But by waiting for the added bit of
information to spread over the rest of the degrees of freedom, the system will
once again become scrambled. The scrambling time is defined as the time
one must wait before the system has re-scrambled after adding this small bit
of information. They go on to conjecture that the fastest scramblers take
a time logarithmic in the number of degress of freedom, and systems whose
degrees of freedom are N×N matrices saturate the bound. In this report we
study the classical dynamics of such a system and so below we shall define a
classical analogue to the scrambling time.
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We will study chaos in the classical dynamics of a system whose degrees
of freedom are N ×N matrices and can be thought of as describing a system
of N D0 branes. Moreover, we are interested in the large N limit of such a
system. To quantify chaos in classical physics we can consider a dynamical
system with a phase space M of dimension n. Hamilton’s equations describe
the time evolution of a point x0 to a point x(t) in phase space. We may
perturb the system to obtain a nearby point in phase space δx0 and look at
it’s time evolution to a final point δx(t). The signature of a chaotic system
is the exponential growth of these perturbations. We define a metric on
phase space to discuss the growth of perturbations and for chaotic systems
we expect to find

|δX(t)| ∼ |δX(0)|eλLt (4)

where |δX(t)| = |x(t) − δx(t)| is the distance between the phase space
trajectories of the two points as defined by our metric on phase space. We can
then define the Lyapunov exponent associated with the initial perturbation
by

λL = lim
t→∞

1

t
log

(
|δx(t)|
|δx0|

)
(5)

For finite perturbations in compact phase space the behaviour described
by Eq.(4) does not hold for all t. At early times, the growth will be expo-
nential but the quantity |δX(t)| cannot get any bigger than the size of the
system, and so it will have to saturate to some value. The time it takes for the
distance |δX(t)| to saturate is what we will define as the classical scrambling
time of the system, which we denote by t∗. We will show that this system is
a fast scrambler which means that the scrambling time is logarithmic in the
number of degrees of freedom. Since the number of degrees of freedom for
a matrix system are the N ×N components, the total number of degrees of
freedom is proportional to N2 and so we shall find that

t∗ ∼ logN2 (6)

This report is strutured as follows. In Section 2 we present the matrix
model and describe the discretization that we use to simulate the system
numerically before describing how we compute the largest Lyapunov expo-
nent for the system. In Section 3 we discuss the results where we show
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the computed Lyapunov exponents as well as the energy dependence of these
exponents. We also discuss results regarding the scrambling time for this sys-
tem. Then, in Section 4 we give a summary of the results obtained, followed
by several appendices providing more mathematical details for the system.
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2 Method

2.1 The model

The model is a low-energy effective theory on a stack of D0-branes. The
degrees of freedom are nine N ×N Hermitian matrices X i

ab(t), where the
index i = 1, ..., 9 are the space coordinates, t is time and a, b = 1, ..., N index
the N D0 branes. We work with the Lagrangian

L =
1

2g2
Tr

(∑
i

(DtX
i)2 +

1

2

∑
i ̸=j

[X i, Xj]2
)

(7)

where Dt = ∂t + [At, ·] is the covariant derivative, and At is the U(N)
gauge field. We will take the large N limit, while keeping the ’t Hooft coupling
λ = g2N fixed. From now on we set λ = 1, and so g = 1/N2. Thus, in taking
the large N limit, we are considering the weak coupling limit where classical
dynamics provides a good approximation. We choose the gauge At = 0, and
so the Lagrangian in this gauge is given by

L =
1

2g2
Tr

(∑
i

(Ẋ i)2 +
1

2

∑
i ̸=j

[X i, Xj]2
)
, Ẋ i ≡ ∂tX

i (8)
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Choosing At = 0 also gives rise to the Gauss law constraint

∑
i

[X i, V i] = 0, V i = Ẋ i (9)

The full derivation of the Gauss law constraint is given in Appendix B.
By taking derivatives of the Lagrangian with respect to X i and Ẋ i we obtain
two expressions

∂L

∂Xk
=

1

g2

∑
i

[X i, [Xk, X i]]T ,
∂L

∂ẊK
=

1

g2
ẊK

T
(10)

Using these two expressions in the Euler-Lagrange equation gives the
equations of motion for the system

Ẍ i =
∑
j

[Xj, [X i, Xj]] (11)

The derivation of the equations of motion is shown in detail in Appendix
A. Equations (9) and (11) completely describe the system in the classical
approximation. This system has been studied in [9] and we seek to reproduce
some of their results here. They note that the equipartition theorem for this
system relates the temperature, energy and number of degrees of freedom by

⟨K⟩ = 2⟨U⟩ = ndof

2
T (12)

where T is the temperature and ndof is the number of degrees of freedom.
Since E = K + U , we have

E =
3

4
ndofT (13)

They further assert that after accounting for the Gauss law constraint,
residual gauge symmetries, as well as conservation of angular momentum the
number of degrees of freedom reduces to

ndof = 8(N2 − 1)− 36 (14)
We take the temperature T = 1 and so the energy for each N is deter-

mined by

E =
3

4

(
8(N2 − 1)− 36

)
(15)
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2.2 Discretization

For the purpose of simulating the system we discretize the equation of motion
while conserving the Gauss law constraint. We write the equation of motion
as

ẊK = V K

˙V K = FK =
∑
i

[X i, [XKX i]]

We then use a Verlet integration algorithm to numerically simulate the
dynamics of the system. The equations used in the Velocity Verlet algorithm
can be obtained using Taylor expansions; see Appendix C. The discretized
time evolution taken up to order δt2 is

XK(t+ δt) = XK(t) + V Kδt+ FK δt2

2
(16)

V K(t+ δt) = V K(t) +

(
FK(t) + FK(t+ δt)

)
δt

2
(17)

It is easy to show that this time evolution ensures that the Gauss law
constraint in Eq.(9) is preserved, namely if the constraint is satisfied at time
t, then

∑
i[X

i(t + δt), V i(t + δt)] = 0 for all later times. Thus, once we
have chosen initial conditions satisfying the Gauss Law constraint, then the
constraint will be satisfied for all later time. In order to observe the error
caused by discretization, we chose a time step of δt = 10−4 and δt = 5×10−4

and compared quantities Tr
(
(Xi)

2
)

and Tr([X i, Xj]2). The results are shown
in Appendix D.

2.3 Computing Lyapunov Exponents

In this section, the process of computing Lyapunov exponents is described.
There are three steps involved. The first step is to thermalise the system
by evolving it for a sufficiently long time. After obtaining a thermalised
configuration (X, V ) we perturb the system to obtain a nearby point (X ′, V ′).
We then evolve both configurations simultaneously, measuring the rate at
which they diverge. Each step will be discussed below in more detail.
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Figure 1: Lyapunov exponents as a function of the thermalisation time t0.
The exponent can be seen to saturate for t0 ≥ 500

We begin by choosing our initial conditions satisfying the Gauss Law
constraint. To do this we choose X i to be be random Hermitian matrices
with zero trace, and initially set V i = 0. We then evolve the system for
a sufficiently long time to obtain a configuration corresponding to a typical
state that is uncorrelated with our initial conditions. The time taken for
a system to reach a typical state is what we call the thermalisation time
t0. In order to determine how long we needed to wait before the system was
thermalised, we investigated the effect of t0 on the Lyapunov exponents. The
results are shown in Fig.(1). In what follows we set t0 = 1000.

Once we have obtained a thermalised configuration (X,V), we must per-
turb it slightly in order to obtain the perturbed configuration (X’,V’). To do
this we deform the potential by adding the following interaction terms to the
potential

k0∑
k=1

ckTr

[(∑
i

X2
i

)k] (18)

where we have chosen k0 = 2 and the coefficients ck are chosen from a
normal distribution N (0, 10−8). The details of the deformation do not affect
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the results, the only limitation on choosing the deformation is that it must
obey the Gauss Law constraint. Addition of the interactions modifies the
force from F i to

F̃ i(t) = F i(t) +

k0∑
k

kck

{
X i(t),

(∑
j

X2
j (t)

)k−1
}

(19)

We evolve our thermalised configuration (X,V) for t = 1 under this mod-
ified force to obtain our perturbed configuration (X’,V’). Once obtained, we
switch off the deformation, restoring the original potential.

Having obtained a reference configuration (X,V) and a perturbed configu-
ration (X’,V’), we evolve them both simultaneously and measure the distance
between them as a function of time. In order to measure the distance we must
introduce a metric on phase space. The distance function we use is

|δX(t)| =

√√√√ 9∑
i=1

Tr(δX2
i (t)), δX ≡ |X ′ −X| (20)

It is proven in [9] that if the phase space is compact then the Lyapunov
exponents are independent of the chosen metric. We find that the distance
grows exponentially

|δX(t)| = |δX(0)|eλLt (21)

where λL is the Lyapunov exponent that quantifies the rate at which
chaos develops within the system.

3 Discussion

3.1 Lyapunov exponents

The time evolution of |δX(t)| is shown in Fig(2). It is clear that exponential
growth sets in quickly. Growth continues until the size of the perturbation
becomes of the order of the size of the system. Since phase space is compact,
the distance will not be able to grow larger than the total size of the system
and so it must saturate at some value. As previously mentioned, the time it
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takes for the growth to saturate is what we will define to be the scrambling
time of this classical system. We can compute Lyapunov exponents directly
from this growth by plotting the logarithm of |δX(t)|/|δX(0)|. Then from
Eq.(21) it is obvious that the Lyapunov exponent can be computed from
the slope of the line in the region where the distance is growing exponen-
tially. The resulting Lyapunov exponents for various values of N are shown
in Fig(3).

Figure 2: Growth of perturbations for N = 16, t = 0 is the time of the initial
perturbation
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Figure 3: Lyapunov exponents for N = 4,6,8,16. The line shows Eq.(x) with
these exponents.

We determined the large N behaviour to be governed by

λL =

[
0.294− 0.515

N2

]
(22)

which is in good agreement with those results found in [9].

3.2 Scrambling time of the system

Since we have defined the scrambling time to be the time taken for the
infinitesimal perturbation |δX(t)| to grow to be of the order of the size of the
system, the scrambling time will depend on the size of the initial perturbation
|δX(0)|. Thus, in order to determine how the scrambling time scales with N ,
we must increase N while keeping the size of the initial perturbation fixed.
A fast scrambler is a system whose scrambling time scales as t∗ ∼ logN2.
We compute the value that |δX(t)| saturates to by considering a reference
configuration X and a perturbed configuration X ′, and use our metric defined
in Eq.(20) to compute the distance between them at late time. Fig(4) shows
the late time behaviour of |δX(t)| for various values of N .
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Figure 4: The late time behaviour of |δX(t)|/
√
N for various values of N .

At late times we see convergence to a value of order 1

We can see that distance between the two configurations is of the order
of |X −X ′| ∼

√
N . We can thus expect that the scrambling time is given by

eλLt∗ ∼
√
N =⇒ t∗ ∼

1

4λL

logN2 (23)

Since we have already found that λL is independent of N to leading
order, and we can verify numerically that at late time |δX(t)| ∼

√
N , this

establishes the system as a "fast scrambler".

3.3 Energy dependence of lyapunov exponents

It was conjectured in [10] that there is an upper bound on the energy depen-
dence of Lyapunov exponents for classical and quantum Hamiltonian systems.
The conjecture is that the Lyapunov exponent λ(E) cannot grow faster than
linearly in the Energy E. This results it consistent with the chaos bound in
[7]. The energy dependence of the exponents is given by

λ(E) ∝ Ec, c ≤ 1 (24)
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Figure 6: Lyapunov exponent as a function of energy for N = 7

Figure 5: Lyapunov exponents as a function of energy for N = 4

We studied the dependence of λL on the total energy for the case of N = 4
and N = 7. The results are shown in Fig.(5) and Fig.(6) respectively.

14



For the case of N = 4 we found that the Lyapunov exponent depends on
energy according to

λL(E) ∼ E0.24 (25)

while for N = 7 we found the dependence

λL(E) ∼ E0.22 (26)

and thus, we can conclude that this system satisfies the energy bound
conjectured in [10].

4 Summary
We studied classical chaos in a system of N D0 branes by numerically com-
puting Lyapunov exponents for various values of N . The Lyapunov behaviour
was found to be governed by

λL =

[
0.294− 0.515

N2

]
(27)

We then proceeded to define a classical analogue of the scrambling time as
the time taken for the small perturbations to grow to be of the order of the size
of the system. Saturation of the perturbations occurred in a time logarithmic
in the number of degrees of freedom t∗ ∼ logN2. Since "fast scramblers" have
been defined as systems whose scrambling time is logarthmic in the number
of degrees of freedom, we conclude that this system is indeed a fast scrambler.
Lyapunov exponents were then considered as a function of energy and the
case for N = 4 and N = 7 were found to satisy the bound conjectured in
[10]. This work has been a precursor to studying classical chaos in pure D-
brane black holes in N = 8 String Theory. Such a system is similar, yet
more complicated than the system studied here. We intend on using similar
methods as those described here to study Lyapunov behaviour within this
system, as well as to study the scrambling time for this system. We hope to
find a scrambling time logarithmic in the black hole entropy. If we could find
such behaviour, this would imply that classical chaos is somehow aware of a
highly quantum phenomenon.
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A Equations of motion
After choosing the gauge At = 0, the Lagrangian for the system is

L =
1

2g2
Tr

(∑
i

(Ẋ i)2 +
1

2

∑
i ̸=j

[X i, Xj]2

)
(28)

We obtain the equations of motion by using the Euler-Lagrange equations

∂L

∂X i
− d

dt

∂L

∂Ẋ i
= 0 (29)

The kinetic term in the Lagrangian is independent of the generalised and
so differentiating the Lagrangian with respect to the generalised coordinates
amounts to differentiating the potential term

∂L

∂XK
ab

=
1

4g2
∂

∂XK
ab

∑
i ̸=j

Tr

(
[X i, Xj]2

)
=

1

4g2
∂

∂XK
ab

∑
i

(
Tr
(
[XK , X i]2

)
+ Tr

(
[X i, XK ]2

))
=

1

2g2
∂

∂XK
ab

∑
i

Tr
(
[X i, XK ]2

)

the second equality follows from the fact that the derivative of the trace
will be only non-zero when i = K or j = K and the last equality from the
fact that [X i, XK ]2 = [XK , X i]2. Expanding the commutator and using the
cyclic property of the trace gives

∂L

∂XK
ab

=
1

2g2
∂

∂XK
ab

∑
i

Tr

(
X iXKX iXK −X iXKXKX i −XKX iX iXK +XKX iXKX i

)
=

1

2g2
∂

∂XK
ab

∑
i

(
2Tr(X iXKX iXK)− 2Tr(X iXKXKX i)

)
=

1

g2
∂

∂XK
ab

∑
i,j,n,m,p

(
X i

jnX
K
nmX

i
mpX

K
pj −X i

jnX
K
nmX

K
mpX

i
pj

)
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Taking the derivative gives

∂L

∂XK
ab

=
1

g2

∑
i,j,p,n,m

(
X i

jaX
i
bpX

K
pj +X i

bnX
K
nmX

i
ma −X i

jnX
K
naX

i
bj −XK

bpX
i
pjX

i
ja

)
=

1

g2

∑
i

(
(X iXKX i)ba + (X iXKX i)ba − (X iX iXK)ba − (XKX iX i)ba

)
=

1

g2

∑
i

(
[X i, XKX i]ba − [X i, X iXK ]ba

)
=

1

g2

∑
i

[X i, [XK , X i]]ba

Differentiating the Lagrangian with respect to the generalised velocities
gives

∂L

∂ẊK
ab

=
1

2g2
∂

∂ẊK
ab

Tr
∑
i

(Ẋ i)2

=
1

2g2
∂

∂XK
ab

∑
i,j,k

Ẋ i
jkẊ

i
kj

=
1

g2
ẊK

ba

Now using the Euler-Lagrange equations gives the equations of motion
for the system

∂L

∂XK
− d

dt

∂L

∂ẊK
=

1

g2

∑
i

[X i, [XK , X i]]T − 1

g2
ẌK = 0

Thus we have arrived at the following equations of motion for the system

ẌK =
∑
i

[X i, [XK , X i]]

B Gauss law constraint
The Gauss law constraint is obtained by computing the equations of motion
for the gauge field and then choosing the gauge to be At = 0. The equations of
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motion for the gauge field can be obtained using the Euler-Lagrange equation.
Before choosing the gauge At = 0, the total Lagrangian for the system is

L =
1

2g2
Tr

(∑
i

(DtX
i)2 +

1

2

∑
i ̸=j

[X i, Xj]2

)
(30)

where the covariant derivative is defined as DtX
i = ∂tX

i + [At, X
i]. The

Lagrangian is independent of Ȧt so immediately we have

∂L

∂Ȧt

= 0 (31)

Thus, the Euler-Lagrange equation reduces to

∂L

∂At

= 0 (32)

The potential term in the Lagrangian is independent of At and so the
calculation amounts to differentiating the kinetic term with respect to At

(
∂L

∂At

)
ab

=
1

2g2
∂

∂(At)ab
Tr
∑
i

(DtX
i)2

=
1

2g2
∂

∂(At)ab
Tr
∑
i

(∂tX
i + [At, X

i])2

Expanding the term in brackets and using the cyclic property of the trace
gives
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∂L

∂(At)ab
=

1

2g2
∂

∂(At)ab
Tr
∑
i

(
(Ẋ i)2 − Ẋ iAtX

i + Ẋ iX iAt − AtX
iẊ i +X iAtẊ i

+ AtX
iAtX

i − AtX
iX iAt −X iAtAtX

i +X iAtX
iAt

)
=

1

2g2
∂

∂(At)ab

∑
i

(
Tr(Ẋ i)2 − 2Tr(Ẋ iAtX

i) + 2Tr(Ẋ iX iAt)

+ 2Tr(AtX
iAtX

i)− 2Tr(AtX
iX iAt)

)
=

1

g2
∂

∂(At)ab

(∑
i,j,k,n

Ẋ i
jkX

i
kn(At)nj −

∑
i,j,k,n

Ẋ i
jkX

i
kn(At)nj

+
∑

i,j,k,n,m

(At)jkX
i
kn(At)nmX

i
mj −

∑
i,j,k,n,m

(At)jkX
i
knX

inm(At)mj

)
=

1

g2

(∑
i,j

Ẋ i
bjX

i
ja −

∑
i,n

˙X i
naX

i
bn +

∑
i,n,m

(At)nmX
i
maX

i
bn +

∑
i,j,k

X i
bj(At)jkX

i
ka

−
∑
i,m,j

(At)bmX
i
mjX

i
ja −

∑
i,j,k

X i
bjX

i
jk(At)ka

)
=

1

g2

(
[Ẋ i, X i]ba + 2(X iAtX

i)ba + [X iX i, At]ba

)
Finally, choosing the gauge At = 0 and using Eq.(23) leaves the Gauss

law constraint ∑
i

[X i, Ẋ i] = 0 (33)

C Velocity Verlet algorithm
To discretize the equations of motion we write

ẊK = V K (34)

V̇ K = FK =
∑
i

[X i, [XK , X i]] (35)
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The descretized time evolution can be obtained by using Taylor expan-
sions and terminating at the order of δt2. Expanding gives

XK(t+ δt) = XK(t) + ẊK(t)δt+ ẌK(t)
δt2

2
(36)

V K(t+ δt) = V K(t) + V̇ K(t)δt+ V̈ K(t)
δt2

2
(37)

We must develop an expression for V̈ K in terms of known quantities. To
do this we can expand V̇ K and terminate the expansion at the order δt2.

V̇ K(t+ δt) = V̇ K(t) + V̈ K(t)δt (38)

We can take the expansion up to order δt since we are looking for an
approximation of the quantity δt2

2
V̈ K that holds to order δt2. Rearranging

Eq.(29) for V̈ K and substituting the result into Eq.(28) gives

V K(t+ δt) = V K(t) +

(
V̇ K(t) + V̇ K(t+ δt)

)
δt

2
(39)

Using the definitions in Eq.(25) and Eq.(26) gives the discretized time
evolution

XK(t+ δt) = XK(t) + V Kδt+ FK δt2

2
(40)

V K(t+ δt) = V K(t) +

(
FK(t) + FK(t+ δt)

)
δt

2
(41)

D Numerical error
We examined two quantities, Tr

(
(X i)2

)
and Tr

(
[X i, Xj]2

)
where summation

over repeated indices is implied. We computed the time evolution of these
quantities using two different time steps δt = 1× 10−4 and δt = 5× 10−4 in
order to observe the numerical errors. The results are shown below. We find
good agreement for t ≲ 50.
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Figure 7: Time evolution of Tr
(
(X i)2

)
for a time step δt = 1 × 10−4 and

δt = 5× 10−4

Figure 8: Time evolution of Tr([X i, Xj]2) for a time step δt = 1× 10−4 and
δt = 5× 10−4
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