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Abstract

In this report, we consider modular forms, Jacobi forms and Siegel modular forms, and the ap-
plication of these in computing black hole degeneracies for extremal BPS black holes. We give
the definition and some properties of Eisenstein series, the 1 function, the modular discriminant
and the Jacobi Theta functions and discuss their applications to the thermodynamics of string
theoretic black holes. We compute the Fourier coefficients of the Igusa cusp form of weight 10
which correspond to the degeneracies of these extremal BPS black holes. We also apply numerical
methods to consider an extension of Lehmer’s conjecture on the Ramanujan’s 7 function and look

at the surprising behaviour of integers k : 7 (k) > 2k'/2.
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Chapter 1

Introduction

In the study of the entropy of supersymmetric black holes, one encounters complex-valued func-
tions called modular forms. The study of modular forms began with their connection to elliptic
functions and has since seen surprising applications in various fields such as number theory (mod-
ular forms were an integral part of Andrew Wiles’ proof of Fermat’s Last Theorem [1]), group
theory, and the interest of this report, string theoretic black holes.

Modular forms appear in the study of integer partitions as generating functions. More precisely
if p (n) denotes the number of ways a positive integer n can be written as a sum of positive integers

(where we do not take into account the ordering of the summands), then p(n) is given implicitly

by [2]
[ee] n_ (o] 1
pr(n)q —j]:[1 o

The product [1;2; ﬁ is called the generating function of p (n) and while it is not explicitly
a modular form it is related to the eta function, n (1) = ¢*/** 122, (1 - ¢") where ¢ = €™ which
is intimately related to the study of modular forms.

The theory of integer partitions plays an important role in string theory. For example, when
considering a single closed bosonic string compactified on a torus, integer partitions are used
to determine the number of possible microstates of the string at a particular energy level [3].
Furthermore, the Elliptic Genus of K3 derived in [3] is in terms of Jacobi Forms (a concept related
to modular forms) called the Jacobi Theta Functions. Modular forms appear in the study of the
thermodynamics of string-theoretic black holes, as the Fourier series of the inverse of a Siegel

Modular Form determine the degeneracies of extremal black holes in the theory [4].

At the end of this report, we perform some numerical analysis of the Ramanujan 7 function,
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defines implicitly as the Fourier coefficients of n?*

(1) =q Ij (1-¢")* = iT(n)q”~

The properties of this 7 function have greatly interested mathematicians over the last 100 years
since its definition by Ramanujan in 1916 [5]. Ramanujan made several conjectures regarding this
7 function, which have all been subsequently proven. Another conjecture about the 7 function,
which is as of now unproven, was given in 1947 by Lehmer [6]. He conjectured that 7 (n) was non-
vanishing for all n. Through computational methods, we consider some variations of this lemma
and also consider other properties of the 7 function inspired by the conjectures of Ramanujan.
In chapter 2 we give some first examples and results of modular forms. We discuss modular
transformations, Eisenstein series, and the Dedekind n function. We define Jacobi forms and
consider the Jacboi-Theta functions in chapter 3. The connection between Siegel modular forms,
a generalisation of modular forms, and black holes in string theory is discussed in chapter 4.
Numerical analysis of the Ramanujan Tau function is given in chapter 5. Finally, in chapter 6 we

conclude our results.



Chapter 2

Modular Forms

2.1 The Modular Group and Modular Forms

Definition 1. The full modular group T' is the group of transformations on the upper half plane,

H:= {7 € C:Im(7) > 0}, of the form

ar+b
T =

ct+d

where a,b,c,d € Z and ad — bc = 1, with the binary operation defined by composition.

A transformation in this group

ar+b
T

ct+d

can naturally be associated with a matrix in SLy (Z)

As such we write A7 = 27%% We also note that for A € SLy (Z) we have A7 = —Ar. Therefore, we

cT+d

instead see transformations as elements of the group PSLs (Z) = SLy (Z) /{1 }.

We can also consider congruence subgroups of T

Definition 2. For N € N we define the congruence subgroup of level N as

a b
To(N) = el':c=0 mod N
c d

Note that we have I' =T (1).
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2.1.1 Modular Forms

Definition 3. A modular form f:H — C of weight k and level Nis a holomorphic function on H

and at 100 such that

() e ()

ct+d

a b
where ey (N) and f is bounded as T — ico.
c d

A cusp form is a modular form such that im,_ ;e f (7) = 0.

In general, when we say a modular form, we refer to a modular form of level 1 unless stated

otherwise.

Theorem 2.1.1. Let f be a modular form of weight k and 7 € H. Then f(7+1) = f(7) and
FD) =)

Proof. This follows clearly by considering the transformation rule for modular forms and the

matrices

O

Theorem 2.1.2. A modular form f has a Fourier series of the form ¥.°0, a,q" where q = e*™7.

Proof. Consider the map Q : H — A, Q (7) = €™ where A= {ze¢C:0<|z| <1} is the punctured
open unit disk. From the modular form f define g: A - C by ¢g(q) = f (7). Note that such a g is
2miT!

2mir we have 7 and 7 differ by an integer. So by

well defined as if ¢ = ¢ where g=¢ and ¢’ = ¢
periodicity of f, f(7) = f (7).
The function g is analytic on all of A and as such has Laurent expansion of the form 3,°__ a,q"

for |g| < 1. So we have f(7) =Y a,q". As f is bounded as 7 — ioco or equivalently ¢ — 0 we

see an =0,Yn <0. O

Definition 4. We denote by My (g (N)) the space of all modular forms of weight k and level N.
The ring of modular forms of level N, M (Ty (N)) is defined as M (Lo (N)) = @y My (To (N)).

In [7] Apostol shows that for each k the space My, (I") is finite-dimensional. He also shows the

following:

Theorem 2.1.3. For k odd, k <0, or k =2 we have that M, (T') = {0}.
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It is important to note that this result generally does not hold for modular forms of level N > 1.
We now state an important result from Sturum [8, 9] that states that modular forms are

uniquely determined by their ”first few” Fourier coefficients.

Theorem 2.1.4. Let f,g € My (I'o (N)) with Fourier expansions f(7) = Y, qanq"™ and g(7) =
Y0 0 bng™ such that a, = b, ¥n < X2 where m = [T : T (N)], is the index of To (N) in T. Then

127
f=9

Note that for prime N we have the index m = [[': T (N)] =N
This result is very useful as it shows that at a particlar weight and level ”few” modaular forms

exist.

2.2 Eisenstein Series

Definition 5. For even r > 2 and 7 € H we define the Eisenstein Series of order v as

1
G, (1) = E —_—.
) (mimezz (mnT)"
(m,n)#(0,0)

One can also similarly define the Eisenstein series G, but this is not a modular form. However,

it is an example of a mock modular form (as the function Es (7) - transforms as a modular

__3
2Im(7)
form of weight 2).

As an Eisenstein series is a modular form, it has a Fourier series which we now consider. First,

we state the Lipschitz summation formula from [10] that we will need.

Lemma 2.2.1. For k> 2 and 7 € H we have

1 ( 27”) k-1 27mzr
k k‘ 1)| Z

nez (Z + n)

Theorem 2.2.2. The Fisenstein Series G4 and Gg have the Fourier series

G4(7)=2¢(4) (1 +240 i o3 (n) q")

G (1) = 2 (6) (1 - 504210—5 (n)q”)

2miT

where q = ¢ and o, is the divisor function defined as oo (1) = X4, d

Proof. We prove only the case of G4 as the proof for G¢ follows similarly. Begin by separating
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the sum for G4 into the cases of m =0 and m # 0 so we have

Gi(n= ¥ — !

4 + 4
nez~{o} T m.neZ (mT + TL)

—2@(4)+2Z Y —

m=1neZ (mT + 71)

Using Lipschitz summation formula we get

Ga (1) =2 (2) +2 Z (((42_7r3' 5k W)
].67T
=2¢(2) (1 +240 Z > rk_lqu)

Finally noting that the double series ¥2°_, $°° r#~1¢™" is an example of a Lambert series and

can be written as Yo, 03 (n) ¢™ which was shown in [11] by Hardy completes the proof. O

It is useful to further define By (1) =1+2403%,> 1 03(n)¢" and Eg (7) =1-504%", 05 (n) ¢"
as the Fourier coefficients for these Ej, g are all integers and the constant term is 1.

The importance of Eisenstein series is demonstrated in the following by Zaiger in [10].

Theorem 2.2.3. A given modular form of weight k can be expressed as a C-linear combination

of terms of the form Efng where da+ 68 = k.

This is extremely useful for computations of modular forms as the Fourier Series for Eisenstein

Series can be easily implimented into code.

2.3 Dedekind n Function and the Discriminant

We now define the Dedekind n function and also the discriminant function. The 7 function plays
an important role in bosonic string theory and the Fourier expansion of the discriminant function

is of central importance in chapter 5.

Definition 6. The Dedekind eta function is defined on H by

n(r) =q¢"* f[l(l -q")

where g = 2™
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Lemma 2.3.1. For 7 € H we have

n(r+1) =@ (7).

Proof.

n(r+1)=q eGP (1- gne?™m)

n=1

_ e(27r7l)/24n (7_)

From this result, it follows that n* is periodic with period 1.

For the transformation of  under 7 — _71 we have the following from Apostol [7]:
Theorem 2.3.2. For 7 el

1(=)- e

2.3.1 The Discriminant Function

Definition 7. For t ¢ H we define the discriminant function, A, as

A7) =n* (7).

Theorem 2.3.3. The Discriminant Function A can be expressed as

1

A(7) = Jose (B (1) - B (7).

Corollary 2.3.3.1. A is a cusp form of weight 12.



Chapter 3

Jacobi Forms

3.1 Jacobi Forms

Jacobi forms are functions of 2 complex variables that transform similarly to modular forms. Our

main consideration is given to the Jacobi Theta forms which are examples of Jacobi forms.

Definition 8. A Jacobi Form of weight k and index m is a holomorphic function ¢ :HxC - C

satisfying:

b
10228 25) = (er+ ) exp (2252) 0 (rv) for att || €SLa (2.

cT+d’ cT+d cT+d
c d

2. ¢ (1,v+ AT+ p) = exp (=2mim (N*7 +2X\v)) ¢ (1,v) for all \, p e Z.

3. ¢ has a Fourier expansion of the form

b= Y clnr)g's

n=0r2<4mn

where q = €2™ and z = 2™V,

3.2 Jacobi Theta Functions

Jacobi Theta functions are an example of these Jacobi forms and appear in string theory in the

elliptic genus of K3.

Definition 9. For 7 e H and v € C we define the Generalised Theta Function as

Oup (T,v) = EZ: exp (mﬁ- (n+ a)2) exp (2mi(n+a) (v +0))

10
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From this, we define the Jacobi Theta functions as:

01 (r,v)==01 1 (7,v)

- Z (_1)nq%(n+%)zeﬂ’i(2n+l)u
Z

11
272

02 (T7V) = 9%,0 (T,V)

_ Zq%(n+%)2€ﬂi(2n+1)u
Z
93 (7’7 1/) = 9070 (7’7 1/)
_ Z q%nZ eQﬂ'inu
Z
04 (7,v) =01 (7,v)

_ Z (_1)”Lq%n262ﬂinu
Z

3.2.1 Modular Transformations of Theta Functions

We now consider modular transformations on the above theta functions. Firstly we consider the

transformation 7 — 7 + 1.

Lemma 3.2.1.
61 (1 +1,v) =0, (1,v)
O (T+1,v) = 6%92 (1,v)

93(T+17I/)=94(T,V)

04 (T +1,v)=03(T,v)

Proof. Here we only show the identities for 6, (7 + 1,v) and 05 (7 + 1,v) as the proof of the other

two identities follows similarly.

01 (r+1,v) =—i Z ewi(7+1)(n+%)267ri(2n+1)l/
nez

_ eﬂ'i(n2+n+%)91 (7_’ l/)

Noting that n?2 +n =0 mod 2 Vn € Z the we have the desired result.

11
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Now for 63 we have:

03 (T +1 V) _ Z eﬂi(T+1)7L2€27r’LTLV
?
nez

.2 1,2 .
— Z eﬂ'zn q2n e27rzn1/
nez

_ Z (_1)nq%n2627rim/
nez
= (94 (T, V)
O

We now consider the transformations 7 — —% and v > E To do this we will need Poisson’s

Summation Formula:

Theorem 3.2.2. Let f:R — C be a Schwartz function. Then

> ) =3 f(n)

nez nez
where f (s) = [ e 2™ f (z) dx.

Theorem 3.2.3. For r e H and v € C we have
-1 -v - wiﬁ
03 (*, 7) =vV-ite™ 7 03 (1,v)
T T
Proof. Define f,, : R - C by f,, () = €™ 7272 Q5 we have that

03 (T7V) = z fT,V (n)

nez
We also have that

fA'r,y (S) = %e”(s—l’)Q(%).

T

12
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So applying Poisson’s Summation Formula we see that

O3 (T,v) = 3 fru (n)

nez

> fru (1)

nez

1 . 2/-1

g L rien? ()
PV

- Ly mint () 2min(=) ()
V =T neZ

1 em(*:z)eg(;l,;’/),
1T T T

Rearranging this completes the proof. O

Theorem 3.2.4. For r e H and v € C we have
-1 -v - ﬂiﬁ
02 (*, 7) =V-ite™ 7 04 (T,V)
-

3.2.2 Product Representations of Theta Functions

We first state the Jacobi Triple Product Identity which we make use of in this section.

Theorem 3.2.5. For x,y € C where |z| <1 and y # 0 we have

IO—OI (1_m2m) (1+x2m—1 2 ( $2m_1) _ n? 2n
y?)(1+ =Y "y

2
m=1 Y nez

Theorem 3.2.6. For 7 € H and v € C we have the following product representations for the Theta

functions:
L, o> qul
01 (T,v) =q522 [] (1—61’")(1—qu)(1— . )
m=1
o m—1
b2 (r,v) =q52% [T (1-¢™) (1+¢™%) (1 +4 )
m=1 z
s s
03 (r,v) =[] (1—qm)(1+q2"5ilz) (1+q )
m=1 z
oo . N qQTné—l
04 (r,v) =[] (1-¢ )(1—q 2 z) 1-
m=1 z
where q = €2™7 and z = >V,

Proof. We only prove the identities for 63 and 65 as the remaining two follow similarly. First,

2miv

consider the expansion for 3. Writing z = e and using the Jacobi Triple Product Identity we

13
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get

b (r.v)= 3 ¢*" 2"

nez

2m-1
_ hasd _om 2m-1 q 2
_"1;11(1 q )(1+qT z)(1+ - )

Now for 65 we have

0 (1,v) = Z q%(n+%)2e7ri(2n+1)u
nez
_ qézé Z q%(n2+n)e2m'nu
nez

nez

ool

=4q

So applying the Jacobi Triple Product identity as before we get

14



Chapter 4

Siegel Modular Forms and Black
Holes

4.1 Siegel Modular Forms

Siegel modular forms generalise the concept of modular forms by extending the upper half-plane
to the more general Siegel upper half-space. They play an important role in the computation
of black hole degeneracies, which are determined by the Fourier coefficients of the inverse of a
particular Siegel modular form. In this section, we discuss Siegel modular forms and use them to

calculate these degeneracies.

Definition 10. The Siegel upper half-space, Hs, is defined as
T z
Hy=4Q = €GLy(C):Im(7),Im (c),det (Im(2)) >0 .

where here GLa (C) denotes the ring of 2 x 2 matrices with complex entries.

We now define the symplectic group, I's, which will act on Hs, as the full modular group acted

on the H.

Definition 11. The symplectic group, I's, is given by

Ty ={yeGLy(Z): 7" Jy=J}

15
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0 I
where J = 2 and Is is the 2 x 2 identity matrix.
-I, 0
A B -1
For a matriz v = e 'y we define the action of Ty on QeHs by (AQ+B)(CQ+D) . It
C D

can be shown that CQ + D is non-singular and that this operation is well-defined.
Now we can define a Siegel modular form as:

Definition 12. A holomorphic function F :Hy - C is a Siegel modular form of weight k if

F((AQ+ B) (CQ+ D)) = det (CQ + D)* F ()

A B
for Q eHsy and ely.
C D

4.2 Black Holes and Modular Forms

We now apply modular forms and related concepts to the study of black hole entropy. Here we
will determine the Fourier Coefficients of the inverse of the Igusa Cusp form of weight 10, a Siegel
Modular form, which corresponds to black hole degeneracies of extremal supersymmetric black
holes.

We begin by giving the formula for the Elliptic Genus of K3, Zs, from [3], the Fourier

coeflicients of which we will use in the calculation of the black hole degeneracies.

Zies (72) :8(95 (1, 2) . 03 (1, 2) . 02 (T,z))

03 (7,0) 63 (r,0) 63(7,0)

This is an example of a Jacobi form of weight 0 and index 1 discussed in chapter 3.

2miT

Taking g = e and y = e2™* | Zy3 has an Fourier expansion

Zrs3(1,2) = Z c(4n—j2)q"yj
n,jel

Using the Fourier coefficients of Zg3 one can define the Igusa cusp form of weight 10, ®1¢ in [4]

as

27i(p+o+v) H (1 _ p2mi(kotlp+iv) )0(4kl—j2)

k,l,jeZ
k,1>0,j<0 for k=l=0

(PIO (p,U,’U) =€

16
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Writing « = €2™, y = €?™ and w = €*™" we have
i\ c(4kl-52
®10 (p,0,v) = TYw [1 (1- x’“ylw])°( 7

k,l,jeZ

k,1>0,5<0 for k=1=0

Expanding the inverse of this ®19 we get

1
_— g(m,n,p)x™y"w?
(1)10 (,0,0' U) mZn:,p

In [4] Sen shows the degeneracy, d (P, Q), associated with electric charge @ and magnetic charge

P is given by the integral

. ; 1
d(P,Q) _ (—l)Q P+1 f e—ﬂl(pQ2+aP2+2vQ-P) dp do dv
C CI)IO (P, 0-77})

Using the Fourier expansion for we get

1
¢10(p,0,v)

d(P Q) ( 1)Q P+1 Z g(m n p) f —wi(pQ2+aP2+2vQ-P)e27ri(am+pn+vp) dp do dv

m,n,p

_ (_1)Q-P+1g(Q ,P27Q P)

Evaluating these degeneracies in Table 4.1 we have:

(Q*,PH\P-Q | -2 | -1 0 1 2 3 4

(2,2) -209304 130329 50064 25353 648 327 0

(2,4) -2023536 1598376 1127472 561576 50064 8376 -648

(4,4) -16620544 | 28698000 32861184 18458000 3859456 561576 12800
(2,6) -15493728 | 16844421 16491600 8533821 1127472 130329 -15600
(4,6) -53249700 | 474507528 632078672 392427528 110910300 | 18458000 | 1127472
(6,6) 2857656828 | 11890608225 | 16193130552 | 11232685725 | 4173501828 | 920577636 | 110910300

Table 4.1: Values of d (P, Q)

These results match the results from [4].

17



Chapter 5

Numerical Analysis of the

Ramanujan 7 Function

Finally, we performed some numerical experiments regarding the Ramanujan 7 function and re-
lated functions. We have considered a more general form of Lehmer’s conjecture regarding A™
and we determined the proportions of positive and negative Fourier coefficients of A™ up to 10°
coefficients. We also found surprising behaviour of integers k for which 7 (k) exceeds a bound

given for prime k.

Definition 13. For n € N the Ramanujan Tau Function 7(n) is defined as the n'" Fourier
coefficient of the Discriminant Function A.
That is T (n) satisfies

S r(m)gt = A ) =q ] (1-g"*

n=1 n=1

where q = €277,

Many arithmetical properties of the 7 (n) were observed but not proven by Ramanujan [5]:
1. 7 is a multiplicative function.

2.7 (PTH) =7(p)7(p") -p''r (pr_l) for p a prime and r >0

3. |7 (p)] < 2p*'/? for all primes p.

The first two of these conjectures were proven in 1917 by Mordell [12], while the third was only
proven in 1974 by Delinge in which he proved a more general bound for all k: |7 (k)| < oq (k) k*1/?
[13, 14].

18
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5.1 An Extension of Lehmer’s Conjecture

Another famous, and as yet unproven, conjecture on the Ramanujan Tau Function from Lehmer
[6] is that 7 (n) # 0 for any n.

In this report, we extend this question further and consider zeros in the Fourier series of
functions of the form A™(7) for integers n. Using computational methods we check that these

Fourier coefficients are non-vanishing and give the following;:

Definition 14. For m,n € N we define 7,, (n) as the n'* Fourier coefficient of A™. That is
Tm (1) satisfies

Z Tm (n) ¢ = A(T)™
n=1
We also prove the following results numerically.

Theorem 5.1.1. For 1 <m <20 7, (n) is non-vanishing for n < 10°.

Theorem 5.1.2. For 21 <m <100 7, (n) is non-vanishing for n < 10°.

5.2 Proportion of Positive Values of 7,

We also calculated the proportions of positive and negative values of 7,,, (n) for n < 10 and m < 20

and have included these in Table 5.1.

3

| Proportion of Positive Values of 7, (n)

1 0.500047
2 0.500052
3 0.499943
4 0.500247
5 0.50002
6 0.500083
7 0.500246
8 0.499866
9 0.499926
10 0.500318
11 0.50033
12 0.499666
13 0.500543
14 0.500263
15 0.499835
16 0.499852
17 0.499602
18 0.500494
19 0.499288
20 0.500149

Table 5.1: The proportion of positive Fourier coefficients of A™ for m < 20

19
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From this table we see that for 1 < m < 20 approximately half of the Fourier coefficients of A™

are positive.

5.3 Bounds on 7

As mentioned above, Ramanujan conjectured that for p a prime |7 (p)| < 2p*'/? [5]. While a more
general bound exists Vk, we considered integer values of k& for which |7 (k)| exceeds this bound

2k'/2 and found surprising behaviour of these k.
Definition 15. We use k (n) to denote the n'* k such that |7 (k)| > 2k'/?

Using numerical methods, all 83054 such values of k (n) < 107, and give the first 20 in Table 5.2.

1 [ 799
2 1751
3 2987
4 3149
5 3713
6 4841
7 5321
8 6157
9 6283
10 | 6901
11 | 7003
12 | 7849
13 | 8137
14 | 8143
15 | 8777
16 | 8789
17 | 9071
18 | 9077
19 | 10523
20 | 10609

Table 5.2: The first 20 values of k (n)

We first considered the proportion of the values of k(n) and found they were not distributed
evenly i.e. % divisible by 2, % divisible by 3 etc. For example, only 12.6% of the values of k (n)
were divisible by 2 while 18.1% were divisible by 47, the highest proportion we found for a prime.

The proportion of k (n) divisible by the first 20 primes is given in Table 5.3.

20
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Proportion of k (n) : p|k (n) ‘

1

P

p
2
3
)

7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97

101
103
107
109
113
127
131
137
139
149
151
157
163
167
173

0.126243167
0.039384015
0.027765069
0.00569509
0.067401931
0.000854866
0.121691911
0.034917042
0.000734462
0.066486864
0.000108363
2.41 x 1075
1.20 x 107°
8.43 x107°
0.181400053
1.20 x 107
0.007501144
0.015495942
0.068786573
0.000493655
2.41 x 1075
0.057564958
0.002215426
0
0.002901727
0.001312399
0.114696463
0.000156525
0
0
0.000397332
0.038288343
0
0.002925807
0.01878296
0.001312399
0.007561346
0
0.046343343
0

0.5
0.333333333
0.2
0.142857143
0.090909091
0.076923077
0.058823529
0.052631579
0.043478261
0.034482759
0.032258065
0.027027027
0.024390244
0.023255814
0.021276596
0.018867925
0.016949153
0.016393443
0.014925373
0.014084507
0.01369863
0.012658228
0.012048193
0.011235955
0.010309278
0.00990099
0.009708738
0.009345794
0.009174312
0.008849558
0.007874016
0.007633588
0.00729927
0.007194245
0.006711409
0.006622517
0.006369427
0.006134969
0.005988024
0.005780347

Table 5.3: The proportion of k (n) divisible by p and the values of 1%

We also determined the proportions of values of k (n) in each congruence class modulo primes.

We found that for a prime p the proportion of values of k (n) =1,2,...,p—1 mod p was approxi-

mately equal with a different proportion of values of k£ (n) =0 mod p.

For example taking the case of p = 3 we have 3.9% of values of k(n) =0 mod 3 while 48.0%

and 48.0% of values of k(n) =1 and 2 mod 3 respectively. These proportions for primes less than

20 are given in Table 5.4.

21



DIAS Internship

m\p |2 | 3 | 5 |7 | 11 | 13 17 | 19

0 0.126243167 | 0.039371975 | 0.027765069 | 0.00569509 | 0.067413972 | 0.000854866 | 0.121691911 | 0.034917042
1 0.873756833 | 0.48024177 | 0.243383823 | 0.165928191 | 0.093421148 | 0.083716618 | 0.055518097 | 0.053110025
2 0.480386255 | 0.241818576 | 0.165157608 | 0.092385677 | 0.083536013 | 0.054362222 | 0.053314711
3 0.242360392 | 0.166819178 | 0.093698076 | 0.082970116 | 0.054097334 | 0.052520047
4 0.244672141 | 0.166722855 | 0.092975654 | 0.083511932 | 0.054904038 | 0.054590989
5 0.164290702 | 0.093445228 | 0.082584824 | 0.055060563 | 0.052664532
6 0.165386375 | 0.093421148 | 0.083283165 | 0.055096684 | 0.054326101
7 0.093902762 | 0.083463771 | 0.05427794 | 0.053868567
8 0.092963614 | 0.08276543 | 0.05430202 | 0.053796325
9 0.09383052 | 0.082994197 | 0.055530137 | 0.053555518
10 0.092542201 | 0.083981506 | 0.054398343 | 0.054061213
11 0.082693188 | 0.054651191 | 0.055337491
12 0.083644376 | 0.055999711 | 0.054049173
13 0.055554218 | 0.052881258
14 0.055229128 | 0.052977581
15 0.054759554 | 0.052327401
16 0.054566908 | 0.053760204
17 0.054037132
18 0.053904689

Table 5.4: The proportions of k (n) such that k(n) =m mod p

Finally, we determined the rolling cumulative proportion of them divisible by various primes.

From Figure 5.1 we see that these proportions increase/decrease very slowly.

0.25 |

0.20 -

0.15 |

Proportion

0.05 |

0.00 LL

Proportion of k(n) such that p|k(n) for n < m

1

1

1

I

2.0x10*

4.0x10*
m

6.0x10*

8.0x10*

Figure 5.1: Plot of the rolling cumulaitve proportion of k (n) divisible by p for various primes p
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Chapter 6

Conclusion

In chapter 2 of this report, we considered some properties and examples of modular forms. We
discussed their transformations under the matrices S and T. We derived the Fourier series for
the Eisenstein series and discussed their importance in the study of modular forms. Jacobi forms
were examined in chapter 3, as were the properties of the Jacobi Theta functions. We considered
the behaviour of the Jacobi Theta functions under the modular transformations and applied the
Jacobi triple product identity to find their product expansions. We determined the degeneracies
of supersymmetric extremal black holes using Siegel modular forms in chapter 4. Finally, we
performed numerical analysis of the Ramanujan 7 function in chapter 5 and considered the pro-
portion of positive Fourier coefficients of A™ the strange behaviour of the integers k (n) described
in section 5.2 and considered an extension of Lehmer’s conjecture to the Fourier coefficients of
powers of the modular discriminant A.

There are some aspects of this report worth exploring further.

1. The applications of modular forms and their generalisation is an exciting area of active

research at the interface of pure mathematics and physics worth further consideration.

2. The surprising behaviour of the values of &k (n) given in section 5.2 is worth further consid-

eration both analytically and numerically.

3. Lehmer’s conjecture, first described in 1947, has yet to be proven. As such more work on

this and on the non-vanishing of the Fourier coefficients of A™ is needed.
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