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Abstract

This report outlines the bosonic BFSS model which is conjectured to be
equivalent to M-theory in the low-energy limit. The lattice discretised version
of the model is obtained and a hybdrid monte carlo algorithm is used to simulate
the dynamics of the system. Our simulation result were compared to analytical
predictions and were found to be in agreement.
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1 Introduction

M-theory aims to unify different consistent string theories [1]. The leading proposal
for a non-perturbative formulation of this theory is expected to be the infinite matrix
size limit of a matrix model [2], and one such model is the BFSS model. Named after
its creators (T. Banks, W. Fischler, S. Shenker, and L. Susskind), this quantum me-
chanical matrix model was shown to be described by eleven-dimensional supergravity
in the low-energy limit, and was proposed to be equivalent to M-theory [3]. Thus, it
can be used to investigate M-theory in a simple setting.

This paper will investigate the dynamics of the 11-dimensional bosonic BFSS
model in the context of D0-branes, which are objects on which the strings in string
theory end [1]. A D0-brane refers to a point with 0 spatial dimensions and 1 time
dimension. A lattice version of the model will be simulated using a Hybrid Monte
Carlo simulation which, when given an initial starting point, will illustrate the dy-
namics of the system. The approach will follow that outlined by Filev and O’Connor
[2].
This paper will be structured as follows:

1. An outline of the bosonic BFSS model on the lattice (including time discretisa-
tion and equations of motion).

2. An outline of the Hybrid Monte Carlo Algorithm.

3. A discussion of simulation results.

2 Bosonic BFSS Model

The BFSS matrix model is conjectured to correspond to M-theory compactified on a
light-like circle [2]. Using dimensional reduction of ten-dimensional supersymmetric
Yang-Mills theory to one dimension, the action is given by [4]:

SM =
1

g2

∫
dtTr

{
1

2
(D0X

i)2 +
1

4
[X i, Xj]2 − i

2
ΨTC10 Γ

0D0Ψ+
1

2
ΨTC10 Γ

i[X i,Ψ]

}
,

Here, X i are NxN dimensional matrices with N degrees of freedom, and i, j running
from 1 to 9 are the dimension. Dt = ∂t + A(t) is the covariant derivative which
allows us to account for changes in the gauge field A(t). These gauge fields encode
information about the dynamics of the D0-branes [3].

By performing a Wick rotation to Euclidean time and focusing on the bosonic
part of the action [2], we obtain the Euclidean action:

Sb =

∫ β

0

tr
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}
dt (1)
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where β = 1
kbT

is the reciprocal of the thermodynamic temperature of the system.

2.1 Time Discretisation

In order to simulate this system, we discretise time to Λ sites with a lattice spacing
a = β/Λ. We impose the periodic boundary condition tΛ = t0 whilst tn = an, (n =
0, 1, 2, ...,Λ− 1). The derivative part of Dt on the lattice is given by:

∂tX
i(tn) = ∂tX

i
n →

X i
n+1 −X i

n

a
.

When considering the discretisation of t → tn, the covariant derivative DtX
i

becomes: [2]:

DtX
i →

Un,n+1X
i
n+1Un+1,n −X i

n

a
, (2)

Where Un,n+1 are unitary matrices (UU † = 1) that are transporter fields. By
squaring the Dt term and gathering boundary terms, we have the discrete bosonic
action:

Sb =
Λ−1∑
n=0

tr

{
−1

a
X i

nUn,n+1X
i
n+1U

†
n,n+1 +

1

a
(X i

n)
2 − a

4
[X i

n, X
j
n]

2

}
, (3)

2.2 Transporter Fields

At each lattice site, there is a local U(N) (unitary) symmetry. This fact can be used
to write the action Sb in a more simple form as outlined by Filev and O’Connor [2],
wherein they performed the transformation:

X ′i
0 = X i

0 ,

X ′i
1 = U0,1X

i
1 U

†
0,1 ,

. . .

X ′i
Λ−1 = (U0,1U1,2 . . . UΛ−2,Λ−1)X

i
Λ−1 (U0,1U1,2 . . . UΛ−2,Λ−1)

†

and introducing W = (U0,1U1,2 . . . UΛ−2,Λ−1UΛ−1,0), Eqn 3 becomes:

Sb = −1

a
tr

{
Λ−2∑
n=0

X ′i
nX

′i
n+1 +X ′i

Λ−1W X ′i
0W†

}
+

Λ−1∑
n=0

tr

{
1

a
(X ′i

n)
2 − a

4
[X ′i

n, X
′j
n]

2

}
Filev and O’Connor proceed by using the decomposition W = V DV † where D =

diag{eiθ1 , . . . , eiθN} (θN refer to angles associated with the rotation). However, it is
possible to choose a gauge such that Sb becomes:
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Sb[X,D] = tr

{
−1

a
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n=0
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nX

i
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a
X i

Λ−1DX i
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[
1

a
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4
[X i

n, X
j
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2

]}
(4)

2.2.1 A note on transporter fields

It is necessary to account for the interaction between the transporter field and the
gauge field (associated with the U(N) symmetry) as well as the dynamics of the
transporter field itself. This can be achieved using the covariant derivative of Un,n+1

and yields a new phase term that must be accounted for in the Hamiltonian. A full
treatment of this derivation is done by Filev and O’Connor [2].

SFP[θ] = −
∑
l ̸=m

ln

∣∣∣∣sin θl − θm
2

∣∣∣∣ . (5)

2.3 Hamiltonian Dynamics

The actions of this system, Sb and SFP are given by Eqns 4 and 5, respectively. The
corresponding Hamiltonian for this system is:

H =
1

2

Λ−1∑
n=0

trP i
n.P

i
n +

1

2

N−1∑
l=0

P l
d

2
+ Sb[X,D(θ)] + SFP[θ] , (6)

where P i
n and P l

d are the canonical momenta corresponding to the hermitian ma-
trices X i

n and the angles θl, respectively. For the Hybrid Monte Carlo algorithm, we
are required to know the forces at play in this system. These can be found using
Hamilton’s equations:

q̇ = ∂H/∂p ṗ = −∂H/∂q = F (q)

where q and p are the generalised coordinates and momenta, respectively. In the
context of this system, the forces are given by:
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The following section will detail how these are implemented into the HMC algo-
rithm.

3 Hybrid Monte Carlo

The idea behind the HMC algorithm is that we begin with a random initial configura-
tion of positions, add random momentum kicks, and let the system evolve according
to Hamiltonian dynamics [5]. The steps implemented were as follows:

1. Initialise random X i, and P i which are lists of Λ matrices. Also, initialise
random θl and P l.

2. Use a leapfrog algorithm to make a half-step momentum update, full-step posi-
tion update, and another half-step momentum update. The equations used are
[6]:

Pi+1/2 = Pi +
∆t

2
F (Xi)

Xi+1 = Xi +∆tPi+1/2

Pi+1 = Pi+1/2 +
∆t

2
F (Xi+1)

where F (Xi) are the forces given by Eqn 7. ∆t is a time-step that is given a
small value.

3. Perform a Metropolis Acceptance Check [7] to see if the new configurations
are probable enough to be accepted. If dS = Si+1 − Si < 0 i.e. the action has
decreased, the new configuration is accepted. If dS > 0, then the configuration is
accepted with a probability exp(−dS). In practise, the configuration is accepted
if exp(−dS) > rand[0, 1]

Steps 2 and 3 are repeated until a sufficiently long chain of configurations has been
generated.

4 Discussion

In order to test the validity of our algorithm, we compared our results to analytical
estimates and expected behaviours of these systems. One check that we used was <
S >, the expectation value of the action. The second check was examining whether the
eigenvalues of our configurations were distributed according to the Wigner Semicircle
Law.
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Figure 1: Plot of < S > vs monte carlo iterations for N = 10,Λ = 5, β = 1 in the one
dimensional case. The system can clearly be seen to approach an equilibrium around
the analytically derived result, given by the horizontal line.

4.1 Expectation value of the action

The partition function Z =
∫
[dx]e−(S2[x]+S3[x]+...+Sk[x]), where Sk[x] is the action (a

polynomial of order k), encodes the statistical properties of a system in thermody-
namic equilibrium [8].

We can define ZB = B−N2ΛZ where B is a dummy variable that will be set to 1
later. Introducing x̃ = x/B, we have:

ZB =

∫
dN

2Λx̃e−(B2S2[x̃]+B3S3[x̃]+...+BkSk[x̃])

So, we then have:
B

ZB

dZB

dB
= −N2Λ

B

ZB

dZB

dB
= −

∫
dN

2Λx̃B
d

dB
(B2S2[x̃]+B3S3[x̃]+...+BkSk[x̃])e

−(B2S2[x̃]+B3S3[x̃]+...+BkSk[x̃])

However, by definition, the terms on the right are just the expectation values.

B

ZB

dZB

dB
= 2B2 < S2 > +3B3 < S3 > +...+ kBk < Sk >

∴ N2Λ = 2 < S2 > +3 < S3 > +...+ k < Sk >

after setting B = 1. Plotting < S[X i] > for the one-dimensional case vs the
Monte Carlo time t, as displayed in Fig 1 for N = 10,Λ = 5, the system quickly
approaches and oscillates around an equilibrium value. The horizontal blue line is
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the analytically derived expectation value, so it is clear that our algorithm returns
the expected results. Fig 2 displays the five-dimensional case for N = 10,Λ = 4 with
similar behaviour.

Figure 2: Plot of < S > vs monte carlo iterations for N = 10,Λ = 4, β = 1 in the
five-dimensional case. The system can clearly be seen to approach an equilibrium
around the analytically derived result, given by the horizontal line.

4.2 Eigenvalue distribution

Wigner’s semicircle law can be used as an additional test of our algorithm. If we let
X be a symmetric N × N matrix where the entries are independent and identically
distributed random variables with bounded moments, then Wigner’s semicircle law
states that the eigenvalue distribution of X converges to a distribution in the shape
of a semicircle as N goes to infinity [9].

The simulations carried out were limited by our available computational power,
so very high values of N could not be used. However, the expected trend was still
visible for N = 150, as shown in Fig 3

Increasing values of N would display a more apparent semicircle. The infinite
N limit is conjectured to be a formulation of a non-perturbative model of M-theory
[2]. Hence with enough computational power, this algorithm could be used to study
dynamics of M-theory. The low-energy limit (β << 1) BFSS model algorithm could
be used to study supergravity, for example, or known results could be compared to
this model to further investigate the proposal that the BFSS model is equivalent to
M-theory [3].
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Figure 3: Eigenvalue distribution for N = 150. A semi-circular distribution is appar-
ent, which agrees with the expected distribution according to the Wigner semicircle
law.

5 Conclusion

In this paper, we outlined the bosonic BFSS model and how a Hybrid Monte Carlo
algorithm can be used to simulate the dynamics of an 11-dimensional system. Our
results agree with expected behaviour from random matrix theory and analytical
derivations from the BFSS model. However, our simulations were not extensive as
we were severely limited by computational capabilities.
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