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Abstract

The study of black hole entropy provides one of the most useful guides in the development of string theory,
particularly in the absence of direct experimental tests. A condition for the consistency of a theory of quantum
gravity is that it successfully explain the macroscopic thermodynamic entropy of a black hole as a logarithm
of the number of microstates, in accordance with the Boltzmann relation of statistical mechanics. One of
the most significant successes of string theory has been its prediction that the entropy of a class of extremal
supersymmetric black holes, computed in terms of the number of microstates, is equal to that predicted by
the Bekenstein–Hawking formula for black hole entropy. In this report, we compute microstate degeneracies of
quarter-BPS extremal black holes in N = 4 supersymmetric type II string theory compactified on K3×T 2. This
computation involves using the Fourier coefficients of the elliptic genus of K3 to calculate the Igusa cusp form of
weight ten. The microstate numbers are obtained, up to a sign, from the Fourier coefficients of the reciprocal of
this cusp form. The report concludes with a discussion of the decomposition of the Fourier–Jacobi coefficients of
meromorphic Jacobi forms, and the application of this procedure to the computation of microstate degeneracies
of single-centred black holes.
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Chapter 1

Introduction

Our current understanding of the laws of physics is built upon two vastly different theories. The theory of
general relativity describes the large-scale behaviour of our universe, while the theory of quantum mechanics
describes the behaviour of microscopic systems under the framework of the Standard Model of particle physics.
One of the major aims of modern physics is to unify these two theories into a single fundamental theory that
fully describes the laws of nature [1].

One of the prime candidates for this unifying theory is string theory, in which point particles are replaced by
one-dimensional strings. String theory has many features that would be desirable in a unified theory, foremost
of which is its ability to provide a consistent theory of quantum gravity; other attractions include its uniqueness,
its natural incorporation of spacetime supersymmetry, and its ability to describe the Standard Model. However,
a significant problem that plagues research into string theory is the lack of direct experimental evidence for its
claims. The effects of quantum gravity only become appreciable at the Planck scale, which corresponds to an
energy on the order of 1018 GeV. The Large Hadron Collider only probes the electroweak scale, on the order
of 103 GeV, so there does not seem to be much hope of finding direct experimental evidence of string theory in
the foreseeable future [2, 3].

The difficulty of testing string theory experimentally means that any ways of extracting quantitative inform-
ation about the fundamental degrees of freedom of quantum gravity are highly significant. One such source of
information arises in the study of the entropy of black holes. A major success of string theory is that it can
successfully explain the macroscopic thermodynamic entropy of a certain class of black holes as a statistical
entropy that takes the form of a logarithm of the microscopic degeneracy of states [4].

In this report, we will introduce the main concepts of string theory and quantum field theory, which will
allow us to derive the partition functions for bosonic and fermionic strings. By introducing some mathematical
concepts from number theory, we will compute the elliptic genus of the manifold K3. The work will culminate
in the computation of the microstate degeneracies for a class of extremal supersymmetric black holes in string
theory.

1.1 Introduction to String Theory

As mentioned above, string theory is one of the most promising candidates for a theory that unifies all four
fundamental forces of nature. In string theory, all elementary particles are postulated to be one-dimensional
objects called strings, rather than the point particles that form the basis of quantum field theory. These strings
may be open or closed. One of the major attractions of string theory is that it incorporates general relativity
within the framework of a consistent quantum theory. String theory also leads to gauge groups large enough to
contain the Standard Model [1, 2].

1.1.1 Supersymmetry

The consistency of string theory requires supersymmetry, which is a symmetry that relates bosons and fermions.
Representations of the supersymmetry algebra pair every bosonic state with an equal-energy fermionic state,
and vice versa. This means that each particle from one group is paired with another particle in the other group,
called its superpartner. Supersymmetry transformations are generated by supercharges, which are operators
that transform bosons into fermions, and vice versa [1, 5].

An important concept related to supersymmetry in string theory is that of Bogomolnyi–Prasad–Sommerfeld
(BPS) states. These are states that are invariant under a nontrivial subalgebra of the full supersymmetry

5
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algebra. All BPS states carry conserved charges, which exactly determine the mass of the state in a given
moduli space [2]. If such a state preserves half of the total supersymmetries, it is known as a half-BPS state,
while if it preserves a quarter of the original supersymmetries, it is a quarter-BPS state [4].

1.1.2 Worldsheets

Whereas a particle sweeps out a worldline in Minkowski space as time progresses, a string sweeps out a world-
sheet. This worldsheet can be parameterised by one timelike coordinate, τ , and one spacelike coordinate, σ. For
a closed string, σ is periodic and we take it to have range σ ∈ [0, 2π). A string therefore sweeps out a surface
in spacetime which defines a map Xµ(τ, σ) from the worldsheet to Minkowski space, where µ = 0, . . . , D − 1
for a spacetime of dimension D. Sometimes the two worldsheet coordinates are combined into one entity
σα = (τ, σ), with α = 0, 1. The worldsheets of typical open and closed strings are illustrated in Figure 1.1. In
most cases, the solution to the equation of motion for a string has left-moving (holomorphic) and right-moving
(anti-holomorphic) components [3]. In this work, we follow the notation of [2] and distinguish between the two
types by placing a tilde ˜ above anti-holomorphic operators.

Figure 1.1: Typical worldsheets swept out by an open string (shown on the left) and closed string (shown on
the right) in spacetime.

The original version of string theory is bosonic string theory, in which string worldsheets have only bosonic
modes. In this case, the required critical dimension of spacetime is found to be D = 26. Since this theory does
not predict the existence of fermions, it is not a valid candidate for a true physical model. In contrast, superstring
theory also incorporates fermionic modes, and the corresponding critical dimension is D = 10. We will denote
the bosonic string worldsheet by X(τ, σ), and the fermionic string worldsheet by ψµ(τ, σ). Depending on the
theory, it is possible for strings to obey periodic or anti-periodic boundary conditions, or even more general
twisted boundary conditions. In the basic unorbifolded case, for a closed bosonic string, we require that

Xµ(τ, σ) = Xµ(τ, σ + 2π), (1.1)

while for a closed fermionic string, we require that

ψµ(τ, σ) = ±ψµ(τ, σ + 2π), (1.2)

where the plus sign corresponds to periodic boundary conditions (also known as the Ramond sector or R sector),
and the minus sign corresponds to anti-periodic boundary conditions (also known as the Neveu–Schwarz sector
or NS sector).

When fermionic modes are added to the bosonic modes on the worldsheet, the resulting worldsheet theory
is supersymmetric, so the strings in this theory are called superstrings. Depending on whether fermionic modes
are included in both the left- and right-moving sectors or just in the right-moving sector, there are two different
classes of superstring theory, which are further subdivided into five distinct theories:

1. Type II strings have both left- and right-moving worldsheet fermions. The resulting spacetime theory in
ten dimensions has N = 2 supersymmetry, meaning that there are 32 (real) supercharges. This class is
further subdivided into type IIA, where the supersymmetries associated with the left-moving and right-
moving modes have opposite handedness, and type IIB, where the left-movers and right-movers have the
same handedness. [1, 3]. A third theory called type I can be derived from type IIB using a procedure
called orientifold projection, which is similar to the concept of orbifolding discussed in Section 1.1.3, but
results in a theory with unoriented strings [6].
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2. Heterotic strings have just right-moving worldsheet fermions. The resulting spacetime theory in ten
dimensions has N = 1 supersymmetry, meaning 16 (real) supercharges. Since this theory corresponds to
the use of the D = 26 bosonic formalism for the left-moving modes and the D = 10 superstring formalism
for the right-moving modes, there are 16 extra left-moving dimensions. These extra dimensions must take
the form of a torus, with a corresponding Lie algebra of SO(32) or E8×E8. For this reason, the heterotic
class is further subdivided into SO(32) heterotic and E8 × E8 heterotic [1, 3].

In the late 1980s, the concept of string duality was discovered. It was found that the two type II string theories
can be related by an equivalence of compactification geometries (see the discussion of compactification below)
known as T-duality, as can the two heterotic theories, meaning that these are not truly distinct string theories. In
another major development, the discovery of S-duality in the 1990s showed that strongly-coupled type I theory
is equivalent to weakly-coupled SO(32) heterotic theory, and that the type IIB theory is self-dual. Finally,
the type IIA and E8 × E8 heterotic string theories were found to give rise to an eleventh dimension at strong
coupling, leading to the emergence of a new 11-dimensional theory called M-theory. In fact, M-theory allows
all five superstring theories to be unified into a single theory [1, 7].

In fact, string theory exhibits even more dualities, since the S-duality and T-duality groups can be combined
to produce the more general U-duality group. In Chapter 6, we will consider type II string theory compactified
on the internal manifold K3 × T 2. This theory has been found to exhibit a highly nontrivial duality with
heterotic string theory compactified on T 6 [8, 9].

1.1.3 Compactification and Orbifolds

String theory is only consistent in a ten-dimensional (or in some cases eleven-dimensional) spacetime. The
concept of compactification attempts to reconcile this higher-dimensional spacetime with the four-dimensional
spacetime that we observe. The idea is that the extra dimensions of string theory may be compactified on an
internal manifold, or target space, of a very small size. In other words, six (or seven) of the spacetime dimensions
are ‘curled up’ so as to be too small for us to detect, and we observe only the remaining four [1]. Superstring
theories are generally formulated in ten-dimensional Lorentzian spacetimeM10, and a compactification to four
dimensions is achieved by taking M10 = R1,3 × X6, where R1,3 is the familiar non-compact four-dimensional
Minkowski spacetime, and X6 is a compact Calabi–Yau manifold of three complex dimensions [4]. In Chapter
6, we will consider black holes on the spacetime with the internal manifold X6 = K3× T 2.

The compactification of certain spacetime dimensions can be achieved using identifications, where points in
a space are identified with each other according to certain equivalence relations. If M is a manifold and G is a
set of equivalence relations, then the quotient space M/G consists of the set of equivalence classes of M . More
explicitly, if G is a discrete isometry group, then a point in M/G corresponds to a point in M , plus all of its
images under the action of the isometries [1]. The fundamental domain of an identification is a subset of the
entire space such that

1. No two distinct points in the fundamental domain are identified, and

2. Any point in the entire space is identified with some point in the fundamental domain.

To provide a simple example, consider the xy-plane subject to the identifications

(x, y) ∼ (x+ 2πa, y), (x, y) ∼ (x, y + 2πb). (1.3)

In this case, the fundamental domain is the rectangle [0, 2πa]× [0, 2πb]. The horizontal edges of this square are
identified, as are the vertical edges. The resulting compactified space is the two-torus T 2 [10]. This procedure
is illustrated in Figure 1.2.

Figure 1.2: We can visualise the application of the given identification (1.3) to the fundamental domain as
‘gluing’ the horizontal (red) sides together to form a cylinder, and then bending this cylinder to glue the
vertical (blue) sides together. The resulting compactified space is the two-torus T 2, where the large (red) circle
has radius a and the smaller (blue) circle has radius b.
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Some identifications have fixed points, which are points that are related to themselves by the identification
[10]. This gives rise to the closely related concept of an orbifold. A quotient space M/G of a manifold M by a
set of discrete symmetries G is an orbifold of M if any of the identifications in G have fixed points. In that case,
the quotient space has singularities. Away from these singularities, the orbifold M/G is locally indistinguishable
from the original manifold M [1].

In general, there are two types of physical states that occur in the spectrum of free strings on an orbifold
M/G:

• Untwisted states are states that exist on M and are invariant under the group G.

• Twisted states are new closed string states that appear only after orbifolding. Consider the theory of
closed strings on M . A string in such a theory must satisfy the boundary condition Xµ(σ) = Xµ(σ+ 2π),
meaning that it must start and end at the same point. A string that connects a point of M to one of its
identifications under G is not an allowed configuration on M , since it is open. However, such a configur-
ation is permissible on M/G, where it corresponds to a closed-string configuration. Mathematically, this
corresponds to the condition

Xµ(σ + 2π) = gXµ(σ) (1.4)

for some g ∈ G. There are generally several twisted sectors, which can be labelled by the corresponding
group elements g. The untwisted states correspond to g = 1 [1].

Strings can propagate consistently on spaces with orbifold singularities provided that twisted sectors are taken
into account. This allows a new string theory, defined on M/G, to be produced from a string theory defined
on M . The string theory on the orbifold typically exhibits more breaking of supersymmetries, making it more
desirable as a description of our physical reality.

In Chapter 5, we will see how the manifold K3 can be realised as an orbifold T 4/Z2, where the group action of
Z2 = {1,−1} corresponds to the identification of antipodal points. In general, the cyclic group ZN is generated
by g0 = e2πi/N , so ZN has elements gk0 = e2πik/N for 0 ≤ k ≤ N − 1 [1]. In Chapter 6, we will be concerned
with ZN Chaudhuri–Hockney–Lykken (CHL) models, first introduced in [11], which are obtained by taking the
ZN quotient of heterotic string theory compactified on T 6.

The concept of identifications is also related to the idea of moduli, which are the parameters labelling the
geometry of a manifold. Notable examples are the parameters for the geometry of compactification. The set of
values that the parameters can take is known as the moduli space [2, 10]. For example, the only modulus of
the two-torus T 2 defined by (1.3) is the ratio τ = a/b, and tori with ratio τ and 1/τ are conformally equivalent
(see section 1.1.4 below). Hence the tori with 0 < τ ≤ 1 are conformally equivalent to tori with 1 ≤ τ <∞. It
can be shown that there is no further conformal map that produces a further identification, so that the moduli
space of two-tori can be chosen to be either the interval 0 < τ ≤ 1 or the interval 1 ≤ τ <∞, of which latter is
the canonical choice [10].

1.1.4 Conformal Field Theory

A conformal transformation of spacetime is a change of coordinates xµ → x̃µ such that the metric transforms
according to

gµν → g̃µν = ω2(x)gµν , (1.5)

where ω(x) is some non-vanishing function and x refers to the set of spacetime coordinates xµ. This transform-
ation is essentially a local rescaling. A key property of conformal transformations is that they leave null curves
invariant. To show this, we recall that a curve xµ(λ) is null with respect to gµν if and only if its tangent vector
is null with respect to gµν :

gµν
dxµ

dλ

dxν

dλ
= 0. (1.6)

This then implies that

g̃µν
dxµ

dλ

dxν

dλ
= ω2(x)gµν

dxµ

dλ

dxν

dλ
= 0, (1.7)

so any curve which is null with respect to gµν will also be null with respect to the transformed metric g̃µν . This
means that light cones are invariant under conformal transformations [12].

A conformal field theory (CFT) is a field theory which is invariant under conformal transformations. This
means that the physics described by the theory looks the same at all length scales [3]. Such theories are
important in string theory because the reparameterisation invariance of the (τ, σ) coordinate system on string
worldsheets is equivalent to conformal invariance. [13]. The quantum field theory on the string worldsheet is
thus a two-dimensional CFT [14].
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A superconformal field theory (SCFT) is a conformal field theory which also incorporates supersymmetry.
Such theories are naturally incorporated into superstring theory.

1.2 Introduction to Black Holes

1.2.1 Classical Black Holes

In general relativity, a black hole is an asymptotically flat spacetime that contains a region which is not in the
backwards light cone of future timelike infinity. The boundary of such a region is called the event horizon of
the black hole [4]. The term ‘black hole’ is derived from the fact that it is impossible to see inside such a region,
since nothing can escape from behind the event horizon.

1.2.1.1 Schwarzschild Black Holes

In classical general relativity, the unique spherically symmetric vacuum solution of the Einstein equation Rµν −
1
2gµν = 0 is the Schwarzschild metric, given in spherical coordinates (t, r, θ, φ) as

ds2 = gµν dx
µ dxν = −

(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 +r2 dΩ2, (1.8)

where M is identified as the mass of the gravitating object and dΩ2 is the metric on S2,

dΩ2 = dθ2 + sin2 θ dφ2 . (1.9)

This metric has a true singularity at r = 0. It also seems to be singular at r = 2GM , where g00 → 0 and
grr → ∞, but this is in fact merely a coordinate singularity and can be removed by a coordinate change. The
surface defined by r = 2GM is the event horizon of the Schwarzschild black hole [4, 12].

Aside from the radius or area of the event horizon, another important black hole parameter is the surface
gravity κ. In a static, asymptotically flat spacetime, the surface gravity is the acceleration experienced by a
static observer near the horizon, as measured by a static observer at infinity [12]. For the Schwarzschild black
hole, κ = 1/4GM [4].

1.2.1.2 Black Hole Thermodynamics

In classical general relativity, black holes obey three main mechanical laws. In brief, the zeroth law of black
hole mechanics states that the surface gravity κ of a stationary black hole is constant on the event horizon; the
first law is a statement of the conservation of energy or, equivalently, conservation of mass; and the second law
states that the area of a black hole is nondecreasing [4, 12]. These three laws bear a close resemblance to the
first three laws of thermodynamics, as is summarised in Table 1.1.

Law Thermodynamics Black Hole Mechanics

Zeroth The temperature T of a body in thermal equilibrium
is constant throughout the body.

The surface gravity κ of a stationary black hole is
constant on the event horizon.

First The energy of a closed system is conserved. Math-
ematically,

dE = TdS + µdQ+Ω dJ, (1.10)

where S is the entropy of the system, Q is the charge,
µ is the chemical potential, J is the angular mo-
mentum, and Ω is the angular velocity.

The energy of a black hole is conserved. Mathemat-
ically,

dM =
κ

8πG
dA+ µdQ+Ω dJ, (1.11)

where M is the mass of the black hole, and A is the
area, µ is the chemical potential, J is the spin, and
Ω is the angular velocity.

Second In any physical process, the total entropy S of the
universe never decreases:

∆S ≥ 0.

In any physical process, the total area A of a black
hole never decreases:

∆A ≥ 0.

Table 1.1: The first three laws of thermodynamics, alongside the corresponding laws of black hole mechanics.
The information presented here is taken from [4], where a similar table also appears.

As we will see in the next section, the correspondence between black hole mechanics and thermodynamics
goes deeper than a mere superficial similarity. In fact, a semiclassical treatment shows that the area of a black
hole can be considered a measure of its entropy [4, 12].
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1.2.2 Semiclassical Black Holes

If an object possessing entropy falls into a classical black hole, then the net entropy of the outside world de-
creases. Classical black holes therefore violate the second law of thermodynamics. This violation can be resolved
by making the assumption that the black hole itself possesses entropy. It then follows from thermodynamic
principles that if a black hole has energy E and entropy S, then it must also have a temperature T derived from

1

T
=
∂S

∂E
. (1.12)

But if a black hole has a temperature, then it must radiate like any other thermal body. For a classical black
hole, this is impossible since nothing can escape the event horizon. This can be resolved through a semiclassical
description of black holes.

In the semiclassical treatment, the classical description of spacetime in general relativity is retained, while
fields such as the electromagnetic field are treated quantum mechanically. When quantum effects are included,
black holes can indeed radiate, as was shown by Hawking [15]. Quantum theory predicts the constant production
of particle-antiparticle pairs, even in vacuum. Near the event horizon, an antiparticle can occasionally fall
into the black hole while its partner particle escapes to infinity. This provides a heuristic explanation of
Hawking radiation. A detailed calculation shows that the spectrum emitted by the black hole is thermal, with
a temperature known as the Hawking temperature:

T =
κ

2π
, (1.13)

where κ is the surface gravity of the black hole. For a Schwarzschild black hole of mass M and area A, for
which µ = Ω = 0, the first law of thermodynamics, given by (1.11), is

dM = TdS =
κ

8πG
dA. (1.14)

We can use this to determine a formula for the entropy of a black hole in terms of its area:

S =
A

4G
. (1.15)

This is known as the Bekenstein–Hawking entropy [4, 12]. It is notable that the entropy is proportional to the
area of the black hole rather than its volume, as would typically be expected in thermodynamics.

1.2.2.1 Reissner–Nordström Black Holes

The most general static, spherically symmetric, charged solution of the Einstein–Maxwell field equations is the
Reissner–Nordström metric, given by

ds2 = −
(

1− 2M

r
+
Q2 + P 2

r2

)
dt2 +

(
1− 2M

r
+
Q2 + P 2

r2

)−1

dr2 +r2 dΩ2, (1.16)

where we have chosen units in which G = 1. In this solution, Q is the total electric charge of the black hole, and
P is the total magnetic charge. String theory allows for the existence of dyons, which are hypothetical particles
which carry both electric and magnetic charge [16], so it is pertinent to include a magnetic charge here, even
though magnetic monopoles have not been observed experimentally [12]. The event horizon is located at r such
that grr = 0, or

1− 2M

r
+
Q2 + P 2

r2
= 0⇐⇒ ∆(r) := r2 − 2Mr +Q2 + P 2 = 0. (1.17)

The function ∆(r) is plotted in Figure 1.3. The quadratic equation ∆(r) = 0 has two solutions:

r± = M ±
√
M2 − (Q2 + P 2). (1.18)

Hence the Reissner–Nordström black hole has an outer event horizon at radius r+ and an inner event horizon
at r−, and the area of the black hole is A = πr2

+.
The temperature and entropy of such a black hole are then [4]

T =

√
M2 − (Q2 + P 2)

2π
(

2M
(
M +

√
M2 − (Q2 + P 2)

)
− (Q2 + P 2)

) (1.19a)

S = π
(
M +

√
M2 − (Q2 + P 2)

)
. (1.19b)
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r− M r+ 2M

M2 < Q2 + P 2

M2 = Q2 + P 2

M2 > Q2 + P 2

Q = P = 0

r

∆(r) Figure 1.3: The left-hand side ∆(r) of the Reiss-
ner–Nordström quadratic equation (1.17) for dif-
ferent ratios of M2 to Q2 + P 2. The zeroes of this
function correspond to event horizons of the black
hole. The case M2 < Q2 + P 2 includes a naked
singularity and is generally considered to be un-
physical [12], while the case M2 = Q2 +P 2 corres-
ponds to an extremal black hole, which is of in-
terest in this report. The corresponding function
for the Schwarzschild solution, in which the black
hole is uncharged, is shown as a dashed line. This
figure is based on a graph from [12].

1.2.2.2 Extremal Black Holes

For the definitions of temperature and entropy of a Reissner–Nordström black hole to be physically sensible,
the mass M of the black hole must satisfy the constraint M2 ≥ Q2 + P 2. Black holes for which this bound is
saturated, with M =

√
Q2 + P 2, are called extremal black holes. In this case, r+ = r− =

√
Q2 + P 2, so that

the inner and outer event horizons coincide and the metric (1.16) assumes the form

ds2 = −

(
1−

√
Q2 + P 2

r

)
dt2 +

(
1−

√
Q2 + P 2

r

)−1

dr2 +r2 dΩ2 . (1.20)

In this extremal limit, we note that the temperature of the black hole approaches zero, whereas the entropy
has a finite limit of π

√
Q2 + P 2. Thus extremal black holes have a large entropy even though they are stable

against Hawking radiation [4].
Extremal black holes are of relevance in this work because they can preserve certain symmetries in su-

persymmetric theories [12]. In Chapter 6, we will compute the microstate degeneracy for a class of extremal
supersymmetric black holes in string theory.

1.2.3 String Theoretic Black Holes

The entropy of black holes provides a way to test the validity of theories of quantum gravity, such as string
theory. For such a theory to be consistent, it must predict that the thermodynamic entropy of a black hole is
equal to its statistical entropy. One of the successes of string theory is that it describes the thermodynamic
entropy of certain supersymmetric black holes as a logarithm of the microscopic degeneracy of states d, as
required by the Boltzmann relation of statistical mechanics, S = ln d. The constraints imposed on the entropy
of black holes provide a very useful guide in quantum gravity research, where direct experimental guidance is
extremely limited [4].

1.3 Outline

The primary aim of this project is to compute the number of microstates of a class of supersymmetric black holes
in string theory. In the pursuit of this goal, we find it necessary to introduce several concepts and definitions
from quantum field theory, string theory and number theory.

In Chapter 2, we provide a brief introduction to quantum field theory. This includes a discussion of the
canonical quantisation of the Klein-Gordon and Dirac fields, as well as a short explanation of renormalisation.

Chapter 3 contains the computation of the partition functions for free closed bosonic and fermionic strings.
The results obtained here are of relevance to the computation of the elliptic genus of K3 in Chapter 5.

Chapter 4 contains the formal definitions of the mathematical objects used in this work, including modular
forms, Siegel modular forms, Eisenstein series, and Jacobi forms. We also define the Dedekind eta function and
the Jacobi theta functions.

In Chapter 5, we compute the elliptic genus of K3 by realising K3 as a SCFT in the orbifold limit T 4/Z2.
This computation uses some of the results obtained for the string partition functions in Chapter 3. We also
briefly discuss the generalisation to the twisted elliptic genus of K3.

Chapter 6 constitutes the main part of the project, in which we compute the number of microstates of
quarter-BPS extremal black holes in N = 4 supersymmetric type II string theory compactified on K3×T 2. We
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BLACK HOLE ENTROPY IN STRING THEORY

also extend this computation to the 2A orbifold of K3× T 2. In both cases our results are found to agree with
the literature [17].

In Chapter 7, we introduce mock modular forms and discuss the results from [18] which have a physical
interpretation in terms of the region of the moduli space in which single-centred black hole configurations may
be found.

Finally, in Chapter 8, we present our conclusions and discuss possible future topics of interest in this research
area.
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Chapter 2

Introduction to Quantum Field Theory

Quantum field theory arises out of the combination of three major areas in physics: quantum mechanics, field
theory, and special relativity. It underlies modern elementary particle physics, as described within the framework
of the Standard Model, as well as providing insight into a wide range of other areas of physics, including
nuclear physics, atomic physics, condensed matter physics, and astrophysics. By most standards, the theory
of quantum electrodynamics (QED) is the most successful of all physical theories, with its predictions agreeing
with experimental results to astonishing levels of accuracy. To provide just one example, the QED prediction
for the Landé g-factor of the electron agrees with the experimentally-measured value to eight significant figures
[5].

However, there remain a number of outstanding problems in quantum field theory. The most glaring of
these is the absence of a well-defined quantum theory of gravity. Quantum theories that incorporate gravity as
a weak-coupling field theory are found to be nonrenormalisable, as discussed below, and it seems probable that
quantum field theory will break down at the Planck scale of very small spacetime distances. One of the most
ambitious goals of modern physics is finding a theory of everything that successfully reconciles quantum field
theory and the theory of gravity. String theory has emerged as a strong possible candidate for this theory [5].

In this chapter, we discuss some of the basic concepts of quantum field theory. We begin by discussing the
canonical quantisation of the Klein-Gordon and Dirac fields, and follow this with a brief review of renormalisa-
tion. The concepts introduced here will be of use in Chapter 3, when we come to examine the quantisation of
bosonic and fermionic strings.

2.1 Canonical Quantisation

Quantisation is the process whereby a classical theory is converted to a quantum theory. In preparation for our
discussion of the quantisation of strings in Chapter 3, we first recall the steps involved in quantising the two
simplest relativistic fields: the Klein–Gordon field and the Dirac field. We will see that Klein–Gordon particles
are bosons, whereas Dirac particles are fermions. The material in this section is based on [5].

2.1.1 The Classical Klein–Gordon Field

The classical Klein–Gordon field φ in four-dimensional spacetime is described by the Lagrangian density

L =
1

2
φ̇2 − 1

2
(∇φ)

2 − 1

2
m2φ2

=
1

2
(∂µφ)

2 − 1

2
m2φ2. (2.1)

The equations of motion can be obtained from the Lagrangian density using the Euler-Lagrange equations:

0 = ∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

=
(
∂µ∂µ +m2

)
φ. (2.2)

This is the Klein–Gordon equation. The momentum density conjugate to φ is

π(x) =
∂L
∂φ̇(x)

= φ̇(x), (2.3)
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which allows us to construct the Hamiltonian density:

H = π(x)φ̇(x)− L =
1

2
π2 +

1

2
(∇φ)

2
+

1

2
m2φ2. (2.4)

Hence the Hamiltonian is

H =

∫
H d3x =

∫ [
1

2
π2 +

1

2
(∇φ)

2
+

1

2
m2φ2

]
d3x . (2.5)

It is also useful to recall that the energy-momentum tensor of the field φ is defined by

Tµν =
∂L

∂(∂µφ)
∂νφ− Lδµν . (2.6)

For the Klein-Gordon field, we have

T 0
0 =

∂L
∂φ̇

φ̇− L = H, (2.7a)

T 0
i =

∂L
∂φ̇

∂iφ = π∂iφ. (2.7b)

Thus the conserved charge associated with time translations is the spatial integral over T 00, which is simply
the Hamiltonian H, while the conserved charges associated with spatial translations are

P i =

∫
T 0i d3x = −

∫
π∂iφd

3x, (2.8)

which are interpreted as the components of the physical momentum carried by the field.
Finally, note that if we expand φ in Fourier space as

φ(x, t) =

∫
d3p

(2π)
3 e

ip·x φ(p, t), (2.9)

then the Klein–Gordon equation becomes[
∂2

∂t2
+
(
|p|2 +m2

)]
φ(p, t) = 0. (2.10)

This is the equation of motion for a simple harmonic oscillator with frequency

ωp =

√
|p|2 +m2. (2.11)

2.1.2 Quantisation of the Klein–Gordon Field

We will quantise the Klein–Gordon field in the Schrödinger picture, where φ and π do not depend on time. To
do this, we promote φ and π to operators and impose the following commutation relations:

[φ(x), π(y)] = iδ(3)(x− y)

[φ(x), φ(y)] =[φ(x), φ(y)] = 0. (2.12)

Next, we aim to find the spectrum of the Hamiltonian. With this goal in mind, we expand the field and its
conjugate momentum density in Fourier space as

φ(x) =

∫
d3p

(2π)
3

1√
2ωp

(
ape

ip·x + a†pe
−ip·x) (2.13a)

π(x) =

∫
d3p

(2π)
3 (−i)

√
ωp

2

(
ape

ip·x − a†pe−ip·x
)
. (2.13b)

For convenience, we can rearrange these to isolate the exponential factor:

φ(x) =

∫
d3p

(2π)
3

1√
2ωp

(
ap + a†−p

)
eip·x (2.14a)

π(x) =

∫
d3p

(2π)
3 (−i)

√
ωp

2

(
ap − a†−p

)
eip·x. (2.14b)
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Taking the inverse Fourier transform, we have∫
φ(x)eip

′·xd3x =

∫ ∫
d3p d3x

(2π)
3

1√
2ωp

(
ap + a†−p

)
ei(p+p′)·x

=

∫ ∫
d3p d3x

(2π)
3

1√
2ωp

(
ap + a†−p

)
ei(p+p′)·x

=

∫
d3p√
2ωp

(
ap + a†−p

)
δ(3)(p + p′)

=
1√
2ωp′

(
a−p′ + a†p′

)
(2.15)

and ∫
π(x)eip

′·xd3x =

∫ ∫
d3p d3x

(2π)
3 (−i)

√
ωp

2

(
ap − a†−p

)
ei(p+p′)·x

= −i
∫ ∫

d3p d3x

(2π)
3

√
ωp

2

(
ap − a†−p

)
ei(p+p′)·x

= −i
∫
d3p

√
ωp

2

(
ap − a†−p

)
δ(3)(p + p′)

= −i
√
ωp′

2

(
a−p′ − a†p′

)
. (2.16)

Hence we obtain the following linear system (where we have relabelled p′ as p):

a−p + a†p =
√

2ωp

∫
φ(x)eip·x d3x

a−p − a†p = i

√
2

ωp

∫
π(x)eip·x d3x . (2.17)

This can easily be solved to find that

ap =

√
1

2ωp

∫
(ωpφ(x) + iπ(x))e−ip·x d3x (2.18a)

a†p =

√
1

2ωp

∫
(ωpφ(x)− iπ(x))eip·x d3x . (2.18b)

Hence imposing the canonical commutation relations, we find that[
ap, a

†
p′

]
=

1

2
√
ωpωp′

∫ ∫
[ωpφ(x) + iπ(x), ωp′φ(x′)− iπ(x′)]e−ip·x+ip′·x′ d3x d3x′

=
i

2
√
ωpωp′

∫ ∫
(−ωp[φ(x), π(x′)] + ωp′ [π(x), φ(x′)])e−ip·x+ip′·x′ d3x d3x′

=
i

2
√
ωpωp′

∫ ∫ (
−iωpδ

(3)(x− x′)− iωp′δ
(3)(x− x′)

)
e−ip·x+ip′·x′ d3x d3x′

=
ωp + ωp′

2
√
ωpωp′

∫
e−i(p−p

′)·x d3x

=
ωp + ωp′

2
√
ωpωp′

(2π)
3
δ(3)(p− p′)

= (2π)
3
δ(3)(p− p′). (2.19)

To find the quantised Hamiltonian, we begin by computing the gradient of φ:

∇φ =

∫
d3p

(2π)
3

−ip√
2ωp

(
ap + a†−p

)
eip·x, (2.20)
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which means that

(∇φ)
2

=

∫
d3p d3p′

(2π)
6

−p · p′

2
√
ωpωp′

(
ap + a†−p

)(
ap′ + a†−p′

)
ei(p+p′)·x. (2.21)

The Hamiltonian can now be written as

H =

∫
d3x

[
1

2
π2 +

1

2
(∇φ)

2
+

1

2
m2φ2

]
=

∫
d3x

∫
d3p d3p′

(2π)
6 ei(p+p′)·x

[
−
√
ωpωp′

4

(
ap − a†−p

)(
ap′ − a†−p′

)
+
−p · p′ +m2

4
√
ωpωp′

(
ap + a†−p

)(
ap′ + a†−p′

)]
=

∫
d3p d3p′

(2π)
3

δ(p + p′)

4
√
ωpωp′

[
−ωpωp′

(
ap − a†−p

)(
ap′ − a†−p′

)
+
(
−p · p′ +m2

)(
ap + a†−p

)(
ap′ + a†−p′

)]
=

∫
d3p

(2π)
3

ωp

4

[
−
(
ap − a†−p

)(
a−p − a†p

)
+
(
ap + a†−p

)(
a−p + a†p

)]
=

∫
d3p

(2π)
3

ωp

2

(
apa

†
p + a†pap

)
=

∫
d3p

(2π)
3ωp

(
a†pap +

1

2

[
ap, a

†
p

])
, (2.22)

where we have used the fact that ωp = |p|2 +m2. The second term here is proportional to δ(0), which is infinite
and comes from summing over all modes of the zero-point energies ωp/2. However, since only energy differences
from the ground state are physically meaningful, this infinite term can simply be dropped from all calculations.
This can be seen as a form of renormalisation, which will be discussed further at the end of this chapter.

We can now evaluate the commutator[
H, a†p

]
=

∫
d3p′

(2π)
3ωp′

[
a†p′ap′ , a

†
p

]
=

∫
d3p′

(2π)
3ωp′a

†
p′

[
ap′ , a

†
p

]
=

∫
d3p′

(2π)
3ωp′a

†
p′(2π)

3
δ(3)(p− p′)

= ωpa
†
p, (2.23)

and similarly
[H, ap] = −ωpap. (2.24)

We define the ground state or vacuum to be the state |0〉 such that ap|0〉 = 0 for all p, which has energy
E = 0. All other energy eigenstates can be formed by acting on |0〉 with creation operators a†p, and the state

a†pa
†
q · · · |0〉 is an energy eigenstate with eigenvalue ωp+ωq+. . . We have thus succeeded in finding the spectrum

of the Klein–Gordon Hamiltonian. We note that the creation operator a†p can be applied to a state to create
arbitrarily many particles in a single mode p. This means that the occupation number of each state in the
Klein–Gordon theory is unbounded, so that Klein–Gordon particles obey Bose–Einstein statistics.

2.1.3 The Classical Dirac Field

To discuss the Dirac field, it is convenient to introduce the set of four four-dimensional Dirac matrices, which
can be written in 2× 2 block form as

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
, (2.25)

where σi are the Pauli sigma matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.26)

These matrices satisfy the Dirac algebra,
{γµ, γν} = 2gµν , (2.27)
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and provide a representation of the Lorentz algebra with generators

Sµν =
i

4
[γµ, γν ]. (2.28)

Explicitly, the generators of Lorentz boosts are

S0i =
i

4

[
γ0, γi

]
= − i

2

(
σi 0
0 −σi

)
, (2.29)

while the generators of rotations are

Sij =
i

4

[
γi, γj

]
=

1

2
εijk
(
σk 0
0 σk

)
. (2.30)

A four-component field that transforms under boosts and rotations according to these rules is called a Dirac
spinor. Since S0i is not Hermitian, ψ†ψ is not a Lorentz invariant. It is therefore useful to define ψ̄ ≡ ψ†γ0, so
that ψ̄ψ is Lorentz invariant. The Lagrangian density for the Dirac field is then

L = ψ̄(iγµ∂µ −m)ψ

= iψ̄γ0ψ̇ + iψ̄γ · ∇ψ −mψ̄ψ. (2.31)

The equation of motion for ψ̄ derived from this is

0 =
∂L
∂ψ̄
− ∂µ

(
∂L

∂
(
∂µψ̄

)) = (iγµ∂µ −m)ψ, (2.32)

which is the Dirac equation. The canonical momentum density conjugate to ψ is

π(x) =
∂L
∂ψ̇

= iψ†γ0γ0 = iψ†, (2.33)

so that the Dirac Hamiltonian density is easily found to be

H = π(x)ψ̇(x)− L
= iψ†ψ̇ − iψ̄γ0ψ̇ − iψ̄γ · ∇ψ +mψ̄ψ

= ψ̄(−iγ · ∇+m)ψ. (2.34)

The Dirac Hamiltonian is thus

H =

∫
d3x ψ̄(−iγ · ∇+m)ψ. (2.35)

We note that the Dirac equation implies the Klein–Gordon equation, since acting on the left by (−iγµ∂µ −m)
gives

0 = (−iγµ∂µ −m)(iγν∂ν −m)ψ

=
(
γµγν∂µ∂ν +m2

)
ψ

=

(
1

2
{γµ, γν}∂µ∂ν +m2

)
ψ

=
(
∂2 +m2

)
ψ. (2.36)

We can therefore look for plane wave solutions of the Dirac equation. For positive frequencies, these have the
form

ψ(x) = u(p)e−ip·x, (2.37)

where p2 = m2 and p0 > 0. Substituting this ansatz into the Dirac equation, we find that

(γµpµ −m)u(p) = 0.

The solution of this equation is

u(p) =

(√
p · σξ√
p · σ̄ξ

)
,
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where σ ≡ (1,σ), σ̄ ≡ (1,−σ) and ξ is any two-component spinor, conventionally normalised such that ξ†ξ = 1.
There are thus two linearly independent positive-frequency solutions:

us(p) =

(√
p · σξs√
p · σ̄ξs

)
, s = 1, 2, (2.38)

where ξ1and ξ2 are orthonormal two-component basis spinors, so that the solutions are normalised according to

ūr(p)us(p) = 2mδrs or ur†(p)us(p) = 2Epδ
rs. (2.39)

Similarly, negative-frequency solutions have the form

ψ(x) = v(p)eip·x, (2.40)

with two linearly independent solutions,

vs(p) =

( √
p · σηs

−
√
p · σ̄ηs

)
, s = 1, 2, (2.41)

where η is another basis of two component spinors and v̄r(p)vs(p) = −2mδrs.

v̄r(p)vs(p) = −2mδrs or vr†(p)vs(p) = 2Epδ
rs. (2.42)

We note that while ur†(p)vs(p) 6= 0 and vr†(p)us(p) 6= 0 in general, we do have the relation

ur†(p)vs(−p) = ur†(p)vs(−p) = 0. (2.43)

2.1.4 Quantisation of the Dirac Field

Expanding ψ and ψ† in the basis obtained above, we have

ψ(x) =

∫
d3p

(2π)
3

1√
2Ep

∑
s

(
aspu

s(p)e−ip·x + bs†p v
s(p)eip·x

)
, (2.44a)

ψ†(x) =

∫
d3p

(2π)
3

1√
2Ep

∑
s

(
bspv

s†(p)e−ip·x + as†p u
s†(p)eip·x

)
. (2.44b)

Taking the inverse Fourier transform at t = 0, we have∫
ψ(x)eiq·x d3x =

∫ ∫
d3p d3x

(2π)
3

1√
2Ep

∑
s

(
aspu

s(p)eip·x + bs†p v
s(p)e−ip·x

)
eiq·x

=

∫
d3p√
2Ep

∑
s

(
aspu

s(p)δ(3)(p + q) + bs†p v
s(p)δ(3)(p− q)

)
=

1√
2Eq

∑
s

(
as−qu

s(−q) + bs†q v
s(q)

)
, (2.45)

and ∫
ψ†(x)eiq·x d3x =

∫ ∫
d3p d3x

(2π)
3

1√
2Ep

∑
s

(
bspv

s†(p)eip·x + as†p u
s†(p)e−ip·x

)
eiq·x

=

∫
d3p√
2Ep

∑
s

(
bspv

s†(p)δ(3)(p + q) + as†p u
s†(p)δ(3)(p− q)

)
=

1√
2Eq

∑
s

(
bs−qv

s†(−q) + as†q u
s†(q)

)
. (2.46)

We now isolate the operators using relations (2.39), (2.42) and (2.43) as follows:∫
ur†(−q)ψ(x)eiq·x d3x =

1√
2Eq

∑
s

ur†(−q)
(
as−qu

s(−q) + bs†q v
s(q)

)
=

1√
2Eq

∑
s

as−q(2E−qδ
rs)

=
√

2E−qa
r
−q,

18
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and similarly ∫
vr†(q)ψ(x)eiq·x d3x =

√
2Eqb

r†
q .

For ψ†, we also have ∫
ψ†(x)vr(−q)eiq·x d3x =

√
2E−qb

r
−q∫

ψ†(x)ur(q)eiq·x d3x =
√

2Eqa
r†
q .

Hence we obtain the expressions

arq =
1√
2Eq

∫
ur†(q)ψ(x)e−iq·x d3x, brq =

1√
2Eq

∫
ψ†(x)vr(q)e−iq·x d3x,

ar†q =
1√
2Eq

∫
ψ†(x)ur(q)eiq·x d3x, br†q =

1√
2Eq

∫
vr†(q)ψ(x)eiq·x d3x . (2.47)

We now aim to quantise the Dirac field. Unlike in the Klein–Gordon case, we cannot impose commutation rela-
tions on the Dirac field, as this would lead to states of negative energy. We instead impose the anticommutation
relations {

ψa(x), ψ†b(y)
}

= δ(3)(x− y)δab

{ψa(x), ψb(y)} =
{
ψ†a(x), ψ†b(y)

}
= 0. (2.48)

We then find that{
arp, a

s†
q

}
=

1

2
√
EpEq

∫ ∫
d3x d3x′ ur†(p)

{
ψ(x), ψ†(x′)

}
us(q)e−ip·x+iq·x′

=
1

2
√
EpEq

∫ ∫
d3x d3x′ ur†(p)δ(3)(x− x′)us(q)e−ip·x+iq·x′

=
1

2
√
EpEq

ur†(p)us(q)

∫
d3x e−i(p−q)·x

=
1

2
√
EpEq

ur†(p)us(q)(2π)
3
δ(3)(p− q)

=
(2π)

3

2Ep
ur†(p)us(p)δ(3)(p− q)

= (2π)
3
δ(3)(p− q)δrs, (2.49)

and similarly {
brp, b

s†
q

}
= (2π)

3
δ(3)(p− q)δrs, (2.50)

while all other anticommutators are zero; for example{
arp, b

s
q

}
=

1

2
√
EpEq

∫ ∫
d3x d3x′ ur†(p)

{
ψ(x), ψ†(x′)

}
vs(q)e−ip·x−iq·x

′

=
1

2
√
EpEq

∫ ∫
d3x d3x′ ur†(p)δ(3)(x− x′)vs(q)e−ip·x−iq·x

′

=
1

2
√
EpEq

ur†(p)vs(q)

∫
d3x e−i(p+q)·x

=
1

2
√
EpEq

ur†(p)vs(q)(2π)
3
δ(3)(p + q)

=
(2π)

3

2Ep
ur†(p)vs(−p)δ(3)(p + q)

= 0. (2.51)
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The relations
{
ar†p , a

s†
q

}
=
{
br†p , b

s†
q

}
= 0 for the creation operators imply that

(
as†p
)2

=
(
bs†p
)2

= 0, so that
each mode p can only be occupied by a maximum of one particle. We hence conclude that Dirac particles obey
Fermi–Dirac statistics.

We note that the Dirac Hamiltonian can be written as

H =

∫
d3x ψ̄(−iγ · ∇+m)ψ =

∫
d3xψ†hDψ, (2.52)

where we define

hD = −iγ0γ · ∇+mγ0. (2.53)

We know that u(p)e−ip·x is a solution of the free-field Dirac equation:

0 = (iγµ∂µ −m)u(p)e−ip·x =
(
iγ0∂0 + iγ · ∇ −m

)
u(p)e−ip·x,

so that

(−iγ · ∇+m)u(p)e−ip·x = iγ0∂0u(p)e−ip·x = p0γ0u(p)e−ip·x = Epγ
0u(p)e−ip·x.

Multiplying both sides of this equation on the left by γ0, we find that

hDu(p)e−ip·x = Epγ
0u(p)e−ip·x,

so u(p)eip·x is an eigenfunction of hD with eigenvalue Ep. Similarly, since v(p)eip·x is also a solution of the
Dirac equation, we find that v(p)e−ip·x is an eigenfunction of hD with eigenvalue −Ep. We hence have

hDψ =

∫
d3p

(2π)
3

√
Ep

2

∑
s

(
aspu

s(p)eip·x − bs†p vs(p)eip·x
)
. (2.54)

The quantised Dirac Hamiltonian is thus

H =

∫
d3xψ†hDψ

=

∫
d3x d3p d3q

(2π)
6

1

2

√
Ep

Eq

∑
r,s

(
brqv

r†(q)eiq·x + ar†q u
r†(q)e−iq·x

)(
aspu

s(p)eip·x − bs†p vs(p)e−ip·x
)

=

∫
d3x d3p d3q

(2π)
6

1

2

√
Ep

Eq

∑
r,s

(
brqv

r†(q) + ar†−qu
r†(−q)

)(
aspu

s(p)− bs†−pvs(−p)
)
ei(p+q)·x

=

∫
d3p d3q

(2π)
3

1

2

√
Ep

Eq

∑
r,s

(
brqv

r†(q) + ar†−qu
r†(−q)

)(
aspu

s(p) + bs†−pv
s(−p)

)
δ(3)(p + q)

=

∫
d3p

(2π)
3

1

2

∑
r,s

(
br−pv

r†(−p) + ar†p u
r†(p)

)(
aspu

s(p) + bs†−pv
s(−p)

)
=

∫
d3p

(2π)
3

1

2

∑
r,s

2Epδ
rs
(
ar†p a

s
p − br−pb

s†
−p

)
=

∫
d3p

(2π)
3

∑
s

Ep

(
as†p a

s
p + bs†p b

s
p −

{
bsp, b

s†
p

})
=

∫
d3p

(2π)
3

∑
s

Ep

(
as†p a

s
p + bs†p b

s
p

)
, (2.55)

where we have neglected the infinite constant arising from
{
bsp, b

s†
p

}
= (2π)

3
δ(3)(0). The vacuum |0〉 is defined

to be the state such that

asp|0〉 = bsp|0〉 = 0,

which corresponds to the lowest energy state with E = 0. Thus both a†p and bs†p create particles with energy

Ep and momentum p. Particles created by a†p are called fermions, while particles created by bs†p are called
antifermions.
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CHAPTER 2. INTRODUCTION TO QUANTUM FIELD THEORY

2.2 Renormalisation

In quantum field theory, no exactly solvable interacting field theories are known in more than two dimensions. In
order to study interacting fields, we instead treat the interaction term Hint in the Hamiltonian as a perturbation
and compute physical quantities using perturbation theory. However, higher terms in perturbation theory
involve integrals over the four-momenta of virtual particles, which are often formally divergent. The problematic
divergences are ultraviolet divergences, where integrals are divergent in the region of large momentum. This
signals that quantities calculated in a quantum field theory depend on a very large momentum scale called the
ultraviolet cutoff [5].

In order for a quantum field theory to be sensible, all physical quantities must assume finite values, and
divergences are considered acceptable only if they do not appear in physical predictions. A method of resolving
the divergences that occur in physically measurable quantities is therefore necessary. This method involves
renormalising the physical quantities such as mass and charge to finite values, and is known as renormalisation.
The simplest example involves simply cutting off the divergent integral at some large but finite momentum Λ.
At the end of the calculation, the limit Λ → ∞ is taken. If the physical quantities in the theory are found to
be independent of Λ, then the theory is said to be renormalisable [5, 19].

The nonrenormalisability of gravity is a notorious problem that arises in the quest to unify general relativity
and quantum field theory. When gravity is incorporated as a weak-coupling field theory and treated in perturb-
ation theory using Feynman diagrams, the resulting divergences are found to be nonrenormalisable [5, 20]. At
present, the only known way to cut off these divergences without compromising the consistency of the theory
is string theory [2], to which we turn in the following chapter.
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Chapter 3

String Partition Functions

An important quantity in statistical physics is the partition function Z, which relates the microscopic configur-
ations of a system to its macroscopic thermodynamic variables, such as energy and entropy. In quantum field
theory, the partition function Z for a field theory governed by a Hamiltonian H is defined as

Z = tr
(
e−βH

)
, (3.1)

where the trace is taken over all states in the theory. In this chapter, we compute the partition functions
for closed bosonic and fermionic strings, omitting the zero modes for simplicity. These results will be used in
Chapter 5 to compute the elliptic genus of K3, which is needed to find the entropy of black holes in certain
string theories.

3.1 Partition Function for the Bosonic String

Following [21], the Lagrangian for a closed bosonic string is

L =
1

4πα′

∫ 2π

0

∂αX∂
αX dσ, (3.2)

where X(τ, σ) is the bosonic field of the two-dimensional worldsheet [1], and α′ is the Regge slope, a parameter
related to the string tension T by T = 1/2πα′. In two-dimensional Minkowski space with (+,−) metric, the
Lagrangian can be written as

L =
1

4πα′

∫ 2π

0

(Ẋ2 −X ′2) dσ, (3.3)

where the dot denotes a derivative with respect to , and the prime denotes a derivative with respect to σ. The
Lagrangian can also be expressed as

L =

∫ 2π

0

L dσ, (3.4)

where L is the Lagrangian density,

L =
1

4πα′
∂αX∂

αX =
1

4πα′
(Ẋ2 −X ′2). (3.5)

We note the similarity to the Lagrangian density of the Klein-Gordon field, (2.1), as would be expected for a
string theory that gives rise to bosonic modes. The corresponding classical Hamiltonian is

H =
∂L

∂Ẋ
Ẋ − L =

1

4πα′

∫ 2π

0

(Ẋ2 +X ′2) dσ, (3.6)

and the canonical momentum density is

Π =
∂L
∂Ẋ

=
1

2πα′
Ẋ. (3.7)

From the Lagrangian density, we can evaluate the Euler-Lagrange equations,

0 = ∂τ

(
∂L
∂Ẋ

)
− ∂L
∂X

=
1

4πα′
∂α∂

αX, (3.8)
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so that the equations of motion are

∂α∂
αX = 0, (3.9)

Using the method of separation of variables, we assume that X can be expressed in the form X(τ, σ) =
a(τ)b(σ). Upon substituting this into the EOM, we obtain

ä

a
=
b′′

b
. (3.10)

Since this must be true for all τ, σ, these expressions must be equal to some constant, say k2. The solutions for
nonzero k (up to an overall constant factor) are then

a = e−ikτ

b = e±ikσ, (3.11)

so that the solution for a particular nonzero value of k is

Xk(τ, σ) = αke
−ikτ+ikσ + α̃ke

−ikτ−ikσ, (3.12)

where αk and α̃k are constants. Turning to the special case k = 0, we see that we instead get linear solutions

a = βσ + γ

b = pτ + x, (3.13)

where β, γ, p, x are constants. Note that x and p can be interpreted as the centre of mass position and momentum
of the string.

Imposing the periodic boundary condition for a closed string, Xk(σ) = Xk(σ + 2π), we see that k in (3.12)
must be an integer, while in (3.13) we must have β = 0, γ = 1 . The general solution of the equations of motion
can therefore be expanded in Fourier modes as

X = i

√
α′

2

∑
k 6=0

αk
k
e−ikτ+ikσ +

∑
k 6=0

α̃k
k
e−ikτ−ikσ

+ α′pτ + x, (3.14)

where k ranges over all nonzero integers, and we have chosen the normalisation for later convenience. Note
that the modes αk are left-moving, while the modes α̃k are right-moving. The modes αk and α̃k act as creation
operators for k < 0 and annihilation operators for k > 0 [13].

We now carry out the quantisation of the bosonic string. For simplicity, in the subsequent discussion we
consider equal times and set τ = 0. Imposing the equal-time canonical commutation relation [X(σ),Π(σ′)] =
iδ(σ − σ′), we get [

X(σ), Ẋ(σ′)
]

= 2πiα′δ(σ − σ′). (3.15)

The derivative of X with respect to τ is

Ẋ =

√
α′

2

∑
k 6=0

e−ikτ
(
αke

ikσ + α̃ke
−ikσ)+ α′p, (3.16)

so at τ = 0,

X = i

√
α′

2

∑
k 6=0

1

k

(
αke

ikσ + α̃ke
−ikσ)+ x (3.17a)

Ẋ =

√
α′

2

∑
k 6=0

(
αke

ikσ + α̃ke
−ikσ)+ α′p. (3.17b)

Since the zero modes commute with the rest of the modes, their contribution may be neglected throughout the
computation and simply added at the end, so we will now drop x and α′p from our calculation.
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We now wish to isolate the modes αk and α̃k. To this end, we multiply both sides of these equations by
eik
′σ and integrate over σ. For the first equation, this yields

∫ 2π

0

Xe−ik
′σ dσ = i

√
α′

2

∑
k 6=0

1

k

∫ 2π

0

(
αke

ikσ + α̃ke
−ikσ)e−ik′σ dσ

= i

√
α′

2

∑
k 6=0

1

k

∫ 2π

0

(
αke

i(k−k′)σ + α̃ke
−i(k+k′)σ

)
dσ

= i

√
α′

2

∑
k 6=0

2π

k
(αkδk,k′ + α̃kδk,−k′)

=
2πi

k′

√
α′

2
(αk′ − α̃−k′), (3.18)

and similarly for the second, we obtain

∫ 2π

0

Ẋe−ik
′σ dσ =

√
α′

2

∑
k 6=0

∫ 2π

0

(
αke

ikσ + α̃ke
−ikσ)e−ik′σ dσ

=

√
α′

2

∑
k 6=0

∫ 2π

0

(
αke

i(k−k′)σ + α̃ke
−i(k+k′)σ

)
dσ

=

√
α′

2

∑
k 6=0

2π(αkδk,k′ + α̃kδk,−k′)

= 2π

√
α′

2
(αk′ + α̃−k′). (3.19)

This gives us the following system of equations, where for simplicity we replace k′ with k:

αk − α̃−k =
1

2πi
√

α′

2

k

∫ 2π

0

Xe−ikσ dσ (3.20a)

αk + α̃−k =
1

2π
√

α′

2

∫ 2π

0

Ẋe−ikσ dσ . (3.20b)

This system can be easily solved, and we find that the modes can be expressed as

αk =
1

4πi
√

α′

2

(
k

∫ 2π

0

Xe−ikσ dσ+i

∫ 2π

0

Ẋe−ikσ dσ

)
(3.21a)

α̃k =
1

4πi
√

α′

2

(
−k
∫ 2π

0

Xe−ikσ dσ+i

∫ 2π

0

Ẋe−ikσ dσ

)
. (3.21b)

We can now use these expressions to evaluate the commutators of the modes. Firstly, for the left-moving modes
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αk, we obtain

[αk, αk′ ] =
1

(4πi)
2 α′

2

[∫ 2π

0

(
kX(σ) + iẊ(σ)

)
e−ikσ dσ,

∫ 2π

0

(
k′X(σ′) + iẊ(σ′)

)
e−ik

′σ′ dσ′
]

= − 1

8π2α′

∫ 2π

0

∫ 2π

0

[
kX(σ) + iẊ(σ), k′X(σ′) + iẊ(σ′)

]
e−ikσ−ik

′σ′dσdσ′

= − i

8π2α′

∫ 2π

0

∫ 2π

0

(
k
[
X(σ), Ẋ(σ′)

]
+ k′

[
Ẋ(σ), X(σ′)

])
e−ikσ−ik

′σ′dσdσ′

= −ik − k
′

8π2α′

∫ 2π

0

∫ 2π

0

2πiα′δ(σ − σ′)e−ikσ−ik
′σ′dσdσ′

=
k − k′

4π

∫ 2π

0

e−i(k+k′)σdσ

=
k − k′

4π
2πδk,−k′

= kδk,−k′ , (3.22)

where we used the fact that [X(σ), X(σ′)] =
[
Ẋ(σ), Ẋ(σ′)

]
= 0. Similarly for the right-moving modes α̃k, we

find that

[α̃k, α̃k′ ] = kδk,−k′ . (3.23)

Finally, the commutator between left-moving and right-moving modes is

[αk, α̃k′ ] =
1

(4πi)
2 α′

2

[∫ 2π

0

(
kX(σ) + iẊ(σ)

)
e−ikσ dσ,

∫ 2π

0

(
−k′X(σ′) + iẊ(σ′)

)
e−ik

′σ′ dσ′
]

= − 1

8π2α′

∫ 2π

0

∫ 2π

0

[
kX(σ) + iẊ(σ),−k′X(σ′) + iẊ(σ′)

]
e−ikσ−ik

′σ′dσdσ′

= − i

8π2α′

∫ 2π

0

∫ 2π

0

(
k
[
X(σ), Ẋ(σ′)

]
− k′

[
Ẋ(σ), X(σ′)

])
e−ikσ−ik

′σ′dσdσ′

= −ik + k′

8π2α′

∫ 2π

0

∫ 2π

0

2πiα′δ(σ − σ′)e−ikσ−ik
′σ′dσdσ′

=
k + k′

4π

∫ 2π

0

e−i(k+k′)σdσ

=
k + k′

4π
2πδk,−k′

= 0. (3.24)

To find the partition function, we return to our classical Hamiltonian (3.6). To evaluate this, we need the spatial
derivative of X, which is given by

X ′ =

√
α′

2

∑
k 6=0

(
−αkeikσ + α̃ke

−ikσ). (3.25)

Thus the quantised Hamiltonian is

H =
1

4πα′
α′

2

∫ 2π

0

∑
k,k′ 6=0

[(
αke

ikσ + α̃ke
−ikσ)(αk′eik′σ + α̃k′e

−ik′σ
)

+
(
−αkeikσ + α̃ke

−ikσ)(−αk′eik′σ + α̃k′e
−ik′σ

)]
dσ

=
1

8π
2π
∑
k,k′

2[αkαk′ + α̃kα̃k′ ]δk,−k′

=
1

2

∑
k

(αkα−k + α̃kα̃−k). (3.26)
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Restricting k to positive integers only, we have

H =
1

2

∞∑
k=1

(αkα−k + α̃kα̃−k + α−kαk + α̃−kα̃k)

=

∞∑
k=1

(
1

2
([αk, α−k] + [α̃k, α̃−k]) + α−kαk + α̃−kα̃k

)
. (3.27)

We now split this into two parts, one associated with left-moving modes αk, and another with right-moving
modes α̃k:

HL =
∑
k

(
1

2
[αk, α−k] + α−kαk

)
=

1

2

∞∑
k=1

k +

∞∑
k=1

α−kαk (3.28a)

HR =
∑
k

(
1

2
[α̃k, α̃−k] + α̃−kα̃k

)
=

1

2

∞∑
k=1

k +

∞∑
k=1

α̃−kα̃k. (3.28b)

We now need to evaluate the divergent sum
∑∞
k=1 k, which we can do using zeta function regularisation. The

Riemann zeta function is defined as

ζ(z) =

∞∑
n=1

n−z (3.29)

for z ∈ C such that Re(z) > 1. The zeta function has a unique analytic continuation to z = −1, where it takes
the value −1/12 [1, 3]. We hence have the result

∞∑
k=1

k = − 1

12
, (3.30)

which leads to

HL = − 1

24
+

∞∑
k=1

α−kαk, HR = − 1

24
+

∞∑
k=1

α̃−kα̃k. (3.31)

We note that α−kαk and α̃−kα̃k act as number operators in the left- and right-moving sectors, respectively.
Hence for left-moving modes, the contribution to the partition function is

tr
(
e−βLHL

)
= tr

(
exp

(
−βL

(
− 1

24
+

∞∑
k=1

α−kαk

)))

= eβL/24
∞∏
k=1

tr
(
e−βLα−kαk

)
= eβL/24

∞∏
k=1

∞∑
n=0

e−nβLk

= eβL/24
∞∏
k=1

1

1− e−βLk
, (3.32)

and similarly for right-moving modes,

tr
(
e−βRHR

)
= eβR/24

∞∏
k=1

1

1− e−βRk
, (3.33)

In the context of conformal field theories, βR is the complex conjugate of βL. We now identify a complex
parameter τ such that βL = −2πiτ , and hence βR = 2πiτ̄ , where τ̄ is the complex conjugate of τ . (Note that
this τ is a new parameter, and is not the timelike coordinate used earlier in the Lagrangian.) This allows us to
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write the partition function as

Z(τ) = tr
(
e−βLHL−βRHR

)
= e−2πiτ/24

∞∏
k=1

1

1− e2πiτk
e2πiτ̄/24

∞∏
k′=1

1

1− e−2πiτ̄k′

= q−1/24q̄−1/24
∞∏
k=1

1

(1− qk)(1− q̄k)

=
1

|η(τ)|2
, (3.34)

where we have defined q = e2πiτ (and its complex conjugate q̄ = e−2πiτ̄ ), and η is the Dedekind eta function,

η(τ) = q1/24
∞∏
k=1

(
1− qk

)
(3.35)

which is discussed further in Chapter 4.

3.1.1 Anti-Periodic Boundary Conditions

In Chapter 5, we will consider string theory on a Z2 orbifold. In this case, in addition to the periodic boundary
conditions considered above, we can also have anti-periodic boundary conditions, with X(σ) = −X(σ + 2π).
The main difference in this case is that k in (3.12) will take half-odd-integer values. For simplicity, we replace
k with k − 1/2, where k is again an integer. This gives[

αk+1/2, α−k−1/2

]
= k +

1

2
, (3.36)

where k runs over all integers including zero, and[
αk−1/2, α−k+1/2

]
= k − 1

2
, (3.37)

where k runs over positive or negative integers only. We see that the zero modes do not contribute in this case.
For the partition function, we get a similar result to the periodic case, except that the zero point energy is

different:

tr
(
e−βLHL

)
= e−βL/48

∞∏
k=1

1

1− e−βL(k−1/2)
(3.38a)

tr
(
e−βRHR

)
= e−βR/48

∞∏
k=1

1

1− e−βR(k−1/2)
, (3.38b)

where we used the following definition from [2]:

∞∑
k=1

(k − θ) =
1

24
− 1

8
(2θ − 1)

2
. (3.39)

Thus the partition function in this case is

Z(τ) = e−βL/48e−βR/48
∞∏
k=1

1

1− e−βL(k−1/2)

1

1− e−βR(k−1/2)

= q1/48q̄1/48
∞∏
k=1

1(
1− qk−1/2

)(
1− q̄k−1/2

) . (3.40)

3.2 Partition Function for the Fermionic String

Our discussion of the fermionic string will be based on [1], and will follow the same lines as our discussion of
the Dirac field in Chapter 2. We begin by introducing the two-dimensional Dirac matrices ρ0, ρ1, which satisfy
the Dirac algebra {

ρα, ρβ
}

= 2ηαβ , (3.41)
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and can be represented by

ρ0 =

(
0 −1
1 0

)
, ρ1 =

(
0 1
1 0

)
. (3.42)

To move from bosonic string theory to superstring theory, the bosonic field X(τ, σ) of the previous section must
be paired with a fermionic field, which we denote by Ψ(τ, σ). This is a two-component spinor, which we write
as

Ψ =

(
ψ

ψ̃

)
, (3.43)

while its Dirac conjugate Ψ̄ is given by

Ψ̄ = iψ†ρ0 = i
(
ψ̃∗ −ψ∗

)
. (3.44)

We will consider the case of Majorana fermions, which are fermions that are their own antiparticles. In
the representation of the Dirac algebra given above, a Majorana spinor is equivalent to a real spinor, so that
ψ∗ = ψ and ψ̃∗ = ψ̃, although we still consider these to be independent variables when deriving the equations
of motion. The action for a closed fermionic string is then

S =
i

4π

∫ ∫
Ψ̄ρα∂αΨ dσ dτ, (3.45)

where we have now made the conventional choice α′ = 1/2. In superstring theory, this action would be added
to the bosonic string action to obtain the superstring action. The integrand can be written out explicitly as

Ψ̄ρα∂
αΨ = i

(
ψ̃∗ −ψ∗

)[(0 −1
1 0

)
∂τ +

(
0 1
1 0

)
∂σ

](
ψ

ψ̃

)
= i
(
ψ̃∗ −ψ∗

)( 0 −∂τ + ∂σ
∂τ + ∂σ 0

)(
ψ

ψ̃

)
= i
(
−ψ∗(∂τ + ∂σ)ψ − ψ̃∗(∂τ − ∂σ)ψ̃

)
.

This allows the action to be written as

S =
1

4π

∫ ∫ (
ψ∗(∂τ + ∂σ)ψ + ψ̃∗(∂τ − ∂σ)ψ̃

)
dσ dτ, (3.46)

so that the Lagrangian density is

L =
1

4π

(
ψ∗(∂τ + ∂σ)ψ + ψ̃∗(∂τ − ∂σ)ψ̃

)
. (3.47)

Recalling the reality condition for Majorana spinors, the canonical momenta are

Π(ψ) =
∂L

∂(∂τψ)
=

1

4π
ψ∗ =

1

4π
ψ, (3.48a)

Π̃(ψ̃) =
∂L

∂
(
∂τ ψ̃

) =
1

4π
ψ̃∗ =

1

4π
ψ̃. (3.48b)

Thus the classical Hamiltonian for the closed free fermionic string is

H =
∂L

∂(∂τψ)
∂τψ +

∂L

∂(∂τ ψ̃)
∂τ ψ̃ − L

=
1

4π

∫ 2π

0

ψ∂τψ dσ+
1

4πi

∫ 2π

0

ψ̃∂τ ψ̃ dσ−L

=
1

4π

∫ 2π

0

(−ψ∂σψ + ψ̃∂σψ̃) dσ . (3.49)

The equations of motion for ψ and ψ̃ are obtained from the Euler-Lagrange equations for ψ∗ and ψ̃∗,

0 = ∂τ

(
∂L

∂(∂τψ∗)

)
+ ∂σ

(
∂L

∂(∂σψ∗)

)
− ∂L
∂ψ∗

= − 1

4π
(∂τ + ∂σ)ψ,

0 = ∂τ

 ∂L

∂
(
∂τ ψ̃∗

)
+ ∂σ

 ∂L

∂
(
∂σψ̃∗

)
− ∂L

∂ψ̃∗
= − 1

4π
(∂τ − ∂σ)ψ̃.
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Thus the equations of motion are

(∂τ + ∂σ)ψ = 0 (3.50a)

(∂τ − ∂σ)ψ̃ = 0. (3.50b)

3.2.1 Periodic Boundary Conditions

The remainder of this section closely follows [21]. We first solve the equations of motion for the case of periodic
boundary conditions, ψ(σ) = ψ(σ+ 2π) and ψ̃(σ) = ψ̃(σ+ 2π); the case of anti-periodic boundary conditions is
very similar and will be discussed briefly at the end of this section. Using the method of separation of variables,
we assume that ψ can be expressed in the form ψ(τ, σ) = a(τ)b(σ). Upon substituting this into the equations
of motion, we obtain

ȧb+ b′a = 0 =⇒ ȧ

a
= −b

′

b
, (3.51)

and we choose this to be equal to −ik for some constant k. Up to an overall constant, this yields the solutions

a = e−ikτ

b = eikσ, (3.52)

where for periodic boundary conditions, we require k ∈ Z. Thus choosing a convenient normalisation, the mode
expansion of ψ is

ψ =
√
−i
∑
k∈Z

ψke
−ikτ+ikσ. (3.53)

Similarly for ψ̃, we find that

ψ̃ =
√
−i
∑
k∈Z

ψ̃ke
−ikτ−ikσ. (3.54)

To find the commutator between the modes, we repeat the same procedure as for the bosonic string, multiplying
both sides by e−ik

′σ and integrating over σ for τ = 0. From the equation for ψ, we obtain∫ 2π

0

ψe−ik
′σdσ =

∫ 2π

0

√
−i
∑
k∈Z

ψke
ikσe−ik

′σ dσ

=
√
−i
∑
k∈Z

ψk

∫ 2π

0

ei(k−k
′)σ dσ

=
√
−i
∑
k∈Z

ψk2πδk,k′

= 2π
√
−iψk′ , (3.55)

and similarly the equation for ψ̃ yields∫ 2π

0

ψ̃e−ik
′σdσ =

∫ 2π

0

√
−i
∑
k∈Z

ψ̃ke
−ikσe−ik

′σ dσ

=
√
−i
∑
k∈Z

ψ̃k

∫ 2π

0

e−i(k+k′)σ dσ

=
√
−i
∑
k∈Z

ψ̃k2πδk,−k′

= 2π
√
−iψ̃−k′ . (3.56)

Hence the modes can be expressed as

ψk =
1

2π
√
−i

∫ 2π

0

ψe−ikσ dσ (3.57a)

ψ̃k =
1

2π
√
−i

∫ 2π

0

ψ̃eikσ dσ . (3.57b)
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We now quantise the fermionic string by imposing the anticommutation relation {ψ(σ), ψ(σ′)} = −2πiδ(σ−σ′),
where the factor of −2π has been chosen for later convenience. This implies that the anticommutator between
the left-moving modes is

{ψk, ψk′} =
i

(2π)
2

∫ 2π

0

∫ 2π

0

{ψ(σ), ψ(σ′)}e−ikσ−ik
′σ′ dσ dσ′

=
1

2π

∫ 2π

0

∫ 2π

0

δ(σ − σ′)e−ikσ−ik
′σ′ dσ dσ′

=
1

2π

∫ 2π

0

e−i(k+k′)σ dσ

= δk,−k′ , (3.58)

and similarly the anticommutator between the right-moving modes is{
ψ̃k, ψ̃k′

}
=

i

(2π)
2

∫ 2π

0

∫ 2π

0

{
ψ̃(σ), ψ̃(σ′)

}
eikσ+ik′σ′ dσ dσ′

=
1

2π

∫ 2π

0

∫ 2π

0

δ(σ − σ′)eikσ+ik′σ′ dσ dσ′

=
1

2π

∫ 2π

0

e−i(k+k′)σ dσ

= δk,−k′ . (3.59)

This gives the result

{ψk, ψ−k} =
{
ψ̃k, ψ̃−k

}
= 1, (3.60)

while the rest of the anticommutators are zero; for example,{
ψ̃k, ψk′

}
=

i

(2π)
2

∫ 2π

0

∫ 2π

0

{
ψ̃(σ), ψ(σ′)

}
e−ik(σ−σ

′) dσ dσ′ = 0. (3.61)

To quantise our Hamiltonian (3.49), we need to compute the spatial derivatives

∂σψ = i
√
−i
∑
k∈Z

kψke
−ikτ+ikσ, (3.62a)

∂σψ̃ = −i
√
−i
∑
k∈Z

kψ̃ke
−ikτ−ikσ. (3.62b)

Thus for τ = 0, the quantised Hamiltonian is

H =
1

4π

∫ 2π

0

(−ψ∂σψ + ψ̃∂σψ̃) dσ

=
1

4π

∫ 2π

0

(−(
√
−i
∑
k

ψke
−ikσ)(i

√
−i
∑
k′

k′ψk′e
−ik′σ) + (

√
−i
∑
k

ψ̃ke
ikσ)(−i

√
−i
∑
k′

k′ψ̃k′e
ik′σ)) dσ

= − 1

4π

∑
k,k′

k′
∫ 2π

0

(ψkψk′e
−i(k+k′)σ + ψ̃kψ̃k′e

i(k+k′)σ) dσ

= −1

2

∑
k,k′

k′(ψkψk′ + ψ̃kψ̃k′)δk,−k′

=
1

2

∑
k

k(ψkψ−k + ψ̃kψ̃−k). (3.63)

Restricting k to positive integers only, we can rewrite this as

H =
1

2

∞∑
k=1

k(ψkψ−k + ψ̃kψ̃−k − ψ−kψk − ψ̃−kψ̃k)

=

∞∑
k=1

k

(
−1

2

(
{ψk, ψ−k}+

{
ψ̃k, ψ̃−k

})
+ ψ−kψk + ψ̃−kψ̃k

)
. (3.64)
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Splitting this into left and right parts, we have

HL =

∞∑
k=1

k

(
−1

2
{ψk, ψ−k}+ ψ−kψk

)

=

∞∑
k=1

k

(
−1

2
+ ψ−kψk

)

=
1

24
+

∞∑
k=1

kψ−kψk, (3.65)

and similarly

HR =

∞∑
k=1

k

(
−1

2

{
ψ̃k, ψ̃−k

}
+ ψ̃−kψ̃k

)
=

1

24
+

∞∑
k=1

kψ̃−kψ̃k. (3.66)

We can now compute the partition function for the fermionic string. The contribution from the left-moving
modes is

tr
[
e−βLHL

]
= tr

(
exp

(
−βL

(
1

24
+

∞∑
k=1

kψ−kψk

)))

= e−βL/24tr

(
exp

(
−βL

∞∑
k=1

kψ−kψk

))

= e−βL/24
∞∏
k=1

tr
(
e−βLkψ−kψk

)
= e−βL/24

∞∏
k=1

(
1 + e−βLk

)
, (3.67)

since fermionic states can only have occupation numbers of 0 or 1. We get a similar result for the right-moving
modes, so that the partition function is

Z(τ) = e−βL/24
∞∏
k=1

(
1 + e−βLk

)
e−βR/24

∞∏
k′=1

(
1 + e−βRk

′
)

= q1/24q̄1/24
∞∏
k=1

(
1 + qk

)(
1 + q̄k

)
(3.68)

where, as in the bosonic case, we have set q = e2πiτ = e−βL/24, q̄ = e−2πiτ̄ = e−βR/24.

3.2.2 Anti-Periodic Boundary Conditions

For anti-periodic boundary conditions, as in the bosonic case, the only major difference is that k will take on
half-odd-integer values. This means that only the zero point energy must be modified, so that the partition
function is

Z(τ) = eβL/48
∞∏
k=1

(
1 + e−βL(k−1/2)

)
eβR/48

∞∏
k′=1

(
1 + e−βR(k′−1/2)

)
= e−2πiτ/48

∞∏
k=1

(
1 + e2πiτ(k−1/2)

)
e2πiτ̄/48

∞∏
k′=1

(
1 + e−2πiτ̄(k′−1/2)

)
= q−1/48q̄−1/48

∞∏
k=1

(
1 + qk−1/2

)(
1 + q̄k−1/2

)
, (3.69)

where we have again replaced k by k − 1/2, so that k remains an integer.
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Chapter 4

Modular Forms and Jacobi Forms

In this chapter, we give a brief introduction to some of the mathematical objects which will be used in the
computation of black hole entropy in later chapters, including modular forms, Eisenstein series and Jacobi
forms.

4.1 Modular Forms

The material in this section is primarily based on [21, 22].

Definition 4.1. The two-dimensional special linear group SL(2,Z) is defined to be the group of 2× 2 matrices

A =

(
a b
c d

)
, (4.1)

where a, b, c, d are integers, with detA = ad− bc = 1.

Definition 4.2. The modular group Γ is the set of all Möbius transformations of the form

τ 7→ aτ + b

cτ + d
, (4.2)

where a, b, c, d are integers with ad−bc = 1. The modular group is isomorphic to the two-dimensional projective
special linear group PSL(2,Z), which is the quotient of SL(2,Z) by its centre {I,−I}, i.e. the group of of 2× 2
matrices A ∈ SL(2,Z) where A is identified with −A. The modular group Γ is generated by the two matrices

T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
, (4.3)

whose actions on H are given by

T : τ 7→ τ + 1, S : τ 7→ −1

τ
. (4.4)

An important class of subgroups of the full modular group consists of the congruence subgroups. The most
relevant of these in this work is

Γ0(N) =

{(
a b
c d

) ∣∣ c = 0 (modN)

}
. (4.5)

Definition 4.3. In this work, following [21], a function f will be termed a modular function if it satisfies the
following conditions:

1. f is meromorphic in the upper half-plane H = {τ ∈ C | Im(τ) > 0}.

2. f transforms under SL(2,Z) or its subgroups according to

f

(
aτ + b

cτ + d

)
= (cτ + d)

k
f(τ), (4.6)

where k is an integer or half-integer called the weight of f . In some cases, we will also allow the inclusion
of a phase factor ζ(a, b, c, d) which depends on the transformation matrix.
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Figure 4.1: The fundamental domain RΓ of the
modular group Γ, shown as the shaded region.
It is defined by the requirements |τ | > 1 and
|Re(τ)| < 1/2. It can easily be checked that this re-
gion satisfies the definition of a fundamental domain
given in the Introduction [22]; in particular, it sat-
isfies the requirements that no two points in RΓ are
equivalent under Γ, and any point in H is equivalent
to some point in RΓ under Γ. This plot is based on
an image from [22].

Definition 4.4. A modular form satisfies the same conditions as a modular function, in addition to the stronger
requirement that it be holomorphic on H rather than just meromorphic.

A modular form f satisfies the condition f(τ) = f(τ + 1), and hence can be written as a Fourier series

f(τ) =
∑
n∈Z

a(n)qn, q = e2πiτ , (4.7)

and is bounded as Im(τ)→∞. Additionally, following [18],

• If a(0) = 0, then f vanishes at infinity and is called a cusp form;

• If a(n) = 0 for n < −N for some N ≥ 0, then f is called a weakly holomorphic modular form.

We also define a function f : H → C to be an almost holomorphic modular form (or a nearly holomorphic
modular form) if it satisfies the modular transformation property (4.6) and is a polynomial in 1/Im(τ) with
coefficients that are holomorphic functions of q.

Finally, a function is called a quasi-modular form if it is the holomorphic part of an almost holomorphic
modular form [23].

4.2 Siegel Modular Forms

The material in this section is based on [4, 23]. We only give the definition of Siegel modular forms of degree
two, since the more general degree-g definition will not be relevant to the physical applications in this project.

Definition 4.5. Let Sp(2,Z) be the group of 4× 4 symplectic matrices. This consists of matrices

γ =

(
A B
C D

)
, (4.8)

where A,B,C,D are 2× 2 matrices with integer entries, and

ABT = BAT , CDT = DCT , ADT −BCT = 1. (4.9)

Define the Siegel upper half-plane of degree two, denoted by H2, to be the set of 2× 2 symmetric matrices over
C whose imaginary part is positive-definite. This consists of matrices

Ω =

(
τ z
z σ

)
, (4.10)

with τ, σ ∈ H and
det(Im(Ω)) > 0. (4.11)

A holomorphic function Φ : H2 → C is said to be a Siegel modular form of weight k (and degree two) if

Φ
(

(AΩ +B)(CΩ +D)
−1
)

= (det(CΩ +D))
k
Φ(Ω) (4.12)
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for all Ω ∈ Sp(2,Z).
A Siegel modular form Φ can be expanded in a Fourier series as

Φ(Ω) =
∑

m,n,p∈Z
g(m,n, r)qmynpr, q = e2πiτ , y = e2πiz, p = e2πiσ. (4.13)

Siegel modular forms will be used in the computation of the degeneracy of black hole microstates in Chapter
6, where this degeneracy is obtained from the Fourier coefficients of the Igusa cusp form of weight ten.

4.3 Eisenstein Series

Definition 4.6. The Eisenstein series of weight 2k is defined for k ≥ 2, τ ∈ H as

G2k(τ) =
∑

(m,n)∈Z2\{(0,0)}

1

(m+ nτ)
2k
. (4.14)

G2k is holomorphic on H and satisfies (4.6), so it is a modular form [22]. The Eisenstein series G2k(τ) for all
k ≥ 2 has the Fourier series expansion

G2k(τ) = 2ζ(2k)

(
1 + c2k

∞∑
n=1

σ2k−1(n)qn

)
, (4.15)

where q = e2πiτ is the nome, σk(n) =
∑
d|n d

k is the divisor sum function, and the coefficients are

c2k =
(2πi)

2k

(2k − 1)!ζ(2k)
. (4.16)

For simplicity, we will use the notation

E2k(τ) =
G2k(τ)

2ζ(2k)
, (4.17)

and will subsequently refer to this as simply the Eisenstein series of weight 2k. The main Eisenstein series used
in this work are

E2(τ) = 1− 24

∞∑
n=1

σ1(n)qn, (4.18a)

E4(τ) = 1 + 240

∞∑
n=1

σ3(n)qn, (4.18b)

E6(τ) = 1− 504

∞∑
n=1

σ5(n)qn. (4.18c)

We note that E4 and E6 are modular forms of weights four and six respectively, while E2(τ) is a quasi-modular
form, since the non-holomorphic function E2(τ)− 3/πIm(τ) transforms as a modular form of weight two. Any
modular form can be written in terms of E4 and E6 [21].

We can use the definitions above to define the function

EN (τ) =
1

N − 1
(NE2(Nτ)− E2(τ)), (4.19)

which transforms as a modular form of weight two under the congruence subgroup Γ0(N) and satisfies

EN (τ + 1) = EN (τ), EN
(
−1

τ

)
= −τ

2

N
EN
( τ
N

)
. (4.20)

One can show [21] that this is equivalent to

EN (τ) =
12i

π(N − 1)
∂τ [ln η(τ)− ln η(Nτ)]. (4.21)
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4.4 Jacobi Forms

Definition 4.7. Consider a holomorphic function ϕ : H× C→ C such that

1. ϕ transforms under SL(2,Z) as

ϕ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)

k
e

2πicz
cτ+d ϕ(τ, z), (4.22)

where k is an integer; i.e. ϕ is modular in its first argument.

2. For all λ, µ ∈ Z, ϕ satisfies

ϕ(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)ϕ(τ, z), (4.23)

where m is an integer; i.e. ϕ is elliptic in its second argument.

These properties imply that ϕ has a Fourier expansion of the form

ϕ(τ, z) =

∞∑
n=0

∑
r∈Z

r2≤4nm

c(n, r)e2πi(nτ+rz). (4.24)

The second condition (4.23) implies that the Fourier coefficients satisfy the periodicity property

c(n, r) = C(∆, r), ∆ = 4nm− r2, (4.25)

where ∆ is known as the discriminant of ϕ, and C(∆, r) depends only on r(mod 2m) [18, 24]. Following [18],
the function ϕ(τ, z) is called:

• A holomorphic Jacobi form, or simply a Jacobi form, of weight k and index m if

c(n, r) = 0 unless ∆ ≥ 0;

• A Jacobi cusp form of weight k and index m if

c(n, r) = 0 unless ∆ > 0;

• A weak Jacobi form of weight k and index m if

c(n, r) = 0 unless n ≥ 0;

• A weakly holomorphic Jacobi form of weight k and index m if

c(n, r) = 0 unless n ≥ n0 for some n ∈ Z.

We also define a meromorphic Jacobi form to be a function ϕ(τ, z) satisfying properties (4.22) and (4.23), but
where ϕ need only be meromorphic in z and weakly holomorphic in τ [25].

4.4.1 Theta Expansion of Jacobi Forms

If ϕ(τ, z) is a Jacobi form, then the property (4.23) implies that its Fourier expansion can be written in the
form

ϕ(τ, z) =
∑
`∈Z

q`
2/4mh`(τ)e2πi`z, (4.26)

where h`(τ) is defined by

h`(τ) =
∑
∆

C(∆, `)q∆/4m, ` ∈ Z/2mZ. (4.27)

The periodicity property also allows (4.26) to be rewritten as the theta expansion

ϕ(τ, z) =
∑

`∈Z/2mZ

h`(τ)θm,`(τ, z), (4.28)
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where θm,`(τ, z) is the index-m generalised theta function:

θm,`(τ, z) :=
∑
r∈Z

r≡` (mod2m)

qr
2/4myr =

∑
n∈Z

q(`+2mn)2/4my`+2mn. (4.29)

The coefficients h`(τ) are modular forms of weight k = 1/2 [18].

In string theory, Jacobi forms usually arise as elliptic genera of two-dimensional SFCTs with a worldsheet
supersymmetry of (2, 2) or greater. In Chapter 5, we will show that the elliptic genus of K3 is a Jacobi form of
index one and weight zero, so it will be useful to briefly take a closer look at Jacobi forms of index one. If m = 1,
then the Fourier coefficients can simply be written as a function of a single argument, c(n, r) = C(4n − r2),
since 4n− r2 fully determines the value of r(mod 2) [18].

4.4.2 Multiplicative Lift of a Jacobi Form

Following [26], let ϕ(τ, z) be a Jacobi form of weight zero and index t, with a Fourier expansion given by (4.24).
Assuming that the coefficients c(n, r) are integers, we define the multiplicative lift, or Borcherds lift, of ϕ to be

Φ(ρ, σ, v) = e2πi(αρ+βσ+γv)
∏

k,l,j∈Z,k,l≥0
j<0 for k=l=0

(1− exp(2πi(kσ + lρ+ jv)))
c(kl,j)

, (4.30)

where

α =
1

24

∑
r

c(0, r), β =
1

2

∑
r>0

rc(0, r), γ =
1

4

∑
r

r2c(0, r). (4.31)

This is termed a ‘lift’ because it uses the Fourier coefficients of a function of two variables ϕ(τ, z) to define a
function of three variables Φ(ρ, σ, v). The descriptor ‘multiplicative’ is used because the construction provides
a product representation of Φ(ρ, σ, v); an additive lift can be used to find a sum representation, but this will
not be of relevance in this work.

We will use this definition in Chapter 6, where we will see that the microstate degeneracy of certain black
holes can be computed from the Fourier coefficients of the reciprocal of a multiplicative lift.

4.5 Special Functions

Below we give an introduction to some of the special functions used in this work.

4.5.1 The Dedekind Eta Function

Definition 4.8. Following [22], the Dedekind eta function is defined as

η(τ) = q1/24
∞∏
k=1

(
1− qk

)
, (4.32)

where q = e2πiτ , and the domain of definition is the upper half-plane H = {τ | Im(τ) > 0}. The eta function
satisfies the following transformation properties:

η(τ + 1) = eπi/12η(τ), η

(
−1

τ

)
=
√
−iτη(τ). (4.33)

It can also be expanded in an infinite series as

η(τ) = q1/24
∞∑

n=−∞
(−1)

n
q

3n2−n
2 . (4.34)

We have already encountered this function in the computation of the partition function of the bosonic string in
Chapter 3.
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Figure 4.2: A plot of the Dedekind eta function η(τ) in the upper half of the complex plane. The plot uses
domain colouring, where the complex phase is represented by the colour and the magnitude is represented by
the brightness. It was generated in Python using the mpmath [47] and cplot [48] libraries.

4.5.2 The Jacobi Theta Functions

Definition 4.9. The Jacobi theta functions θi are a set of four complex functions, which can be represented
by infinite products as follows:

θ1(τ, z) = 2q1/8 sin(πz)

∞∏
m=1

(1− qm)(1− qmy)
(
1− qmy−1

)
, (4.35a)

θ2(τ, z) = 2q1/8 cos(πz)

∞∏
m=1

(1− qm)(1 + qmy)
(
1 + qmy−1

)
, (4.35b)

θ3(τ, z) =

∞∏
m=1

(1− qm)
(

1 + qm−1/2y
)(

1 + qm−1/2y−1
)
, (4.35c)

θ4(τ, z) =

∞∏
m=1

(1− qm)
(

1− qm−1/2y
)(

1− qm−1/2y−1
)
, (4.35d)

where q = e2πiτ and y = e2πiz [27].

The theta functions have the series representations

θ1(τ, z) = −
∑
k∈Z

(−1)
k−1/2

q(k+1/2)2/2yk+1/2, (4.36a)

θ2(τ, z) =
∑
k∈Z

q(k+1/2)2/2yk+1/2, (4.36b)

θ3(τ, z) =
∑
k∈Z

qk
2/2yk, (4.36c)

θ4(τ, z) =
∑
k∈Z

(−1)
k
qk

2/2yk, (4.36d)

and satisfy the following transformation rules:

θ1(τ + 1, z) = eπi/4θ1(τ, z), θ1

(
−1

τ
,− z

τ

)
= −i(−iτ)

1/2
eπiz

2/τθ1(τ, z), (4.37a)

θ2(τ + 1, z) = eπi/4θ2(τ, z), θ2

(
−1

τ
,− z

τ

)
= (−iτ)

1/2
eπiz

2/τθ4(τ, z), (4.37b)

θ3(τ + 1, z) = θ4(τ, z), θ3

(
−1

τ
,− z

τ

)
= (−iτ)

1/2
eπiz

2/τθ3(τ, z), (4.37c)

θ4(τ + 1, z) = θ3(τ, z), θ4

(
−1

τ
,− z

τ

)
= (−iτ)

1/2
eπiz

2/τθ2(τ, z). (4.37d)
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Figure 4.3: Plots of the Jacobi theta functions θi(τ, z) as functions of z for q = e2πiτ = 1/4. The plots were
generated in Python using the mpmath [47] and cplot [48] libraries.

For later convenience, we define

A(τ, z) =
θ2(τ, z)

2

θ2(τ, 0)
2 +

θ3(τ, z)
2

θ3(τ, 0)
2 +

θ4(τ, z)
2

θ4(τ, 0)
2 , (4.38)

which is a Jacobi form of index one and weight zero, and

B(τ, z) =
θ1(τ, z)2

η(τ)6
, (4.39)

which is a weak Jacobi form of weight −2 and index one [21]. These functions will be used in the computation
of the elliptic genus and twisted elliptic genus of K3 in the following chapter.

Figure 4.4: Plots of the Jacobi forms A(τ, z) and B(τ, z) as functions of z for q = e2πiτ = 1/4. The plots were
generated in Python using the mpmath [47] and cplot [48] libraries.
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Chapter 5

The Elliptic Genus of K3

The elliptic genus of a string theory defined on a given target space is a genus one path integral with certain
twisted boundary conditions, which can be expressed as a trace over states. The elliptic genus is a topological
invariant of the target space, and the elliptic genus of a supersymmetric model is conformally invariant even if
the underlying model is not [28, 29]. In this chapter, we begin by discussing a simpler quantity known as the
Witten index, following which we compute the elliptic genus of the manifold K3 by realising it as a SCFT in the
orbifold limit T 4/Z2. We conclude the chapter by generalising the elliptic genus to obtain the twisted elliptic
genus of K3.

5.1 The Witten Index

In a supersymmetric theory, the bosonic and fermionic ground states need not be paired, but each excited energy
eigenstate must have paired bosonic and fermionic states. If the spectrum of the Hamiltonian is deformed
continuously while preserving supersymmetry, then the excited states must move in bosonic-fermionic pairs.
This means that, even if the spectrum of the Hamiltonian changes, the number of bosonic ground states minus
the number of fermionic states is invariant. This invariant is called the Witten index, and can be represented as

tr
[
(−1)

F
e−βH

]
, (5.1)

This is the desired invariant because the pairs of excited states cancel out when weighted with (−1)
F

, leaving
only the ground states; it is hence independent of β. We also remark that for the supersymmetric sigma model,
the Witten index is equal to the Euler characteristic χ(M) of the underlying manifold M , which is a topological
invariant [30, 31]. The elliptic genus discussed Section 5.2 is a generalisation of this invariant.

5.1.1 Witten Index of the Closed Fermionic String

As a simple example, following [21] we can easily compute the Witten index of the closed fermionic string:

tr
[
(−1)

FL+FRe−βLHL−βRHR
]
. (5.2)

For periodic boundary conditions, we have

tr
[
(−1)

FLe−βLHL
]

= tr

(
(−1)

FL exp

(
−βL

(
1

24
+

∞∑
k=1

kψ−kψk

)))

= e−βL/24tr

(
(−1)

FL exp

(
−βL

∞∑
k=1

kψ−kψk

))

= e−βL/24
∞∏
k=1

(
1− e−βLk

)
,

since the occupation number for fermionic states can only be 0 or 1. We notice that this is the same as the
partition function from Chapter 3, except that the (−1)

FL operator has changed the sign of the occupied states
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at each level [32]. We get a similar result for the right-moving modes, so that the Witten index is

tr
[
(−1)

FL+FRe−βLHL−βRHR
]

= e−βL/24
∞∏
k=1

(
1− e−βLk

)
e−βR/24

∞∏
k′=1

(
1− e−βRk

′
)

= e2πiτ/24
∞∏
k=1

(
1− e2πiτk

)
e−2πiτ̄/24

∞∏
k′=1

(
1− e−2πiτ̄k′

)
= |η(τ)|2.

For anti-periodic boundary conditions, as usual only the zero point energy is different, so the Witten index is

tr
[
(−1)

FL+FRe−βLHL−βRHR
]

= e−βL/48
∞∏
k=1

(
1− e−βL(k−1/2)

)
e−βR/48

∞∏
k′=1

(
1− e−βR(k′−1/2)

)
= e2πiτ/48

∞∏
k=1

(
1− e2πiτ(k−1/2)

)
e−2πiτ̄/48

∞∏
k′=1

(
1− e−2πiτ̄(k′−1/2)

)
. (5.3)

The results obtained here will be useful in the following section when including the fermionic contribution to
the elliptic genus of K3.

5.2 Elliptic Genus of K3

Definition 5.1. A K3 surface is a simply-connected compact manifold of two complex dimensions with a trivial
canonical bundle, i.e. with a nowhere-vanishing holomorphic two-form. Viewed as real four-manifolds, any two
K3 surfaces are diffeomorphic to one another. Along with the four-tori T 4, K3 surfaces comprise all of the
compact Calabi–Yau manifolds of two complex dimensions [33].

In the orbifold limit, a K3 surface can be described by T 4/ZN for N = 2, 3, 4, 6. Here, we explicitly
compute the elliptic genus of K3 by realising K3 as a SCFT in the orbifold limit T 4/Z2, based on [21, 28,
34]. We consider four bosons and four fermions compactified on a torus under the identification of antipodal
points. This corresponds to N = 4 supersymmetric string theory, where the physical coordinates consist of four
variables of the Xµ type, which are SU(2) singlets, and four Majorana spinors ψµ, which are SU(2) doublets
[32]. The generator g of the group action of Z2 can be given as

g : (Xµ, ψµ) 7→ (−Xµ,−ψµ), (5.4)

where µ = 1, 2, 3, 4. The elliptic genus of K3 is then defined [29] to be the following trace, taken over the
Ramond-Ramond sector:

ZK3(τ, z) =
1

2

1∑
a,b=0

(a,b)6=(0,0)

trRRga

[
(−1)

FK3+F̄K3gbyJK3qL0−c/24q̄L̄0−c̄/24
]
. (5.5)

Here, c and c̄ are the central charges of the system, which are both equal to 3d, where d is the complex dimension
of the manifold. For K3, which is of complex dimension two, we have c = c̄ = 6 [3, 35]. The operators L0

and L̄0 are, respectively, the left and right Hamiltonians with the zero point energy subtracted out, so that
HL = L0 − c/24 and HR = L̄0 − c̄/24. Finally, JK3 = ±1 for the left-moving fermions, which form a doublet in
the SU(2) representation. We have also defined y = e2πiz.

We first consider the untwisted sector, where a = 0. For (a, b) = (0, 1), the right-moving fermionic zero
modes contribute a factor of 4, while the left-moving fermionic zero modes contribute a factor of(

y1/2 + y−1/2
)2

= 4 cos2(πz).

For the nonzero modes, the factors can be derived in a manner similar to that of the derivation of the partition
functions performed in Chapter 3. For each real bosonic coordinate, we have FK3, F̄K3, JK3 = 0, and hence the
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contribution is

trRR

[
gqHL q̄HR

]
= (qq̄)

−1/24
tr
(

(−q)
∑∞
k=1 α−kαk

)
tr
(

(−q̄)
∑∞
k=1 α̃−kα̃k

)
= |q|−1/12

∞∏
k=1

∞∑
n,m=0

(
−qk

)n(−q̄k)m
= |q|−1/12

∞∏
k=1

1

1 + qk
1

1 + q̄k
.

We thus see that the effect of the insertion of g has been to replace the minus signs in the final expression for the
partition function by plus signs. This result implies that the four real bosonic coordinates contribute a factor

|q|−1/3
∞∏
k=1

1

(1 + qk)
4

1

(1 + q̄k)
4 .

For each real fermionic coordinate with JK3 = +1, we have

trRR

[
(−1)

FK3+F̄K3gyJK3qHL q̄HR
]

= |q|1/12
tr
(

(−1)
FK3(−q)

∑∞
k=0 kψ−kψkyJK3

)
tr
(

(−1)
F̄K3(−q̄)

∑∞
k=0 kψ̃−kψ̃k

)
= |q|1/12

∞∏
k=1

(
1 + qky

)(
1 + q̄k

)
,

while for each real fermionic coordinate with JK3 = −1, we have

trRR

[
(−1)

FK3+F̄K3gyJK3qHL q̄HR
]

= |q|1/12
∞∏
k=1

(
1 + qky−1

)(
1 + q̄k

)
.

Since these occur in doublets, the total nonzero-mode fermionic contribution is

|q|1/3
∞∏
k=1

(
1 + qky

)2(
1 + qky−1

)2(
1 + q̄k

)4
.

Hence the total contribution to the elliptic genus of K3 for this case is

1

2
trRRg0

[
(−1)

FK3+F̄K3ge2πizJK3qL0−c/24q̄L̄0−c̄/24
]

= 8 cos2(πz)

∞∏
k=1

(
1 + qky

)2(
1 + qky−1

)2
(1 + qk)

4 = 8
θ2(τ, z)

2

θ2(τ, 0)
2 , (5.6)

where we notice that the terms involving q̄, which come from the right-moving bosonic and fermionic contribu-
tions, have cancelled.

We now consider the twisted sector, where a 6= 0. In this case, X(σ + 2π) = −X(σ), i.e. we have the
anti-periodic boundary conditions that we considered for the partition functions in Chapter 3, so we must make
the modification k 7→ k− 1/2. We note that there are 24 = 16 fixed points under the action of g, so there is an
overall factor of 16. For (a, b) = (1, 0), i.e. with no insertion of g, we obtain

1

2
trRRg1

[
(−1)

FK3+F̄K3e2πizJK3qL0−c/24q̄L̄0−c̄/24
]

= 8

∞∏
k=1

(
1− qk−1/2y

)2(
1− qk−1/2y−1

)2(
1− qk−1/2

)4 = 8
θ4(τ, z)

2

θ4(τ, 0)
2 . (5.7)

For (a, b) = (1, 1), where there is an insertion of g, we have the same result, except that the minus signs are
replaced by plus signs due to the action of g, just as we saw in the (a, b) = (0, 1) case:

1

2
trRRg1

[
(−1)

FK3+F̄K3ge2πizJK3qL0−c/24q̄L̄0−c̄/24
]

= 8

∞∏
k=1

(
1 + qk−1/2y

)2(
1 + qk−1/2y−1

)2(
1 + qk−1/2

)4 = 8
θ3(τ, z)

2

θ3(τ, 0)
2 . (5.8)

Hence the elliptic genus of K3 is

ZK3(τ, z) = 8

(
θ2(τ, z)

2

θ2(τ, 0)
2 +

θ3(τ, z)
2

θ3(τ, 0)
2 +

θ4(τ, z)
2

θ4(τ, 0)
2

)
= 8A(τ, z). (5.9)
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Thus the elliptic genus of K3 is a Jacobi form of index one and weight zero of the modular group. It satisfies
the modular transformation property (4.22) as a consequence of the modular invariance of the path integral
[18]. K3 can be realised in many different ways, including as a hypersurface in CP 4, in the orbifold limits of
T 4/ZN for N = 2, 3, 4, 6, and numerous others. Since the elliptic genus is a topological invariant, it will remain
the same for all of these constructions. We note that the supersymmetry of our theory means that q̄ no longer
features in the final expression, due to cancellation between the right-moving nonzero bosonic and fermionic
modes. This means that ZK3(τ, z) is a holomorphic function of τ .

The elliptic genus can be used to find the Witten index of the theory, and hence the Euler characteristic of
the underlying manifold K3, by setting z = 0 in (5.9). The Euler characteristic of K3 is thus seen to be

χ(K3) = 24. (5.10)

The elliptic genus of K3 can be expanded in a series around q = 0 as

ZK3(τ, z) = 2y−1 + 20 + 2y

+
(
20y−2 − 128y−1 + 216− 128y + 20y2

)
q

+
(
2y−3 + 216y−2 − 1026y−1 + 1616− 1026y + 216y2 + 2y3

)
q2 +O

(
q3
)
. (5.11)

The double expansion of ZK3 in q and y will be used in the computation of the degeneracy of black hole
microstates in the following chapter.

5.3 Twisted Elliptic Genus of K3

The elliptic genus of K3 can be generalised to the orbifolds of K3, leading to the definition of the twisted elliptic
genus. The twisted elliptic genus of K3 by an automorphism g′ of order ZN is defined as

F (r,s)(τ, z) =
1

N
trRRg′r

[
(−1)

FK3+F̄K3g′syJK3qL0−c/24q̄L̄0−c̄/24
]
, (5.12)

where the trace is taken over the Ramond-Ramond sector of the N = (4, 4) SCFT of K3 with central charge
(6, 6), and r, s are integers in the range from zero to N −1. Under the modular group, the twisted elliptic genus
transforms as

F (r,s)

(
aτ + b

cτ + d
,

z

cτ + d

)
= exp

(
2πi

cz2

cτ + d

)
F (cs+ar,ds+br)(τ, z). (5.13)

For automorphisms g′ belonging to the 26 conjugacy classes of the Mathieu group M24, the value of F (0,1) was
computed in [36, 37, 38]. In the case where N is prime, the transformation property (5.13) is sufficient for all of
the sectors of the twisted elliptic genus to be found by relating them to F (0,1). However, for composite values
of N , the various sectors break up into sub-orbits under the action of modular transformations and cannot be
related to F (0,1). In these cases, the twisted elliptic genus can be determined using its correspondence with the
cycle shape of M24. These computations are performed in [21, 39].

For N = 1, the function F (0,0)(τ, z) is simply the elliptic genus (5.9). In this work, our primary interest is
in the cases where g′ belongs to the conjugacy classes pA of M24, with p = 2, 3, 5, 7, which correspond to the
Zp CHL models. For these cases with N = 2, the functions were computed explicitly in [34] as

F (0,0)(τ, z) = 4A(τ, z) = 4

(
θ2(τ, z)

2

θ2(τ, 0)
2 +

θ3(τ, z)
2

θ3(τ, 0)
2 +

θ4(τ, z)
2

θ4(τ, 0)
2

)
, (5.14a)

F (0,1)(τ, z) = 4
θ2(τ, z)

2

θ2(τ, 0)
2 , F (1,0)(τ, z) = 4

θ4(τ, z)
2

θ4(τ, 0)
2 , F (1,1)(τ, z) = 4

θ3(τ, z)
2

θ3(τ, 0)
2 . (5.14b)

This result will be used to compute the number of black hole microstates on the 2A orbifold of K3 × T 2 in
Chapter 6.

The same paper [34] found the following general forms of F (r,s) for the pA classes for N = 2, 3, 5, 7:

F (0,0)(τ, z) =
8

N
A(τ, z), (5.15a)

F (0,s)(τ, z) =
8

N(N + 1)
A(τ, z)− 2

N + 1
B(τ, z)EN (τ) for 1 ≤ s ≤ N − 1, (5.15b)

F (r,rk)(τ, z) =
8

N(N + 1)
A(τ, z)− 2

N(N + 1)
B(τ, z)EN

(
τ + k

N

)
for 1 ≤ r, k ≤ N − 1, (5.15c)

where A(τ, z), B(τ, z) and EN (τ) are given by (4.38), (4.39) and (4.19), respectively.
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Chapter 6

Black Hole Entropy

As discussed in the Introduction, the semiclassical theory of black holes predicts that a black hole is a radiating
black body, with a finite temperature known as the Hawking temperature. This means that black holes are
thermodynamic systems which possess an entropy given by the Bekenstein–Hawking formula. A major aim in
quantum gravity research is to understand this entropy as a logarithm of the number of quantum microstates
d associated with the black hole, so that the Bekenstein–Hawking entropy can be explained as a statistical
entropy according to Boltzmann’s formula Sstat = ln d [40].

This aim has already been achieved for the special class of extremal black holes in string theory. These
black holes have zero temperature, and therefore emit no Hawking radiation. The analysis is simplest for a
subset of extremal black holes known as BPS black holes, which are invariant under certain supersymmetry
transformations. For a wide class of extremal BPS black holes in string theory, in the limit of large black
hole size, the statistical entropy has been found to be equal to the Bekenstein–Hawking entropy, providing a
microscopic explanation for the macroscopic thermodynamics [40, 41].

In this chapter, we compute the degeneracy of black hole microstates for quarter-BPS dyons in N = 4 super-
symmetric type II string theory compactified on K3× T 2, which is dual to heterotic string theory compactified
on the six-torus T 6. We also count the degeneracies on the 2A orbifold of K3 × T 2, which corresponds to the
Z2 CHL model. Our results confirm those of [17].

6.1 Degeneracy of Black Hole Microstates

In classical general relativity, black holes are spherically symmetric and hence possess no angular momentum.
However, in supersymmetric string theory, the black hole partially breaks the supersymmetry of the theory and
thus supersymmetric excitations around the black hole include a set of fermionic zero modes. When these zero
modes are quantised, angular momentum is imparted to the black hole. Since these fermionic zero modes lie
outside the event horizon, supersymmetry ensures that the horizon remains spherically symmetric. It has been
argued that a spherically symmetric horizon implies that the black hole represents a microcanonical ensemble
of states, all of which carry zero angular momentum. In that case, only the fermion zero modes produced by
the broken supersymmetry contribute to the angular momentum of the black hole. This leads to the conclusion
that the helicity trace index of the black hole,

B2n =
1

(2n)!
tr
[
(−1)

F (
2J3

)2n]
, (6.1)

is equal to (−1)
n
d, where d is the degeneracy of black hole microstates. In the formula above, F is the fermion

number operator, J3 is the helicity, which is third component of the angular momentum of the black hole in its
rest frame, 4n is the number of supersymmetries broken by the black hole, and the trace is taken over all states
carrying a certain set of electric and magnetic charges [17].

Our focus will be on quarter-BPS black holes in N = 4 supersymmetric string theories, which are states in
which a quarter of the supersymmetry is preserved. This means that these black holes break 12 of the 16 total
supersymmetries, so that the relevant helicity trace index is B6. Since we consider a BPS state, the spectrum of
the black hole is ‘topological’, meaning it does not change as the moduli are varied, except for jumps at certain
walls in the moduli space [18], known as walls of marginal stability. We will carry out our computations for
the attractor chamber of the moduli space bounded by the walls of marginal stability. In this chamber, only
single-centred black holes contribute to the index B6. We are considering BPS states, which in a given moduli
space are fully determined by their charges [4]. We will represent a microstate of the black hole by d(Q,P ),
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where Q is the electric charge vector of the black hole, and P is the magnetic charge vector; both of these
vectors are 28-dimensional. We therefore have

d(Q,P ) = −B6. (6.2)

The helicity trace index B6 has been computed for a wide range of N = 4 supersymmetric string theories.
For theories represented as ZN CHL models, obtained by taking the ZN quotient of heterotic string theory
compactified on T 6, one obtains

B6 =
1

N
(−1)Q·P

∫
C
e−πi(NρQ

2+σP 2/N+2vQ·P) 1

Φ̃(ρ, σ, v)
dρ dσ dv, (6.3)

where Φ̃(ρ, σ, v) is a known Siegel modular form, and C is a three-real-dimensional subspace of the three-complex-
dimensional space labelled by (ρ, σ, v) = (ρ1 + iρ2, σ1 + iσ2, v1 + iv2), with

0 ≤ ρ1 ≤ 1, 0 ≤ σ1 ≤ 1, 0 ≤ v1 ≤ 1,

ρ2 = M1, σ2 = M2, v2 = −M3, (6.4)

where M1,M2,M3 are fixed large positive numbers, determined by the domain in which B6 is to be evaluated.
For a full derivation of this result, see [17].

6.2 Microstate Degeneracy for Type II String Theory on K3× T 2

We now compute the degeneracy of black hole microstates for heterotic string theory compactified on T 6, which
corresponds to setting N = 1 in formula (6.3). As discussed in the Introduction, string duality means that this
compactification is equivalent to type II string theory compactified on K3× T 2 [8, 9]. This in turn means that
the relevant Siegel modular form is the multiplicative lift of the elliptic genus of K3 [21]. This is given by the
Igusa cusp form of weight ten, which has the product representation

Φ̃10(ρ, σ, v) = e2πi(ρ+σ+v)
∏

k,l,j∈Z,k,l≥0
j<0 for k=l=0

(
1− e2πi(kσ+lρ+jv)

)c(4kl−j2)
, (6.5)

where c(4kl− j2) are defined by the Fourier coefficients of the elliptic genus of K3. As we observed in Chapter
5, the elliptic genus of K3 can be expanded in a double expansion in q and y as

ZK3(τ, z) =
∑
n,j∈Z

c(4n− j2)qnyj , (6.6)

so that the relevant expansion coefficients are c(4n− j2) with n = kl. The degeneracy of black hole microstates
can then be found according to the formula

d(Q,P ) = (−1)Q·P+1

∫
C
e−πi(ρQ

2+σP 2+2vQ·P) 1

Φ̃(ρ, σ, v)
dρ dσ dv . (6.7)

We will be considering the case

M1,M2 � 0, M3 � 0, |M3| �M1,M2. (6.8)

This corresponds to the expansion of 1/Φ̃10 first in powers of e2πiρ, e2πiσ, and then in powers of e−2πiv. Hence
if we make the Fourier series expansion

1

Φ̃10(ρ, σ, v)
=

∑
m,n,r∈Z

g(m,n, r)e2πi(mρ+nσ+rv), (6.9)

where g(m,n, r) are the Fourier coefficients, we can find the degeneracy of black hole microstates as

d(Q,P ) = (−1)Q·P+1
∑
m,n,r

g(m,n, r)

∫
C
e2πi(mρ+nσ+rv)e−πi(ρQ

2+σP 2+2vQ·P) dρ dσ dv

= (−1)Q·P+1
∑
m,n,r

g(m,n, r)

∫
C
e2πi((m−Q2/2)ρ+(n−P 2/2)σ+(r−Q·P )v) dρ dσ dv

= (−1)Q·P+1g

(
Q2

2
,
P 2

2
, Q · P

)
. (6.10)
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Thus the microstate degeneracy is given by the Fourier coefficients of 1/Φ̃10(ρ, σ, v) [17].
To compute the degeneracy d(Q,P ) for given values of

(
Q2, P 2, Q · P

)
, the product form of 1/Φ̃10 was eval-

uated in Mathematica and its Fourier series coefficients were determined. The resulting values were multiplied
by the corresponding sign (−1)Q·P+1 to find d(Q,P ). The results are shown in Table 6.1, and fully agree with
those obtained in [17].

Table 6.1: The degeneracy d(Q,P ) of black hole microstates for type II string theory compactified on K3× T 2,
corresponding to heterotic string theory compactified on T 6. The results are in agreement with those obtained
in [17]. A few additional results not included in [17] are also shown.

(Q2, P 2)\Q · P −2 0 1 2 3 4 5

(2, 2) –209304 50064 25353 648 327 0 0

(2, 4) –2023536 1127472 561576 50064 8376 –648 0

(4, 4) –16620544 32861184 18458000 3859456 561576 12800 3272

(2, 6) –15493728 16491600 8533821 1127472 130329 –15600 972

(4, 6) –53249700 632078672 392427528 110910300 18458000 1127472 85176

(6, 6) 2857656828 16193130552 11232685725 4173501828 920577636 110910300 8533821

(6, 8) 91631080464 315614079072 233641003920 100673013264 26563753008 4173501828 392427528

6.3 Microstate Degeneracy for the 2A Orbifold of K3× T 2

Just as in the case of the elliptic genus, the twisted elliptic genus of K3 defined by (5.12) can be expanded in a
double expansion in q and y as

F (r,s)(τ, z) =
∑

j∈Z,n∈Z/N

c(r,s)(4n− j2)qnyj , (6.11)

where c(r,s)(4n− j2) are the corresponding expansion coefficients. In analogy with (6.5), a Siegel modular form
associated with this is

Φ̃(ρ, σ, v) = e2πi(α̃ρ+β̃σ+v)
N−1∏
r=0

∏
k∈Z+ r

N ,l,j∈Z
k,l≥0,j<0 for k=l=0

(
1− e2πi(kσ+lρ+jv)

)∑N−1
s=0 e2πisl/Nc(r,s)(4kl−j2)

. (6.12)

Here, we will only be concerned with the CHL models corresponding to the pA conjugacy classes of K3 for
p = 1, 2, 3, 5, 7 (using the notation of [42]), for which

α̃ = 1, β̃ =
1

N
. (6.13)

Using formula (6.3), we see that the degeneracy of microstates is given by

d(Q,P ) = (−1)
Q·P+1

g

(
N

2
Q2,

1

2N
P 2, Q · P

)
, (6.14)

where g(m,n, r) are the Fourier coefficients of 1/Φ̃. We will consider the simplest nontrivial case in this class,
namely the 2A orbifold of K3× T 2, which corresponds to the Z2 CHL model. In this case, we have N = 2, so
that the relevant function is the weight-six Siegel modular form

Φ̃6(ρ, σ, v) = e2πi(ρ+σ/N+v)
N−1∏
r=0

∏
k∈Z+ r

N ,l,j∈Z
k,l≥0,j<0 for k=l=0

(
1− e2πi(kσ+lρ+jv)

)∑N−1
s=0 e2πisl/Nc(r,s)(4kl−j2)

, (6.15)

and the functions F (r,s) are given by (5.14). Using the same procedure described in the previous section, the
degeneracies d(Q,P ) were evaluated in Mathematica. The results are shown in Table 6.2, and again are in
agreement with those reported in [17].
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Table 6.2: The degeneracy d(Q,P ) of black hole microstates for the Z2 CHL model, corresponding to the 2A
orbifold of K3 × T 2. Again, the results fully agree with those obtained in [17], and we have computed some
additional values not given in that paper.

(Q2, P 2)\Q · P −2 0 1 2 3 4 5

(1, 2) –5410 2164 360 –2 0 0 0

(1, 4) –26464 18944 4352 160 0 0 0

(2, 4) –124160 198144 67008 6912 64 0 0

(1, 6) –114524 125860 36024 2164 52 0 0

(2, 6) –473088 1580672 671744 101376 4352 –16 0

(2, 8) –1235968 10586880 5189696 992256 67008 1152 0

(3, 6) –779104 15219528 7997655 1738664 149226 2164 3

(3, 8) 9971200 122401792 72857944 19737088 2409072 101376 424
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Chapter 7

Wall-Crossing and Mock Modular
Forms

In Chapter 6, we computed the microstate degeneracy for single-centred black holes by working in the attractor
chamber [17]. However, one may encounter cases where the macroscopic black hole configurations are no longer
localised at a single point: as well as containing the single-centred black hole of interest, they may also include
several multi-centred black holes. This gives rise to some computational difficulties, since upon crossing walls
of marginal stability in the moduli space, the multi-centred configurations may split into their single-centred
constituents, resulting in a jump in the index B6. This phenomenon is known as wall-crossing [18].

The difficulties associated with counting the microstates, and hence computing the statistical entropy, of
multi-centred black hole configurations means that it is useful to have a way of isolating the single-centred
components at the microscopic level. In this chapter, we discuss results from [18] which show how the Fourier–
Jacobi coefficients ψm of 1/Φ̃10 can be decomposed into a finite part ψF

m and a polar part ψP
m, where the finite

part corresponds to a region of the moduli space which contains the single-centred black hole configurations.
Since we will find that mock modular forms and mock Jacobi forms play a significant role in this process, we
begin the chapter by defining these functions and discussing some of their properties.

7.1 Mock Modular Forms and Mock Jacobi Forms

In this section we follow [18].

7.1.1 Mock Modular Forms

Definition 7.1. A pure mock modular form of weight k ∈ Z/2 is defined to be the first member of a pair (h, g),
where

1. h is a holomorphic function on H with at most exponential growth at all cusps;

2. The function g(τ), called the shadow of h, is a holomorphic modular form of weight 2− k;

3. The sum ĥ = h + g∗, called the completion of h, transforms like a holomorphic modular form of weight
k, i.e. ĥ(τ)/θ(τ)2k is invariant under τ → γτ for all τ ∈ H and all γ in some congruence subgroup of
SL(2,Z).

Definition 7.2. A mixed mock modular form of weight k|` ∈ Z/2 is defined to be a function h(τ), such that

1. h is a holomorphic function on H with at most polynomial growth at all cusps;

2. h has a shadow defined by
∑
j fj ḡj , where fj(τ) and gj(τ) are holomorphic modular forms of weight `

and 2− k + ` respectively;

3. h has a completion of the form ĥ = h +
∑
j fj ḡj , which transforms like a holomorphic modular form of

weight k.
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7.1.2 Mock Jacobi Forms

Definition 7.3. A pure mock Jacobi form of weight k and index m is defined in [18] as a holomorphic function
ϕ on H × C that satisfies the elliptic transformation property (4.23) and therefore has a Fourier expansion as
in (4.24), and a theta expansion as in (4.28), but for which the coefficients h`(τ) are now mock modular forms
of weight k − 1/2, rather than modular forms, and the modular transformation property (4.22) is not satisfied
by ϕ itself but instead by the completed function

ϕ̂(τ, z) =
∑

`∈Z/2mZ

ĥ`(τ)θm.`(τ, z). (7.1)

Definition 7.4. A mixed mock Jacobi form is defined in [18] to satisfy the same properties as a pure mock
Jacobi form, except that the coefficients h`(τ) of the theta expansions are now mixed mock modular forms.

7.1.3 Decomposition of Meromorphic Jacobi Forms

We now state a result from [18], which states that the pole-free part of a meromorphic Jacobi form can be
separated from the remaining polar part.

Theorem 7.1. If ϕ(τ, z) is a meromorphic Jacobi form, then it has the decomposition

ϕ(τ, z) = ϕF(τ, z) + ϕP(τ, z), (7.2)

where ϕF is the finite part of ϕ, which has no poles, and ϕP is the polar part of ϕ, which has the same pole
structure (in z) as ϕ.

7.2 Application to Black Holes

7.2.1 Fourier–Jacobi Coefficients on K3× T 2

As we saw in Chapter 6, the black hole microstate degeneracies for N = 4 type II string theory compactified on
K3× T 2 are given, up to a sign, by the Fourier coefficients of the reciprocal of the weight-ten Igusa cusp form,
Φ̃10. The degeneracy for a given set of charges (in the attractor chamber) is therefore given by the contour
integral (6.7). Although 1/Φ̃10 has the same functional form throughout the moduli space, the microstate
degeneracy is moduli-dependent because of the moduli-dependence of the contour of integration and the pole
structure of 1/Φ̃10.

Following [18], the reciprocal of Φ̃10 can be written as the expansion

1

Φ̃10(q, p, y)
=

∞∑
m=−1

ψm(τ, z)pm, q = e2πiτ , p = e2πiσ, y = e2πiz, (7.3)

where η(τ)24ψm(τ, z) are meromorphic Jacobi forms of weight two with a double pole at z = 0 and no other
poles, up to a translation by the period lattice. Note that we have made the notational changes σ → τ, v → z
to conform with the standard presentation of Jacobi forms.

Using the Fourier expansion of 1/Φ̃10 in Mathematica, we find that

η(τ)24ψ−1(τ, z) =
(
y−1 + 2y−2 + 3y−3 +O

(
y−4

))
+ 2q

+ q2
(
3y + 3y−1 +O

(
y−4

))
+ q3

(
4y2 + 4y−2 +O

(
y−4

))
+O

(
q4
)
. (7.4)

By performing the expansion of −1/B(τ, z) as well, we confirm the result from [18] that

η(τ)24ψ−1(τ, z) = − 1

B(τ, z)
. (7.5a)

Similar expansions for subsequent values of m allow us to verify that

η(τ)24ψ0(τ, z) = −8A(τ, z)

B(τ, z)
, (7.5b)

η(τ)24ψ1(τ, z) = −36A(τ, z)2

B(τ, z)
− 3

4
E4(q)B(τ, z). (7.5c)
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Invoking Theorem 7.1, we note that we can decompose ψm into

ψm(τ, z) = ψF
m(τ, z) + ψP

m(τ, z), (7.6)

where ψF(τ, z) has no poles, and ψP(τ, z) has the same pole structure in z as ψm(τ, z). We note that ψm(τ, z)
is the counting function of all asymptotic states from both single and multi-centred black hole configuration,
and the contribution from ψF(τ, z) comes from an area of the moduli space which encloses the region in which
the positivity conjecture of [17] is satisfied. Thus the finite part ψF

m covers the region of the moduli space where
the single-centred black holes are found.

It was shown in [18] that for m > 0, the decomposition of ψm for 1/Φ̃10 has the finite part

ψF
m(τ, z) =

∑
` (mod2m)

f∗m,`(τ)θm,`(τ, z), (7.7)

where

f∗m,`(τ) = e−iπ`
2τ/2m

∫ −`τ/2m+1

−`τ/2m
ψm(τ, z)e−2πi`zdz. (7.8)

This finite part ψF
m is independent of the choice of contour in the moduli space, and is found to be a mock Jacobi

form. Hence the microstate degeneracies of black holes corresponding to ψF
m with magnetic charge invariant m

are Fourier coefficients of a mock Jacobi form of index m. It was also shown in the paper [18] that the polar
part of ψm for m > 0 is

ψP
m(τ, z) =

p24(m+ 1)

η(τ)24
A2,m(τ, z), (7.9)

where p24(m+ 1) is the coefficient of qm in 1/η(τ)24, and A2,m is the Appell–Lerch sum

A2,m(τ, z) =
∑
s∈Z

qms
2+sy2ms+1

(1− qsy)
2 . (7.10)

Note that this sum diverges for m = −1.

7.2.2 Fourier–Jacobi Coefficients on the 2A Orbifold of K3× T 2

As discussed in Chapter 6, the black hole microstate degeneracies on the 2A orbifold of K3 × T 2 are given by
the Fourier coefficients of 1/Φ̃6. As in the previous section, we can write this as the following Fourier–Jacobi
expansion:

1

Φ̃6(q, p, y)
=

∞∑
m=−1

ψm(τ, z)pm/2. (7.11)

We note that [η(τ)η(2τ)]
8
ψm(τ, z) are meromorphic Jacobi forms of weight two. Performing the Fourier expan-

sion in Mathematica, we find that the Jacobi form corresponding to m = −1 can be expanded as

[η(τ)η(2τ)]
8
ψ−1(τ, z) =

(
y−1 + 2y−2 + 3y−3 + 4y−4 + 5y−5 +O

(
y−6

))
+ 2q2 + 2q4

(
3y + 3y−1 +O

(
y−6

))
+O

(
q6
)
. (7.12)

By computing the expansion of −1/B(2τ, z) as well, we find that this result confirms the finding from [21, 43]
that

[η(τ)η(2τ)]
8
ψ−1(τ, z) = − 1

B(2τ, z)
. (7.13a)

We notice that this is identical to the m = −1 coefficient (7.5a) for the unorbifolded case, upon making the
replacement τ → 2τ . This means that the Appell-Lerch sum corresponds to (7.10) under the replacement
q → q2, so the sum diverges in this case.

By similarly expanding the next two lowest-m coefficients, we also verify the following results from [43]:

[η(τ)η(2τ)]
8
ψ0(τ, z) = −2F (0,1)(2τ, z)

B(2τ, z)
, (7.13b)

[η(τ)η(2τ)]
8
ψ1(τ, z) = −

F (0,0)(τ, z) + F (0,1)(τ + 1/2, z) + 2
[
F (1,0)(τ, z)

]2
+ F (1,0)(4τ, z2)

B(2τ, z)
. (7.13c)
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For the case m = 0, we can use (5.15) to write out the twisted elliptic genus explicitly, giving

[η(τ)η(2τ)]
8
ψ0(τ, z) = −2F (0,1)(2τ, z)

B(2τ, z)
=

8

3

A(2τ, z)

B(2τ, z)
+

2

3
E2(τ). (7.14)

It was shown in [43] that this meromorphic Jacobi form admits the decomposition

[η(τ)η(2τ)]
8
ψF

0 (τ, z) =
2

3
(E2(2τ)− E2(τ)), (7.15a)

[η(τ)η(2τ)]
8
ψP

0 (τ, z) = 8
∑
n∈Z

q2ny

(1− q2ny)
2 . (7.15b)

The decomposition for m = 1 was also successfully performed in [43]. These results indicate that the Fourier–
Jacobi decomposition of meromorphic Jacobi forms introduced for K3×T 2 in [18] can be successfully extended
to the 2A orbifold of K3 × T 2, and in fact to higher orbifolds of K3 × T 2 as well. This provides a useful
method for separating the part of the Fourier–Jacobi coefficients that covers region of the moduli space where
the single-centred black holes may be found.

50



Chapter 8

Conclusions

In this report, we have seen how string theory provides a well-defined method of computing the entropy of
a certain class of extremal supersymmetric black holes as a logarithm of the number of microstates. The
agreement of the entropy obtained via this method with the prediction of the Bekenstein–Hawking formula is a
major success of string theory.

We began by providing a brief overview of string theory and classical general relativity in Chapter 1.
Following this, in Chapter 2 we discussed some of the basic principles of quantum field theory, including
canonical quantisation and renormalisation.

In Chapter 3, we computed the partition functions for the free closed bosonic and fermionic strings, and in
the process encountered the Dedekind eta function. This was our first indication of the importance of modular
forms in string theory. This led us to the formal definition of modular forms in Chapter 4, where we also defined
other mathematical objects of importance in this area, including Siegel modular forms, Eisenstein series and
Jacobi forms. In Chapter 5, we computed the elliptic genus of K3 by realising K3 as a SCFT in the orbifold
limit T 4/Z2, and found that it took the form of a Jacobi form of index one and weight zero. We also briefly
introduced the twisted elliptic genus of K3.

The main portion of the work was contained in Chapter 6, where we demonstrated the method of microstate-
counting for the case of quarter-BPS extremal black holes in N = 4 supersymmetric type II string theory
compactified on K3×T 2. This involved using Mathematica to determine the Fourier coefficients of the reciprocal
of the Igusa cusp form of weight ten, which corresponded (up to a sign) to the degeneracies of black holes of
given electric and magnetic charge vectors. In addition, we performed the same analysis for the 2A orbifold
of K3 × T 2, where the relevant Siegel modular form was of weight six. The results confirmed those obtained
previously by [17, 21].

Finally, in Chapter 7, we discussed how the Fourier–Jacobi coefficients of the reciprocal of the generating
function are meromorphic Jacobi forms. We discussed results from [18] that allow such functions to be decom-
posed into a finite part and a polar part, where the finite part corresponds to a region of the moduli space that
contains the single-centred black hole configurations. We concluded by giving a brief description of how these
results were partially extended to the orbifolds of K3× T 2 in [43].

There are still many open questions in this field, and several possible future directions of research might be
interesting to pursue. One area of future research would entail the extension of the Fourier–Jacobi decomposition
of the meromorphic Jacobi forms ψm discussed in Chapter 7 to all positive values of m for the 2A orbifold of
K3× T 2, as this has so far only been achieved in [43] for the cases m = 0 and m = 1.
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