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Abstract

This project presents an investigation of the bosonic part of the BFSS matrix model by dis-

tretisation of the model onto the lattice. A programme is written to simulate the dynamics of

this discretised model by use of the Hamiltonian Monte Carlo algorithm. The results of this algo-

rithm are tested against analytically calculated expectation values for thermodynamic systems and

Wigner’s semicircle distribution and found to be in excellent agreement, however further tests are

required to confirm the accuracy for larger systems and for comparison with literature results of

the BFSS model itself. This indicates the simulation is a useful proof of concept of the simulation

method for the BFSS model and possible improvements and extensions are proposed.
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Chapter 1

Introduction

M-theory is an ongoing and exciting area of study in modern physics. Proposed in 1995, the theory

is a unification of all consistent versions of superstring theory into one model via symmetries

between the five consistent theories known as S-duality and T-duality. The proposal models these

five theories (and 11-dimensional supergravity) as separate limiting cases of one broader theory.

M-theory currently presents a promising area for further research and new physics, and a possible

framework for the unification of the fundamental forces into a theory of everything [1].

The theory, however, has several notable open questions and topics of ongoing research. These

include the nature of the compactification of the extra dimensions in the theory to the constraints

of the everyday universe (from the 11 dimensions required by uncompactified M-theory to the

4-dimensional spacetime experienced in everyday life) and generating testable predictions for ex-

perimental verification of the theory[1]. Notably, the theory also lacks a complete non-perturbative

formulation[1][2]. A complete formulation, or solutions to any of these questions, would greatly

advance our understanding of M-theory and its related theories, and would present a significant

advance in modern physics and the search for a unification of the fundamental forces[1].

Modern attempts at a formulation of M-theory beyond the limits of perturbation theory typi-

cally depend on matrix models of some kind, and are widely expected to be the infinite-size limit

of such a model[2]. One such is the BFSS model proposed in 1997. This model (discussed in detail

in Sec. 2 below) consists of a matrix quantum mechanical system, and is conjectured to capture

the entire dynamics of M-theory[3][4].

The BFSS model consists of nine bosonic matrices and sixteen fermionic matrices[2], and forms

a low energy effective description the dynamics of interacting D0-branes in type IIA superstring

theory[2]. As type IIA string theory gives rise to M-theory in the strong coupling limit[3], it is
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thus conjectured that the infinite size limit of the matrices (i.e. the limit of a large number of

D0-branes) of the BFSS model is equivalent to uncompactified eleven-dimensional M-theory[3][1].

Thus, the BFSS model presents an excellent candidate for further study into M-theory and

non-perturbative formulations[4]. Despite several limitations now known to prevent the model

alone forming a complete description of the dynamics M-theory (details discussed in [5]), the

BFSS model is an exciting region of study to investigate the dynamics of M-theory in a simple

setting[4].

This project thus aimed to recreate the bosonic portion of the studies presented in [2], begin-

ning with a discretisation of the BFSS model onto the lattice. A Monte Carlo algorithm was then

implemented to simulate the dynamics of the discretised model and its results verified by compar-

ison to similar studies in the literature. The details and reasons for this approach are discussed

in greater detail in Sec. 2, while other possible methods that have been used are available in [6].

5



Chapter 2

The BFSS Model

2.1 Overview

The BFSS model is a is a one-dimensional supersymmetric Yang-Mills theory, forming a quan-

tum mechanical system of nine bosonic and sixteen fermionic matrices[3]. Developed by Banks,

Fischler, Shenker, and Susskind, the model arises naturally from type IIA superstring theory

and was shown by the authors to be described in the low-energy limit by eleven-dimensional

supergravity[3]. It is conjectured that in the limit of large matrix size, N , the model becomes

equivalent to eleven-dimensional M-theory[3]. Thus, the BFSS model is an excellent candidate for

study to investigate or search for the complete formulation of M-theory in a simple setting[7].

This project investigated the dynamics of the BFSS model in the low-energy limit, where the

model becomes an effective description of of a system of D0-branes in type IIA string theory[2].

In this context, the degrees of freedom of the BFSS matrices represent degrees of interaction

between the branes, and thus the dimension of the matrices, N , encodes the number of branes

in the system. In the limit as N increases, the model is thus conjectured to be equivalent to

full uncompactified M-theory, while for finite N it is equivalent to M-theory compactified on a

light-like circle[3].

The full matrix model can be obtained by dimensional reduction of supersymmetric Yang-Mills

theory in ten dimensions down to one dimension[2], yielding a ten-dimensional action:

SM =
1

g2
∫ dtTr{

1

2
(D0X

i
) +

1

4
[Xi,Xj

]
2
−
i

2
ΨTC10Γ

0D0Ψ +
1

2
ΨTC10Γ

i
[Xi,Ψ]} (2.1)

where the latter two terms are a description of the fermionic part of the system and their

various interactions. A full simulation of these components can be found in [2], however due

6



DIAS Internship

to time constraints this project examined only the bosonic part of the action. Wick-rotated to

euclidean time for computation later, this was given by:

Sb =
1

g2
∫

β

0
dtTr{

1

2
(DtX

i
)
2
−
1

4
[Xi,Xj

]
2
} (2.2)

In this equation, Xi are nine N × N hermitian matrices (indices i and j running from 1 to 9,

representing the nine spatial dimensions of the model) representing the degrees of interaction of

the D0-branes in each dimension. β acts as the thermodynamic inverse temperature β = 1
kBT

,

encoding the thermodynamic temperature, and thus total energy, of the system.

This action was introduced by Hoppe as a gauge-fixed and regulated description of a system of

membranes and represents the bosonic part of the BFSS action, in the form to be studied in this

project. This has been studied extensively by various methods in the literature (comprehensive

reviews include [6]). The approach taken in this project follows that in [2]: to discretise the action

in time and numerically simulate the dynamics of the resulting system. Following verification of

this method, this would allow for the calculation investigation of many observables and features

of the BFSS model.

This method was chosen due to the gauge nature of the BFSS model. The gauge properties of

the model and, as with the wider class of Yang-Mills theories in general, make direct computation

of results extremely difficult[7], while discretisation of the continuous system allows for the problem

to be treated using methods from statistical mechanics, including simulation using Monte Carlo

methods for numerical computation of the system[7], an extremely powerful tool if successful to

investigate the dynamics of the BFSS model, and thus to investigate broader M-theory.

2.2 Discretisation of the BFSS action

The discretisation discussed above to allow for numerical simulation of the action, Eq. ?? was

performed according to the procedure described in [2].

With lattice spacing a = β
Λ
, time was thus discretised onto Λ sites tn = an, (n = 0,1, ...,Λ − 1)

and periodic boundary conditions imposed such that the final lattice point was identified with the

initial point: tΛ = t0.

Several factors must be accounted for in the discretisation due to the gauge nature of the BFSS

model. First, the derivative term in Eq. ?? must be covariant to account for the local gauge field

differences between lattice sites. Unitary matrices, UU † = I, were thus used as parallel transporter
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terms and combined with the pure derivative on the lattice,

∂tX
i
n →

Xi
n+1 −X

i
n

a
(2.3)

to transport back the field at tn + 1 to tn, forming the discrete version of the covariant derivative:

DtX
i
n →

Un,n+1Xi
n+1Un+1,n −Xi

n

a
=
Un,n+1Xi

n+1U
†
n,n+1 −X

i
n

a
(2.4)

Applied to Eq. 2.2 and regrouping the resulting terms, this yields the following discrete bosonic

action:

Sb = N
Λ−1
∑
n=0

Tr{−
1

a
Xi

nUn,n+1Xi
n+1U

†
n,n+1 +

1

a
(Xi

n)
2
−
a

4
[Xi

n,X
j
n]

2
} (2.5)

This can be further simplified for computation by taking advantage of the local U(N) symmetry

at each lattice site and defining the transformation: //

Xi
0 =X

′i
0

U0,1X
i
1U

†
0,1 =X

′i
1

(U0,1U1,2)X
i
0(U0,1U1,2)

† =X ′i2

...

(U0,1U1,2...UΛ−2,Λ−1)Xi
Λ−1(U0,1U1,2...UΛ−2,Λ−1)† =X ′iΛ−1

⇒ Sb = −
1

a
NTr{

Λ−1
∑
n=0

X ′inX
′i
Λ−1WX ′i0W

†
} +N

Λ−1
∑
n=0

Tr{
1

a
(X ′in )

2
−
a

4
[X ′in ,X

′j
n ]

2
} (2.6)

Where unitary matrix W ∶= (U0,1U1,2...UΛ−2,Λ−1UΛ−1,0). This matrix can then be decomposed

as W = V DV †, with D = diag[eiθ1 , ..., eiθN ].

It can be seen from the decomposition above that the values for θn define the eigenvalues of the

unitary transporter W, and thus the gauge field applied across the lattice sites. The interaction

of the transporter fields, Un,n+1 with the gauge field is calculated in Sec. 2.2.1.

This decomposition can be used with the symmetries of the action Eq. 2.6 X ′in → V X ′inV
† and

X ′in → hnX
′i
nh

†
n, where hn is a diagonal unitary matrix to further simplify the action. Defining

hn = (DΛ)
n and DΛ such that (DΛ)

Λ =D, these symmetries can be combined to show that

X ′in = (V hn)X̃
i
n(V hn) (2.7)

,

yielding an action of
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Sb[X̃,DΛ] = N
Λ−1
∑
n=0

Tr{
1

a
X̃i

nDΛX̃
i
n+1D

†
Λ +

1

a
(X̃i

n)
2
−
a

4
[X̃i

n, X̃
j
n]

2
} (2.8)

Finally, we choose for convenience now to work in a gauge in which the holonomy is non-trivial

between only one pair of lattice sites (chosen to be between the sites t0 and tΛ−1, or equivalently

by the boundary conditions tΛ−1 and tΛ), allowing the diagonal matrices hn to be omitted at the

other links. And from the definition of DΛ and the boundary conditions at t0 = tΛ, this yields the

final equation for the discrete bosonic action as it was simulated in this project:

Sb[X,D] = NTr{−
1

a

Λ−2
∑
n=0

Xi
nX

i
n+1 −

1

a
Xi

Λ−1DXi
0D

†
+

Λ−1
∑
n=0
[
1

a
(Xi

n)
2
−
a

4
[Xi

n,X
j
n]

2
]} (2.9)

This equation is the bosonic part of the BFSS model in the low-energy limit discretised to Λ

sites in time, describing the dynamics of a system of D0-branes in the low-energy limit of type IIA

string theory in nine spatial dimensions, i, j = 1, ...,9. The first two terms describe the dynamics

in each dimension and capture the action of the portion of the system in this dimension as it

progresses over time, the first term capturing the action between successive sites discretised in

time and the second applying the periodic boundary conditions. The second two terms encodes the

action from interactions between the dimensions at each site in time, the first from the interaction

of each dimension with itself and the second accounting for the interaction of each dimension with

the others.

This thus describes the total action of any sequence of Λ states the system may pass through

over time. Using the method described below, this allows the dynamics of the BFSS model to

be simulated by numerical methods and observables of its behaviour calculated (with extensions

from this point discussed in Sec. 7).

2.2.1 Transporter Field Interactions

Another aspect of the gauge field that must be accounted for in the discretisation process is the

interactions of the unitary transporters with the gauge field (details of discretisation procedure

again with reference to [2]).

The transporter fields introduced by the unitary matrices in Eq. 2.6, Un,n+1, interact with the

the gauge field and its associated U(N) symmetry, and, as the transformations are local, with the

transporter fields themselves. This requires the addition of a Faddeev-Popov term ([8] determined

by the gauge (information about which is carried by θn) to the total action of the system:

9
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SFP [θ] = −∑
l≠m

ln ∣sin
θl − θm

2
∣ (2.10)

This term is derived from the measure of the transporter fields Un,n+1 and the covariant

derivative of Un,n+1, described in detail in [2].

10



Chapter 3

Hamiltonian Monte Carlo

3.1 Overview

The primary method used in the study of the above dynamics was the Hybrid Monte Carlo

algorithm (HMC, also known as Hamiltonian Monte Carlo). Proposed in 1987 for study of lattice

quantum chromodynamics, this is a Markov chain Monte Carlo method designed to generate a

random sequence which converges to a given target distribution. This allows the algorithm to

be used as a form of numerical integrator, allowing for the calculation of expectation values of

observables of that target distribution. [9][10]

The algorithm is a form of the Metropolis-Hastings system, with iteratively proposed points

accepted or rejected into the Markov chain based on relative likelihood of the new point compared

to the initial point according to the target distribution. HMC, however uses an evolution step

between successive proposed points derived from Hamiltonian dynamics rather than the random

walk used in the base version of the Metropolis-Hastings algorithm.

To propose the next point in the Markov chain, HMC uses a symplectic integrator to solve

Hamilton’s equations from the current location in the phase space of the distribution. This allows

for the algorithm to make significantly larger steps through the phase space than a random walk

while still maintaining a high probability of acceptance due to the energy conservation of the

Hamiltonian dynamics between successive states. These distant steps significantly reduce the

correlation between successive states compared to the high constraint of a random walk, and

allow the algorithm to explore the full target distribution with fewer Markov chain samples, thus

allowing for integration with fewer samples than would be necessary using a random walk for the

same degree of accuracy[9][10].

11
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(a) f1(x) = A1e
−x2

(b) f2(x) = A2e
−(x4− 3

2
x2)

Figure 3.1: Two one-dimensional target distribution functions, f1(x) and f2(x), (orange) and
histograms of the Markov chain generated by HMC to converge to these distributions

Figure 3.2: Comparison of correlation between successive points proposed by random walk and
HMC illustrating the time taken to sample the full position space (y-axis). From [9]

12
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3.2 HMC Algorithm

3.2.1 Main Iteration Procedure

The HMC algorithm generates its Markov chain by iteration from a random initial point (or

from the origin, known as hot or cold starts respectively). This point is then progressed through

the phase space of point position vs. momentum according to Hamilton’s equations and the

resulting new state is accepted or rejected by a Metropolis check, from which point the process is

repeated until the resulting Markov chain converges sufficiently to the target distribution (detailed

description below drawn from comprehensive reviews of the topic, [9] and [10].

Hamiltonian Flow

During each iteration in the process, a new point (new position and new momentum) is proposed

by solving Hamilton’s equations for a later time:

dx

dt
=
∂H

∂p
,

dp

dt
= −

∂H

∂x
(3.1)

where H is the Hamiltonian familiar from classical mechanics of the “particle” representing

the point in phase space:

H(x,p) =K(p) + S(x) =
∣p∣

2

2
+ S(x) (3.2)

Here, momentum and the total Hamiltonian have no physical significance or effect on the simu-

lation. They are defined simply as a computational tool to facilitate the Hamiltonian dynamics

used to propose the next point in the sequence. More detail on their choice and effect on the

result is given below.

The action of a given position, S(x), has a significance beyond the Hamiltonian flow between

points: it encodes the distribution to which the Markov chain should converge. For a target

distribution f(x) the action is defined in relation to f(x) as:

S(x) = − ln (f(x))→ f(x) = e−S(x) (3.3)

The choice of this definition for the potential energy and the relations between it, the target

distribution, and the Hamiltonian are motivated by studies of canonical distributions from sta-

tistical mechanics. How the target distribution arises from the Hamiltonian is discussed in Sec.

3.2.2.

At the beginning of each iteration, a random Gaussian-distributed momentum is chosen for

13
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the particle. The particle is then evolved from the current point in the phase space, given by

the random momentum and the latest position entry in the Markov chain, by solving Hamilton’s

equations for some later time, after interval ϵ (alternatively interpreted as a step size determining

the distance traversed through the phase space in each iteration), using a symplectic integrator.

Here the leapfrog integrator was used, in one dimension given by:

p = pi −
ϵ
2
F (xi)

x = xi + ϵp

p = p − ϵF (x)

xi+1 = x + ϵp

pi+1 = p − ϵ
2
F (x)

where xi, pi and xi+1, pi+1 denote the initial point in phase space for the iteration and the

time-evolved point, respectively, and F (x) denotes the force on the particle due to the action at

a given point. This was calculated from the potential as in classical mechanics,

F (x) = −
∂S(x)

∂x
(3.4)

For a deterministic system such as the Hamiltonian of a real particle, the integrator would

exactly solve for the path of the particle and its Hamiltonian through phase space (Fig. 3.3A).

However, due to the randomness introduced in the choice of momentum for the particle at the

beginning of each iteration, the algorithm will provide a proposal point slightly removed from this

exact solution (Fig. 3.3B).

Metropolis Check

The Hamiltonian of the proposed point (x and p as calculated by the leapfrog integrator) is then

compared to the Hamiltonian of the previous point (the previous x in the chain and the random

momentum generated for this iteration) under a Metropolis check.

dH = H(xi+1, pi+1) −H(xi, pi)

Accept if: e−dH > Random(0,1)
(3.5)

From the definition of the Hamiltonian (Eq. 3.2) and the potential energy (Eq. 3.3), this is

equivalent to comparing the probability of the new point according to the target distribution to

the probability of the old point. A proposed point that passes this check is accepted into the

Markov chain and used as the beginning point for the next iteration. A proposed point that

14
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(a) (b)

(c)

Figure 3.3: Comparison of standard leapfrog integration showing deterministic steps on a curve

of constant Hamiltonian (H = p2

2
+x2) (a) and deviation of the sample points from this curve once

random momenta are sampled for each iteration (b). Exploration of the phase space after 200
iterations shown in (c).
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is rejected is discarded and the previous point (the point used as the start for this iteration) is

added to the chain again. The next iteration uses this previous point as the initial point, using a

different random momentum and thus a new proposed point will be generated. In no case is the

momentum stored, a new momentum is proposed in every iteration.

This check has the effect of increasing the likelihood of accepting a proposed point with a higher

probability in the target distribution, increasing the overall acceptance rate of points in regions

of high probability under the target distribution, while the random threshold ensures that some

points of relatively low probability will still be accepted. This allows the full phase space to be

explored while a greater sampling rate will be found in regions of greater target probability density,

generating a Markov chain distributed according to the target distribution (in the convergence

limit as the sample size increases, seen in Fig. 3.3(c) for the exploration of the phase space with

sampling density converging to a normal distribution).

3.2.2 Probability Distribution from the Hamiltonian

The definition of the potential energy function used above, Eq. 3.3, arises from the canonical

distribution in statistical mechanics, where for a given energy function, E(x) of system state x,

the probability density function over states of the system is given by

P (x) =
1

Z
e−βE(x) (3.6)

With partition function Z acting as the normalisation constant and inverse temperature, β =

1
kBT

, acting as the temperature of the system, often conceptualised as the fixed temperature of a

heat bath with which the system is in thermal equilibrium, and defining the spread of the resulting

distribution.

Taking the energy function above to be the Hamiltonian, a function of the system state (po-

sition and momentum) for the total energy, the probability density function becomes

P (x) =
1

Z
e−βH(x,p) =

1

Z
e−β(K(p)+S(x)) (3.7)

As p and x are independent, each has their own canonical distributions with energy functions

S and K:

P (x) =
1

Z
(e−βK(p))(e−βS(x)) (3.8)

This allows us to choose x as the variable of interest to be studied, and to define S(x) as in
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Eq. 3.3 to give rise to the target distribution.

p is conversely introduced simply as a computational variable to facilitate the Hamiltonian

evolution. Further, by appropriate choice of the random sampling for momentum used (the mo-

mentum used in each iteration was sampled from a normal distribution), the exact behaviour and

effect of its canonical distribution can be known and discarded from the final result.

Discussion in greater detail can be found in [9], Sec. 3.1.

3.2.3 Thermalisation and Error Analysis

The choice of the initial point from which to begin the iteration process has a significant effect

on the algorithm. If the starting point occurred in a region of extremely low probability under

the target distribution, it may take several iterations to reach a region of high probability where

sampling is more likely.

These samples taken before reaching the region to be sampled are referred to as the thermalisa-

tion period and are not distributed according to the target distribution, delaying the convergence

of the chain to the target.

Several techniques are available to mitigate the affect of the thermalisation period on the

final sample distribution. The most sophisticated methods rely on finding when the system is

thermalised (when it reaches the region to be sampled) and either discarding samples before that

point or beginning subsequent simulations from this point.

Due to time constraints, however, these methods were not implemented. Instead, the error

contribution of the non-thermalised samples was minimised by increasing the total number of

samples, thus increasing the portion of samples converging accurately to the target once the

sampling region has been reached. This brute-force method is less effective than removing the error

completely but ensured that the overall Markov chain converged well to the target distribution.

This factor falls under the larger topic of error and uncertainty in the simulation, of particular

importance due to the Monte Carlo nature of the algorithm. For detailed results and conclusions to

be drawn from this simulation, a detailed analysis of the statistical error needs to be performed of

the algorithm and methods used. Due to time constraints this could not be performed satisfactorily

and only qualitative study of the simulation’s convergence to analytically expected results could be

used to determine the effectiveness and accuracy. As the overall conclusions of the project drawn

from the results are broadly qualitative and concern the general operation of the project methods

(see Sec. 6), this does not significantly hinder the conclusions, however a detailed error analysis

should be performed to confirm the conclusions drawn and to facilitate the precise measurement
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of simulated results. Descriptions of Monte Carlo error and analysis of HMC can be found in [10]

and [9].

3.3 Expectation Values and Numerical Integration

The Markov chain generated by the HMC algorithm then allows for the measurement of expec-

tation values of the target distribution without the need for complex integration. As the list

of samples produced by this algorithm already encode the distribution, the integral formula for

expectation values:

⟨Φ(x)⟩ = ∫
∞

−∞
Φ(x)f(x)dx = ∫

∞

−∞
Φ(x)e−S(x)dx (3.9)

can be reduced to a sum over the list of N samples:

⟨Φ(x)⟩ =
1

N

N

∑
i

Φ(xi) (3.10)

This allows observables of the action function used to define the distribution to be easily

calculated. By choice of an appropriate action rather than choosing a specific target distribution,

further, this algorithm may be used to simulate real systems and their observables.

For example, a simple harmonic oscillator may be simulated by defining S(x) as the action of a

harmonic oscillator, SHO(x) =
k
2
x2. With the force used in the Hamiltonian dynamics calculated

as:

F (x) = −
∂S

∂x
= −kx (3.11)

HMC then generates a distribution of the harmonic oscillator’s position, a normal distribu-

tion with standard deviation determined by the parameters of the system (spring constant, total

energy/temperature of the system) of the system (seen from the relation between the harmonic

oscillator action and target distribution 3.3):

SHO(x) =
k

2
x2
⇒ f(x) = ekx

2

(3.12)

By this method, many real systems may be simulated and their characteristics calculated,

including the action derived above for the discrete BFSS model.
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3.3.1 Additional Degrees of Freedom

The HMC algorithm is also well suited to this project as systems with different degrees of freedom

may be readily accommodated. Instead of a scalar x being sampled, a matrix may be used instead,

with an action taking that matrix as an argument (i.e. S(X) = e−Tr(X
2)). This may be further

extended to each sample consisting of multiple matrices or multiple dimensions.

Expectation values of distributions in these complicated structures would be extremely difficult

to calculate analytically, possibly requiring element-wise integration in several dimensions, where

this algorithm allows for them to be simulated to find distributions of configurations for the system

as a whole under any appropriate action and Hamiltonian. The structure used in this project is

described in Sec. 4.1.
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Implementing BFSS in HMC

The discretised BFSS model 2.9 was implemented in the HMC algorithm and various results of the

simulation were compared to the expected values to investigate the function of the methodology

and implementation.

For this project, the HMC algorithm was implemented in Python (first developed in one dimen-

sion, then expanded to the structure of the BFSS action described below) using the Jupyter devel-

opment environment. The full simulation code is available at https://github.com/DiarmuidDig/

DIAS_Internship.git (including previous versions for systems with various degrees of freedom

implemented as progression towards the BFSS structure, and future development). The advan-

tages and disadvantages of Python for this project and possible alternatives are discussed below

(Sec. 6).

4.1 Structure of the Markov chain for BFSS simulations

The structure of the Markov chain generated by the algorithm was adapted from the basic one-

dimensional case described in Sec. 3.2 to suit the BFSS model.

As described above, the BFSS action requires nine dimensions, each dimension represented

by a matrix of size N . As this simulation studied the dynamics of the model, however, each

dimension was represented by a sequence of Λ matrices, representing the discretised progression

of that portion of the model over time as a sequence of Λ sites. Thus, the algorithm was expanded

to generate this structure (nine spatial dimensions, each consisting of Λ matrices) as each entry

in the Markov chain, with a distribution of entries given by the BFSS action. This represents the

space of possible dynamics a nine-dimensional system of interacting D0-branes can take under the

BFSS model.
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(4.1)

Figure 4.1: Schematic view of one entry in the Markov chain generated according to the BFSS
action. Each X is a matrix of size N , and each column represents one dimension and the change of
its representative matrix over Λ time increments. In the BFSS model nine dimensions are required
(i = 9). A row of matrices represents the state of the whole system at a given time site.

4.2 Hamiltonian for simulation of BFSS

The expanded HMC algorithm was then implemented to simulate the model as follows (as de-

scribed in [2]). The Hamiltonian used for computation of the Hamiltonian flow and the generation

of the Markov chain was defined:

Hb =
1

2

Λ−1
∑
n=0

Tr (P i
n.P

i
n) +

1

2

N−1
∑
l=0

P l
d

2
+ Sb[X,D(θ)] + SFP [θ] (4.2)

Where the first two terms are the kinetic energy used and the latter two are the action. The

total action part is given by the discretised bosonic action derived above and the action associated

with the gauge transformations, Sec. 2.2.1. The kinetic part is thus given by the canonical

momenta P i
n and P l

d, corresponding to the matrices Xi
n and the angles θl, respectively. The

momenta are sampled randomly from a normal distribution at the beginning of each iteration as

described above, then subjected to Hamiltonian flow through the phase space just as the ”position”

values are.

As the gauge field of each proposed configuration of the system effects the probability of the

system via the SFP term, it must be included in the Hamiltonian and Hamiltonian flow stage and

thus has its own momenta introduced for computation. These are sampled.

The forces on X and θ to perform the Hamiltonian evolution were calculated from Hamilton’s

equations:

−
∂Sb

∂Xi
n,ml

=
N

a
(Xi

n+1 − 2X
i
n +X

i
n−1)

lm
+Na[Xj

n, [X
i
n,X

j
n]]

lm

−
∂Sb

∂Xi
0,ml

=
N

a
(Xi

1 − 2X
i
0 +D

†Xi
Λ−1D)

lm
+Na[Xj

0 , [X
i
0,X

j
0]]

lm

−
∂Sb

∂Xi
Λ−1,ml

=
N

a
(DXi

0D
†
− 2Xi

Λ−1 +X
i
Λ−2)

lm
+Na[Xj

Λ−1, [X
i
Λ−1,X

j
Λ−1]]

lm
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−
∂Sb

∂θl
=
2N

a

N−1
∑
m=0

R(iXi
Λ−1,mlX

i
0,lmei(θl−θm)) + ∑

m,m≠l
cot(

θl − θm
2
)

(4.3)

These equations allowed for the dynamics of the discretised BFSS model to be numerically

simulated using the HMC algorithm.

22



Chapter 5

Results

The simulation described above was thus implemented in Python and several checks were used to

confirm the function of the algorithm and discretisation to accurately simulate the BFSS dynamics.

5.1 Thermodynamic Expectation Value Test

The first check used to investigate the accuracy of the HMC simulation was comparison to the

analytically derived expectation value of the total action of each entry in the Markov chain for

one dimension, ⟨S⟩.

The total action expectation value was calculated from the statistical mechanics of the general

lattice system in one dimension, where the partition function Z = ∫ [dX] = e
−S[X] encodes statis-

tical properties of a system in thermodynamic equilibrium. From this function, various properties

of a thermodynamic system can be calculated ([11]). Introducing dummy variable B (to be set =

1 during the derivation) and defining

ZB = ∫ dN
2ΛXe−S[X]B (5.1)

The expectation value of the action may be derived from ∂ZB

∂B
and found to be

⟨S⟩ =
N2Λ

2
(5.2)

This was checked for a range of simulation parameters, including various combinations of

different parameters. Across all parameters, including matrix size N , number of lattice sites Λ,

lattice spacing, and system energy, the simulation result was found to converge to the expected

value as the number of Monte Carlo iterations per simulation increased:
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Figure 5.3: Sample plots to show convergence of simulation results to analytically predicted values
as MC iterations increase across range of matrix size and number of time site. Predicted value
Eq. 5.2 indicated by dashed line.
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In all plots above, the simulation clearly converges to the analytically predicted value. This

confirms the accurate function of the HMC algorithm for a general thermodynamic system of this

structure and this implementation of it, indicating that it may be accurate for the BFSS model.

Note that due to limits in computational power and time, the results of simulations N or

Λ could not be checked. The simulation could only be checked up to N,Λ = 6 and the various

combinations of these values. This presents a significant limitation of is discussed in Sec. 6,

however the convergence in all results up to these values is extremely clear in its agreement with

the predicted values and does not indicate any deviation from this agreement as the parameters

grow. Thus, while higher values should be checked as described below to confirm this conclusion,

this check as it stands is considered sufficient to indicate the accurate function of the simulation

for this thermodynamic system.

5.2 Wigner Distribution Test

The algorithm was also checked using Wigner’s semicircle distribution. This is a result from

free probability theory (the study of random non-commuting variables) that is broadly analogous

to the role of the normal distribution in classical probability theory. Wigner’s law states that

for a collection of N ×N symmetric matrices with variables randomly generated from the same

distribution with bounded moments, the distribution of eigenvalues of the matrices approaches

a semi-ellipse (which may be scaled to a semicircle) as N approaches infinity. This result of

symmetric matrices is converted to apply to hermitian matrices by the behaviour of the Gaussian

unitary ensemble[12].

The spectral distribution of the BFSS matrices in a given Markov chain (one run of the

algorithm, yielding a collection of N ′timesN matrices) was found for a range of N values:

These distributions can be seen to converge extremely well to the Wigner semi-elliptical distri-

bution, including in the behaviours seen during convergence as N increases such as the oscillation

patterns about the semi-elliptical curve being approached. Again, due to computational limi-

tations, the behaviour of larger matrices could not be measured. Only up to N = 30 could be

investigated. However, from the extremely clear convergence visible in the range of N that was

investigated it is clear that the simulation does generate matrices in accordance with Wigner’s

law.

This shows that the algorithm may be used to generate Markov chains of matrices (where the

randomness of the chain would lead to the distribution). It has also been shown, however, that

the matrices of simulated BFSS dynamics also converge to the Wigner distribution [2]. Thus, the
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Figure 5.4: Convergence of spectra of various matrix types to the Wigner distribution with
increasing N . For hermitian matrices, as were used here, the Gaussian unitary ensemble
curve (red) is of interest. Image attributed to Cosmia Nebula - Own work, CC BY-SA
4.0, https://commons.wikimedia.org/w/index.php?curid=132035912, generating code accessible
at this address and verified
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Figure 5.6: Normalised histograms of eigenvalue distributions for Markov chains of N×N matrices.
Note that to account for increased computation time required at higher N , the simulation for
N = 30 used significantly fewer iterations (3000 vs. 20000 for the other plots) and thus details of
the distribution may be lost. Ellipse shown in N = 30 plot has a = 0.0107, b = 59

Wigner behaviour of this simulation of the BFSS action indicates that the simulation is accurate

to the BFSS model and may be used to generate accurate measurements of the model’s behaviour.
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Discussion

From these results it is believed that the methods used in this project present a valid technique

for simulation of the BFSS model. The agreement of the algorithm’s results for the expectation

value of a thermodynamic system and the strong agreement of the simulation with behaviours of

the BFSS model reported in the literature indicate that the system created during this project

may be used to accurately simulate the bosonic BFSS model.

6.1 Check Limitations

However the limitations of the checks above should again be noted. The computational power

used in this project was extremely low and due to the exponential increase in computational

complexity with all of matrix size, discretisation site number, and dimension, the time required

to simulate systems approaching realistic parameters was extremely high. This limited both the

range of parameters that could be run during the checks and the number of checks that could be

run.

The steep increase in complexity, and thus time requirements, to check higher values of any

given simulation parameter restricted the checks that could be run to low values of N,Λ and

dimension. These values do not approach the scale of a realistic simulation (requiring large N for

the conjecture of BFSS modelling M-theory in the limit of a large number of branes, large Λ for the

continuum limit of the discretisation, and nine spatial dimensions). This is not believed to present

a large problem as the agreement of the smaller-scale simulations is extremely strong across a

range of values for each parameter and across various combinations of the parameters. Although

the maximum values checked are relatively small, there is no reason across the investigated range

to suggest that the pattern of agreement does not hold as the parameters increase further.
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While current equipment available prevents us from extending the simulation to systems closer

to realistic parameters, it may be possible to run the checks described above at high values for one

of the computationally-expensive parameters (N,Λ, and dimension) at a time (i.e. high lattice

site count but maintain low dimensions and matrix size). This was necessary for the simulation

of N = 30 for the Wigner distribution check above. These computations would take an extremely

long time without improvements to the algorithm (discussed in Sec. 6.2 below) or to the hardware

used, and would not fully confirm that the algorithm passes the checks for realistic parameters,

but would provide further evidence that the algorithm is functioning as expected.

A greater issue that should be noted is the limitation in the number of different checks that

could be run. Due to time constraints in the project overall, only the checks above could be run

to investigate the function of the simulation. These were run first as they were applicable to all

versions of the HMC algorithm that were implemented during development, before the inclusion

of the full bosonic BFSS action while the checks below are applicable only to the final version.

The checks above, while valuable and necessary for preliminary debugging, do not confirm the

results to be accurate to the BFSS model itself, only that the HMC algorithm is functioning and

that the BFSS model as discretised here may be simulated with it. To confirm that the simulation

provides results accurate to the model, other checks are necessary to compare the calculated results

to derived predicted results or those found in the literature for the BFSS model. Possible checks

of this nature are found in [2] and include the internal energy of the system and the extent of

space:

E = N2
⟨−

3

4Nβ
∫

β

0
dtTr([Xi,Xj

]
2
)⟩ (6.1)

⟨R2
⟩ = ⟨

1

Nβ
∫

β

0
dtTr(Xi

)
2
⟩ (6.2)

(Detailed discussion and results of these simulations in [2], with further observables such as

the Polyakov loop).

These calculations would require high values of the simulation parameters (as they are proper-

ties of the BFSS model and thus the simulation must approach the parameters of the real model)

and would be extremely slow without the improvements discussed below or sufficient time to allow

the current algorithm to run for a long period. However, these checks would directly confirm the

usefulness and accuracy of this method for simulation of the BFSS model.
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6.2 Possible Improvements

The above discussion illustrates the need for improvement to the system as it currently stands to

be useful in the study of the BFSS model. Due to extremely low efficiency the programme cannot

be tested or used for practical study at realistic scales, despite indications that it may ultimately

generate accurate results. While this may be tackled by brute force methods of allowing the code

to run for hours or days, it is impossible during an internship of fixed duration.

Several improvements are possible to the HMC algorithm. These were not implemented due

to time constraints, but are available in [10],[9]. These include techniques such as the No U-Turn

system to reduce the number of samples needed in HMC for an accurate estimate of the target

distribution.

Several improvements are also possible to improve the performance of the programme itself.

Most simply is naturally the transfer of the project to a computer with greater power than those

used in the project. The existing code may also be refactored to improve performance. Several

decisions were made in the design of the programme to improve readability or debugging during

development, which may now be redesigned for pure efficiency. Immediate examples of this are to

analytically solve much of the algebra currently being handled during runtime in the code, or to

store computationally expensive results (such as various repeated commutators) between loops or

sections of the algorithm to remove duplicate calculations.

Extremely costly to efficiency, however, is the implementation of the algorithm in Python. For

its speed of development and wide ecosystem of relevant modules, the programme was written in

Python as the most effective option to allow for maximum progress in the short duration of this

project. However, features such as dynamic type and lack of compilation which allowed for this

rapid development also greatly impede Python’s efficiency. The most effective improvement to

increase the efficacy of the simulation for long-term, in-depth studies is to port the programme to

another language.

Possible other languages include Julia and C++, both known for high efficiency. More spe-

cialised languages such as Fortran may also allow for even greater efficiency, although would be

significantly slower to develop. Python was the most feasible choice for this project, but its lack of

efficiency presents a fundamental bottleneck to the simulation that these languages greatly reduce,

allowing this method to be used for in-depth investigation of the BFSS model.
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Conclusion

This project created a programme that is believed to accurately simulate the dynamics of the

discretised bosonic BFSS model via the HMC algorithm in Python. While further tests may

further verify the accuracy of the simulation and yield deeper insights into the function of the

programme, these are not possible given the current version of the programme and the resources

available. However, evidence from the tests that were run indicate the capability of the programme

to simulate the BFSS action with sufficient accuracy to yield useful results, and act as an excellent

proof of concept for this method to investigate the BFSS model.

With improvements discussed above to allow for results to be generated in reasonable time,

including greater computational power and the porting of the system to a language with greater

efficiency, the system developed during this project may be able to generate a simulation of the

dynamics of the BFSS action with sufficient accuracy and in a reasonable runtime to calculate

useful results of the action.

No quantitative error analysis was performed, and the effect of the Monte Carlo error on the

final results generated by the simulation is unknown. Qualitative inspection of the simulation

indicates that the system converges to accurate values sufficiently well to warrant further study,

however formal analysis must be completed before the simulation is used conclusively.

Following on from these improvements and verification of this version of the system, several

extensions are possible using this framework. Most notably, the fermionic parts of Eq. 2.1 should

be discretised and included in the simulation as in later sections of [2]. This would greatly increase

the computational power and efficiency required in the simulation, but would allow for the full

BFSS model to be simulated. It is our intention to continue this project to implement these

improvements and extensions, and further development (both to the code and written reports)
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will be published in the GitHub linked above.

As discussed above, this simulation of the full BFSS model would be immensely useful. Results

for large lambda (thus approaching the continuum limit) for low energies of the system would allow

for the simulation to be used in the study of several theories, including supergravity and type IIA

string theory, and the conjecture that BFSS is equivalent to M-theory in the limit as N increases.

This capability would be immensely powerful, allowing for investigations and insights into the

theory that would be impossible with analytical methods. This project acts as an excellent proof

of concept that this method may be further pursued and this full simulation may be functional as

a means of study for these theories.
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