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Abstract

In this report, we consider modular forms, Jacobi forms and Siegel modular forms, and the ap-

plication of these in computing black hole degeneracies for extremal BPS black holes. We give

the definition and some properties of Eisenstein series, the η function, the modular discriminant

and the Jacobi Theta functions and discuss their applications to the thermodynamics of string

theoretic black holes. We compute the Fourier coefficients of the Igusa cusp form of weight 10

which correspond to the degeneracies of these extremal BPS black holes. We also apply numerical

methods to consider an extension of Lehmer’s conjecture on the Ramanujan’s τ function and look

at the surprising behaviour of integers k ∶ τ (k) > 2k11/2.
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Chapter 1

Introduction

In the study of the entropy of supersymmetric black holes, one encounters complex-valued func-

tions called modular forms. The study of modular forms began with their connection to elliptic

functions and has since seen surprising applications in various fields such as number theory (mod-

ular forms were an integral part of Andrew Wiles’ proof of Fermat’s Last Theorem [1]), group

theory, and the interest of this report, string theoretic black holes.

Modular forms appear in the study of integer partitions as generating functions. More precisely

if p (n) denotes the number of ways a positive integer n can be written as a sum of positive integers

(where we do not take into account the ordering of the summands), then p (n) is given implicitly

by [2]
∞
∑
n=0

p (n) qn =
∞
∏
j=1

1

1 − qj
.

The product ∏
∞
j=1

1
1−qj is called the generating function of p (n) and while it is not explicitly

a modular form it is related to the eta function, η (τ) = q1/24∏
∞
n=1 (1 − q

n) where q = e2πiτ which

is intimately related to the study of modular forms.

The theory of integer partitions plays an important role in string theory. For example, when

considering a single closed bosonic string compactified on a torus, integer partitions are used

to determine the number of possible microstates of the string at a particular energy level [3].

Furthermore, the Elliptic Genus of K3 derived in [3] is in terms of Jacobi Forms (a concept related

to modular forms) called the Jacobi Theta Functions. Modular forms appear in the study of the

thermodynamics of string-theoretic black holes, as the Fourier series of the inverse of a Siegel

Modular Form determine the degeneracies of extremal black holes in the theory [4].

At the end of this report, we perform some numerical analysis of the Ramanujan τ function,
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defines implicitly as the Fourier coefficients of η24

η24 (τ) = q
∞
∏
n=1
(1 − qn)

24
=
∞
∑
n=1

τ (n) qn.

The properties of this τ function have greatly interested mathematicians over the last 100 years

since its definition by Ramanujan in 1916 [5]. Ramanujan made several conjectures regarding this

τ function, which have all been subsequently proven. Another conjecture about the τ function,

which is as of now unproven, was given in 1947 by Lehmer [6]. He conjectured that τ (n) was non-

vanishing for all n. Through computational methods, we consider some variations of this lemma

and also consider other properties of the τ function inspired by the conjectures of Ramanujan.

In chapter 2 we give some first examples and results of modular forms. We discuss modular

transformations, Eisenstein series, and the Dedekind η function. We define Jacobi forms and

consider the Jacboi-Theta functions in chapter 3. The connection between Siegel modular forms,

a generalisation of modular forms, and black holes in string theory is discussed in chapter 4.

Numerical analysis of the Ramanujan Tau function is given in chapter 5. Finally, in chapter 6 we

conclude our results.
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Chapter 2

Modular Forms

2.1 The Modular Group and Modular Forms

Definition 1. The full modular group Γ is the group of transformations on the upper half plane,

H ∶= {τ ∈ C ∶ Im(τ) > 0}, of the form

τ ↦
aτ + b

cτ + d

where a, b, c, d ∈ Z and ad − bc = 1, with the binary operation defined by composition.

A transformation in this group

τ ↦
aτ + b

cτ + d

can naturally be associated with a matrix in SL2 (Z)

A =

⎛
⎜
⎜
⎝

a b

c d

⎞
⎟
⎟
⎠

As such we write Aτ = aτ+b
cτ+d . We also note that for A ∈ SL2 (Z) we have Aτ = −Aτ . Therefore, we

instead see transformations as elements of the group PSL2 (Z) ∶= SL2 (Z) /{±I}.

We can also consider congruence subgroups of Γ.

Definition 2. For N ∈ N we define the congruence subgroup of level N as

Γ0 (N) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⎛
⎜
⎜
⎝

a b

c d

⎞
⎟
⎟
⎠

∈ Γ ∶ c ≡ 0 mod N

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

Note that we have Γ = Γ0 (1).
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2.1.1 Modular Forms

Definition 3. A modular form f ∶ H→ C of weight k and level N is a holomorphic function on H

and at i∞ such that

f (
aτ + b

cτ + d
) = (cτ + d)

k
f (τ)

where

⎛
⎜
⎜
⎝

a b

c d

⎞
⎟
⎟
⎠

∈ Γ0 (N) and f is bounded as τ → i∞.

A cusp form is a modular form such that limτ→i∞ f (τ) = 0.

In general, when we say a modular form, we refer to a modular form of level 1 unless stated

otherwise.

Theorem 2.1.1. Let f be a modular form of weight k and τ ∈ H. Then f (τ + 1) = f (τ) and

f (− 1
τ
) = τkf (τ)

Proof. This follows clearly by considering the transformation rule for modular forms and the

matrices

T =

⎛
⎜
⎜
⎝

1 1

0 1

⎞
⎟
⎟
⎠

and S =

⎛
⎜
⎜
⎝

0 −1

1 0

⎞
⎟
⎟
⎠

.

Theorem 2.1.2. A modular form f has a Fourier series of the form ∑
∞
n=0 anq

n where q = e2πiτ .

Proof. Consider the map Q ∶ H → A,Q (τ) = e2πiτ where A = {z ∈ C ∶ 0 < ∣z∣ < 1} is the punctured

open unit disk. From the modular form f define g ∶ A→ C by g (q) = f (τ). Note that such a g is

well defined as if q = q′ where q = e2πiτ and q′ = e2πiτ
′

we have τ and τ ′ differ by an integer. So by

periodicity of f , f (τ) = f (τ ′).

The function g is analytic on all of A and as such has Laurent expansion of the form ∑
∞
n=−∞ anq

n

for ∣q∣ < 1. So we have f (τ) = ∑
∞
n=−∞ anq

n. As f is bounded as τ → i∞ or equivalently q → 0 we

see an = 0,∀n < 0.

Definition 4. We denote by Mk (Γ0 (N)) the space of all modular forms of weight k and level N .

The ring of modular forms of level N , M (Γ0 (N)) is defined as M (Γ0 (N)) = ⊕k Mk (Γ0 (N)).

In [7] Apostol shows that for each k the space Mk (Γ) is finite-dimensional. He also shows the

following:

Theorem 2.1.3. For k odd, k < 0, or k = 2 we have that Mk (Γ) = {0}.
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It is important to note that this result generally does not hold for modular forms of level N > 1.

We now state an important result from Sturum [8, 9] that states that modular forms are

uniquely determined by their ”first few” Fourier coefficients.

Theorem 2.1.4. Let f, g ∈ Mk (Γ0 (N)) with Fourier expansions f (τ) = ∑
∞
n=0 anq

n and g (τ) =

∑
∞
n=0 bnq

n such that an = bn ∀n ≤
km
12

, where m = [Γ ∶ Γ0 (N)], is the index of Γ0 (N) in Γ. Then

f = g.

Note that for prime N we have the index m = [Γ ∶ Γ0 (N)] = N .

This result is very useful as it shows that at a particlar weight and level ”few” modaular forms

exist.

2.2 Eisenstein Series

Definition 5. For even r > 2 and τ ∈ H we define the Eisenstein Series of order r as

Gr (τ) = ∑
(m,n)∈Z2
(m,n)≠(0,0)

1

(m + nτ)
r .

One can also similarly define the Eisenstein series G2, but this is not a modular form. However,

it is an example of a mock modular form (as the function E2 (τ)−
3

2 Im(τ) transforms as a modular

form of weight 2).

As an Eisenstein series is a modular form, it has a Fourier series which we now consider. First,

we state the Lipschitz summation formula from [10] that we will need.

Lemma 2.2.1. For k > 2 and τ ∈ H we have

∑
n∈Z

1

(z + n)
k
=
(−2πi)

k

(k − 1)!

∞
∑
r=1

rk−1e2πizr.

Theorem 2.2.2. The Eisenstein Series G4 and G6 have the Fourier series

G4 (τ) = 2ζ (4)(1 + 240
∞
∑
n=1

σ3 (n) q
n
)

G6 (τ) = 2ζ (6)(1 − 504
∞
∑
n=1

σ5 (n) q
n
)

where q = e2πiτ and σα is the divisor function defined as σα (n) = ∑d∣n d
α.

Proof. We prove only the case of G4 as the proof for G6 follows similarly. Begin by separating
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the sum for G4 into the cases of m = 0 and m ≠ 0 so we have

G4 (τ) = ∑
n∈Z∖{0}

1

n4
+ ∑

m,n∈Z
m≠0

1

(mτ + n)
4

= 2ζ (4) + 2
∞
∑
m=1
∑
n∈Z

1

(mτ + n)
4

Using Lipschitz summation formula we get

G4 (τ) = 2ζ (2) + 2
∞
∑
m=1
(
(−2πi)

4

(4 − 1)!

∞
∑
r=1

rk−1qmr
)

= 2ζ (2) + 2
16π4

3!

∞
∑
m=1

∞
∑
r=1

rk−1qmr

= 2ζ (2)(1 + 240
∞
∑
m=1

∞
∑
r=1

rk−1qmr
)

Finally noting that the double series ∑
∞
m=1∑

∞
r=1 r

k−1qmr is an example of a Lambert series and

can be written as ∑
∞
n=1 σ3 (n) q

n which was shown in [11] by Hardy completes the proof.

It is useful to further define E4 (τ) = 1 + 240∑
∞
n=1 σ3 (n) q

n and E6 (τ) = 1 − 504∑
∞
n=1 σ5 (n) q

n

as the Fourier coefficients for these E4,E6 are all integers and the constant term is 1.

The importance of Eisenstein series is demonstrated in the following by Zaiger in [10].

Theorem 2.2.3. A given modular form of weight k can be expressed as a C-linear combination

of terms of the form Eα
4 E

β
6 where 4α + 6β = k.

This is extremely useful for computations of modular forms as the Fourier Series for Eisenstein

Series can be easily implimented into code.

2.3 Dedekind η Function and the Discriminant

We now define the Dedekind η function and also the discriminant function. The η function plays

an important role in bosonic string theory and the Fourier expansion of the discriminant function

is of central importance in chapter 5.

Definition 6. The Dedekind eta function is defined on H by

η (τ) = q1/24
∞
∏
n=1
(1 − qn)

where q = e2πiτ .

8
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Lemma 2.3.1. For τ ∈ H we have

η (τ + 1) = e(2πi)/24η (τ) .

Proof.

η (τ + 1) = q1/24e(2πi)/24
∞
∏
n=1
(1 − qne2πin)

= e(2πi)/24η (τ)

From this result, it follows that η24 is periodic with period 1.

For the transformation of η under τ → −1
τ

we have the following from Apostol [7]:

Theorem 2.3.2. For τ ∈ H

η (
−1

τ
) = (−iτ)

1/2
η (τ)

2.3.1 The Discriminant Function

Definition 7. For τ ∈ H we define the discriminant function, ∆, as

∆ (τ) = η24 (τ) .

Theorem 2.3.3. The Discriminant Function ∆ can be expressed as

∆ (τ) =
1

1728
(E3

4 (τ) −E
2
6 (τ)) .

Corollary 2.3.3.1. ∆ is a cusp form of weight 12.
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Chapter 3

Jacobi Forms

3.1 Jacobi Forms

Jacobi forms are functions of 2 complex variables that transform similarly to modular forms. Our

main consideration is given to the Jacobi Theta forms which are examples of Jacobi forms.

Definition 8. A Jacobi Form of weight k and index m is a holomorphic function ϕ ∶ H ×C → C

satisfying:

1. ϕ (aτ+b
cτ+d ,

ν
cτ+d) = (cτ + d)

k
exp ( 2πimcν

cτ+d )ϕ (τ, ν) for all

⎛
⎜
⎜
⎝

a b

c d

⎞
⎟
⎟
⎠

∈ SL2 (Z).

2. ϕ (τ, ν + λτ + µ) = exp (−2πim (λ2τ + 2λν))ϕ (τ, ν) for all λ,µ ∈ Z.

3. ϕ has a Fourier expansion of the form

ϕ (τ, ν) =
∞
∑
n=0

∑
r2≤4mn

c (n, r) qnzr

where q = e2πiτ and z = e2πiν .

3.2 Jacobi Theta Functions

Jacobi Theta functions are an example of these Jacobi forms and appear in string theory in the

elliptic genus of K3.

Definition 9. For τ ∈ H and ν ∈ C we define the Generalised Theta Function as

θa,b (τ, ν) = ∑
Z
exp (πiτ (n + a)

2
) exp (2πi (n + a) (ν + b))

10
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From this, we define the Jacobi Theta functions as:

θ1 (τ, ν) = −θ 1
2 ,

1
2
(τ, ν)

= −i∑
Z
(−1)

n
q

1
2
(n+ 1

2
)2eπi(2n+1)ν

θ2 (τ, ν) = θ 1
2 ,0
(τ, ν)

= ∑
Z
q

1
2
(n+ 1

2
)2eπi(2n+1)ν

θ3 (τ, ν) = θ0,0 (τ, ν)

= ∑
Z
q

1
2n

2

e2πinν

θ4 (τ, ν) = θ0, 12 (τ, ν)

= ∑
Z
(−1)

n
q

1
2n

2

e2πinν

3.2.1 Modular Transformations of Theta Functions

We now consider modular transformations on the above theta functions. Firstly we consider the

transformation τ → τ + 1.

Lemma 3.2.1.

θ1 (τ + 1, ν) = e
πi
4 θ1 (τ, ν)

θ2 (τ + 1, ν) = e
πi
4 θ2 (τ, ν)

θ3 (τ + 1, ν) = θ4 (τ, ν)

θ4 (τ + 1, ν) = θ3 (τ, ν)

Proof. Here we only show the identities for θ1 (τ + 1, ν) and θ3 (τ + 1, ν) as the proof of the other

two identities follows similarly.

θ1 (τ + 1, ν) = −i∑
n∈Z

eπi(τ+1)(n+
1
2
)2eπi(2n+1)ν

= eπi(n
2+n+ 1

4
)θ1 (τ, ν)

Noting that n2 + n ≡ 0 mod 2 ∀n ∈ Z the we have the desired result.

11
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Now for θ3 we have:

θ3 (τ + 1, ν) = ∑
n∈Z

eπi(τ+1)n
2

e2πinν

= ∑
n∈Z

eπin
2

q
1
2n

2

e2πinν

= ∑
n∈Z
(−1)

n
q

1
2n

2

e2πinν

= θ4 (τ, ν)

We now consider the transformations τ → − 1
τ
and ν → ν

τ
. To do this we will need Poisson’s

Summation Formula:

Theorem 3.2.2. Let f ∶ R→ C be a Schwartz function. Then

∑
n∈Z

f (n) = ∑
n∈Z

f̂ (n)

where f̂ (s) = ∫R e
−2πisxf (x)dx.

Theorem 3.2.3. For τ ∈ H and ν ∈ C we have

θ3 (
−1

τ
,
−ν

τ
) =
√
−iτeπi

ν2

τ θ3 (τ, ν)

Proof. Define fτ,ν ∶ R→ C by fτ,ν (x) = e
πix2τ+2πixν . So we have that

θ3 (τ, ν) = ∑
n∈Z

fτ,ν (n) .

We also have that

f̂τ,ν (s) =
1
√
−iτ

eπi(s−ν)
2( −1

τ
).

12



DIAS Internship

So applying Poisson’s Summation Formula we see that

θ3 (τ, ν) = ∑
n∈Z

fτ,ν (n)

= ∑
n∈Z

f̂τ,ν (n)

= ∑
n∈Z

1
√
−iτ

eπi(n−ν)
2( −1

τ
)

=
1
√
−iτ
∑
n∈Z

eπin
2( −1

τ
)e2πin(

−ν
τ
)e

πi( −ν
2

τ )

=
1
√
−iτ

e
πi( −ν

2

τ )θ3 (
−1

τ
,
−ν

τ
) .

Rearranging this completes the proof.

Theorem 3.2.4. For τ ∈ H and ν ∈ C we have

θ2 (
−1

τ
,
−ν

τ
) =
√
−iτeπi

ν2

τ θ4 (τ, ν)

3.2.2 Product Representations of Theta Functions

We first state the Jacobi Triple Product Identity which we make use of in this section.

Theorem 3.2.5. For x, y ∈ C where ∣x∣ < 1 and y ≠ 0 we have

∞
∏
m=1
(1 − x2m) (1 + x2m−1y2)(1 +

x2m−1

y2
) = ∑

n∈Z
xn2

y2n

Theorem 3.2.6. For τ ∈ H and ν ∈ C we have the following product representations for the Theta

functions:

θ1 (τ, ν) = q
1
8 z

1
2

∞
∏
m=1
(1 − qm) (1 − qmz)(1 −

qm−1

z
)

θ2 (τ, ν) = q
1
8 z

1
2

∞
∏
m=1
(1 − qm) (1 + qmz)(1 +

qm−1

z
)

θ3 (τ, ν) =
∞
∏
m=1
(1 − qm) (1 + q

2m−1
2 z)(1 +

q
2m−1

2

z
)

θ4 (τ, ν) =
∞
∏
m=1
(1 − qm) (1 − q

2m−1
2 z)(1 −

q
2m−1

2

z
)

where q = e2πiτ and z = e2πiν .

Proof. We only prove the identities for θ3 and θ2 as the remaining two follow similarly. First,

consider the expansion for θ3. Writing z = e2πiν and using the Jacobi Triple Product Identity we

13
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get

θ3 (τ, ν) = ∑
n∈Z

q
1
2n

2

zn

=
∞
∏
m=1
(1 − qm) (1 + q

2m−1
2 z)(1 +

q
2m−1

2

z
)

Now for θ2 we have

θ2 (τ, ν) = ∑
n∈Z

q
1
2
(n+ 1

2
)2eπi(2n+1)ν

= q
1
8 z

1
2 ∑
n∈Z

q
1
2
(n2+n)e2πinν

= q
1
8 z

1
2 ∑
n∈Z

q
1
2n

2

(zq
1
2 )

n

So applying the Jacobi Triple Product identity as before we get

θ2 (τ, ν) = q
1
8 z

1
2

∞
∏
m=1
(1 − qm) (1 + q

2m−1
2 q

1
2 z)(1 +

q
2m−1

2

q
1
2 z
)

= q
1
8 z

1
2

∞
∏
m=1
(1 − qm) (1 + qmz)(1 +

qm−1

z
)

14



Chapter 4

Siegel Modular Forms and Black

Holes

4.1 Siegel Modular Forms

Siegel modular forms generalise the concept of modular forms by extending the upper half-plane

to the more general Siegel upper half-space. They play an important role in the computation

of black hole degeneracies, which are determined by the Fourier coefficients of the inverse of a

particular Siegel modular form. In this section, we discuss Siegel modular forms and use them to

calculate these degeneracies.

Definition 10. The Siegel upper half-space, H2, is defined as

H2 =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Ω =

⎛
⎜
⎜
⎝

τ z

z σ

⎞
⎟
⎟
⎠

∈ GL2 (C) ∶ Im (τ) , Im (σ) ,det (Im (Ω)) > 0

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

.

where here GL2 (C) denotes the ring of 2 × 2 matrices with complex entries.

We now define the symplectic group, Γ2, which will act on H2, as the full modular group acted

on the H.

Definition 11. The symplectic group, Γ2, is given by

Γ2 = {γ ∈ GL4 (Z) ∶ γTJγ = J}

15
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where J =

⎛
⎜
⎜
⎝

0 I2

−I2 0

⎞
⎟
⎟
⎠

and I2 is the 2 × 2 identity matrix.

For a matrix γ =

⎛
⎜
⎜
⎝

A B

C D

⎞
⎟
⎟
⎠

∈ Γ2 we define the action of Γ2 on Ω ∈ H2 by (AΩ +B) (CΩ +D)
−1
. It

can be shown that CΩ +D is non-singular and that this operation is well-defined.

Now we can define a Siegel modular form as:

Definition 12. A holomorphic function F ∶ H2 → C is a Siegel modular form of weight k if

F ((AΩ +B) (CΩ +D)
−1
) = det (CΩ +D)

k
F (Ω)

for Ω ∈ H2 and

⎛
⎜
⎜
⎝

A B

C D

⎞
⎟
⎟
⎠

∈ Γ2.

4.2 Black Holes and Modular Forms

We now apply modular forms and related concepts to the study of black hole entropy. Here we

will determine the Fourier Coefficients of the inverse of the Igusa Cusp form of weight 10, a Siegel

Modular form, which corresponds to black hole degeneracies of extremal supersymmetric black

holes.

We begin by giving the formula for the Elliptic Genus of K3, ZK3, from [3], the Fourier

coefficients of which we will use in the calculation of the black hole degeneracies.

ZK3 (τ, z) = 8(
θ22 (τ, z)

θ22 (τ,0)
+
θ23 (τ, z)

θ23 (τ,0)
+
θ24 (τ, z)

θ24 (τ,0)
)

This is an example of a Jacobi form of weight 0 and index 1 discussed in chapter 3.

Taking q = e2πiτ and y = e2πiz, ZK3 has an Fourier expansion

ZK3 (τ, z) = ∑
n,j∈Z

c (4n − j2) qnyj

Using the Fourier coefficients of ZK3 one can define the Igusa cusp form of weight 10, Φ10 in [4]

as

Φ10 (ρ, σ, v) = e
2πi(ρ+σ+v)

∏
k,l,j∈Z

k,l≥0,j<0 for k=l=0

(1 − e2πi(kσ+lρ+jv))
c(4kl−j2)
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Writing x = e2πiσ, y = e2πiρ and w = e2πiv we have

Φ10 (ρ, σ, v) = xyw ∏
k,l,j∈Z

k,l≥0,j<0 for k=l=0

(1 − xkylwj)
c(4kl−j2)

Expanding the inverse of this Φ10 we get

1

Φ10 (ρ, σ, v)
= ∑

m,n,p

g (m,n, p)xmynwp

In [4] Sen shows the degeneracy, d (P,Q), associated with electric charge Q and magnetic charge

P is given by the integral

d (P,Q) = (−1)
Q⋅P+1

∫
C
e−πi(ρQ

2+σP 2+2vQ⋅P) 1

Φ10 (ρ, σ, v)
dρ dσ dv

Using the Fourier expansion for 1
ϕ10(ρ,σ,v) we get

d (P,Q) = (−1)
Q⋅P+1

∑
m,n,p

g (m,n, p)∫
C
e−πi(ρQ

2+σP 2+2vQ⋅P)e2πi(σm+ρn+vp) dρ dσ dv

= (−1)
Q⋅P+1

g (
Q2

2
,
P 2

2
,Q ⋅ P)

Evaluating these degeneracies in Table 4.1 we have:

(Q2, P 2)/P ⋅Q -2 -1 0 1 2 3 4

(2,2) -209304 130329 50064 25353 648 327 0
(2,4) -2023536 1598376 1127472 561576 50064 8376 -648
(4,4) -16620544 28698000 32861184 18458000 3859456 561576 12800
(2,6) -15493728 16844421 16491600 8533821 1127472 130329 -15600
(4,6) -53249700 474507528 632078672 392427528 110910300 18458000 1127472
(6,6) 2857656828 11890608225 16193130552 11232685725 4173501828 920577636 110910300

Table 4.1: Values of d (P,Q)

These results match the results from [4].
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Chapter 5

Numerical Analysis of the

Ramanujan τ Function

Finally, we performed some numerical experiments regarding the Ramanujan τ function and re-

lated functions. We have considered a more general form of Lehmer’s conjecture regarding ∆m

and we determined the proportions of positive and negative Fourier coefficients of ∆m up to 106

coefficients. We also found surprising behaviour of integers k for which τ (k) exceeds a bound

given for prime k.

Definition 13. For n ∈ N the Ramanujan Tau Function τ (n) is defined as the nth Fourier

coefficient of the Discriminant Function ∆.

That is τ (n) satisfies
∞
∑
n=1

τ (n) qn =∆ (τ) ∶= q
∞
∏
n=1
(1 − qn)

24

where q = e2πiτ .

Many arithmetical properties of the τ (n) were observed but not proven by Ramanujan [5]:

1. τ is a multiplicative function.

2. τ (pr+1) = τ (p) τ (pr) − p11τ (pr−1) for p a prime and r > 0

3. ∣τ (p)∣ ≤ 2p11/2 for all primes p.

The first two of these conjectures were proven in 1917 by Mordell [12], while the third was only

proven in 1974 by Delinge in which he proved a more general bound for all k: ∣τ (k)∣ ≤ σ0 (k)k
11/2

[13, 14].

18



DIAS Internship

5.1 An Extension of Lehmer’s Conjecture

Another famous, and as yet unproven, conjecture on the Ramanujan Tau Function from Lehmer

[6] is that τ (n) ≠ 0 for any n.

In this report, we extend this question further and consider zeros in the Fourier series of

functions of the form ∆n (τ) for integers n. Using computational methods we check that these

Fourier coefficients are non-vanishing and give the following:

Definition 14. For m,n ∈ N we define τm (n) as the nth Fourier coefficient of ∆m. That is

τm (n) satisfies
∞
∑
n=1

τm (n) q
n
=∆ (τ)

m

We also prove the following results numerically.

Theorem 5.1.1. For 1 ≤m ≤ 20 τm (n) is non-vanishing for n ≤ 106.

Theorem 5.1.2. For 21 ≤m ≤ 100 τm (n) is non-vanishing for n ≤ 105.

5.2 Proportion of Positive Values of τm

We also calculated the proportions of positive and negative values of τm (n) for n < 10
6 and m ≤ 20

and have included these in Table 5.1.

m Proportion of Positive Values of τm (n)

1 0.500047
2 0.500052
3 0.499943
4 0.500247
5 0.50002
6 0.500083
7 0.500246
8 0.499866
9 0.499926
10 0.500318
11 0.50033
12 0.499666
13 0.500543
14 0.500263
15 0.499835
16 0.499852
17 0.499602
18 0.500494
19 0.499288
20 0.500149

Table 5.1: The proportion of positive Fourier coefficients of ∆m for m ≤ 20
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From this table we see that for 1 ≤ m ≤ 20 approximately half of the Fourier coefficients of ∆m

are positive.

5.3 Bounds on τ

As mentioned above, Ramanujan conjectured that for p a prime ∣τ (p)∣ ≤ 2p11/2 [5]. While a more

general bound exists ∀k, we considered integer values of k for which ∣τ (k)∣ exceeds this bound

2k11/2 and found surprising behaviour of these k.

Definition 15. We use k (n) to denote the nth k such that ∣τ (k)∣ > 2k11/2

Using numerical methods, all 83054 such values of k (n) < 107, and give the first 20 in Table 5.2.

n k (n)

1 799
2 1751
3 2987
4 3149
5 3713
6 4841
7 5321
8 6157
9 6283
10 6901
11 7003
12 7849
13 8137
14 8143
15 8777
16 8789
17 9071
18 9077
19 10523
20 10609

Table 5.2: The first 20 values of k (n)

We first considered the proportion of the values of k (n) and found they were not distributed

evenly i.e. 1
2
divisible by 2, 1

3
divisible by 3 etc. For example, only 12.6% of the values of k (n)

were divisible by 2 while 18.1% were divisible by 47, the highest proportion we found for a prime.

The proportion of k (n) divisible by the first 20 primes is given in Table 5.3.
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p Proportion of k (n) ∶ p∣k (n) 1
p

2 0.126243167 0.5
3 0.039384015 0.333333333
5 0.027765069 0.2
7 0.00569509 0.142857143
11 0.067401931 0.090909091
13 0.000854866 0.076923077
17 0.121691911 0.058823529
19 0.034917042 0.052631579
23 0.000734462 0.043478261
29 0.066486864 0.034482759
31 0.000108363 0.032258065
37 2.41 × 10−5 0.027027027
41 1.20 × 10−5 0.024390244
43 8.43 × 10−5 0.023255814
47 0.181400053 0.021276596
53 1.20 × 10−5 0.018867925
59 0.007501144 0.016949153
61 0.015495942 0.016393443
67 0.068786573 0.014925373
71 0.000493655 0.014084507
73 2.41 × 10−5 0.01369863
79 0.057564958 0.012658228
83 0.002215426 0.012048193
89 0 0.011235955
97 0.002901727 0.010309278
101 0.001312399 0.00990099
103 0.114696463 0.009708738
107 0.000156525 0.009345794
109 0 0.009174312
113 0 0.008849558
127 0.000397332 0.007874016
131 0.038288343 0.007633588
137 0 0.00729927
139 0.002925807 0.007194245
149 0.01878296 0.006711409
151 0.001312399 0.006622517
157 0.007561346 0.006369427
163 0 0.006134969
167 0.046343343 0.005988024
173 0 0.005780347

Table 5.3: The proportion of k (n) divisible by p and the values of 1
p

We also determined the proportions of values of k (n) in each congruence class modulo primes.

We found that for a prime p the proportion of values of k (n) ≡ 1,2, . . . , p− 1 mod p was approxi-

mately equal with a different proportion of values of k (n) ≡ 0 mod p.

For example taking the case of p = 3 we have 3.9% of values of k (n) ≡ 0 mod 3 while 48.0%

and 48.0% of values of k (n) ≡ 1 and 2 mod 3 respectively. These proportions for primes less than

20 are given in Table 5.4.
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m/p 2 3 5 7 11 13 17 19

0 0.126243167 0.039371975 0.027765069 0.00569509 0.067413972 0.000854866 0.121691911 0.034917042
1 0.873756833 0.48024177 0.243383823 0.165928191 0.093421148 0.083716618 0.055518097 0.053110025
2 0.480386255 0.241818576 0.165157608 0.092385677 0.083536013 0.054362222 0.053314711
3 0.242360392 0.166819178 0.093698076 0.082970116 0.054097334 0.052520047
4 0.244672141 0.166722855 0.092975654 0.083511932 0.054904038 0.054590989
5 0.164290702 0.093445228 0.082584824 0.055060563 0.052664532
6 0.165386375 0.093421148 0.083283165 0.055096684 0.054326101
7 0.093902762 0.083463771 0.05427794 0.053868567
8 0.092963614 0.08276543 0.05430202 0.053796325
9 0.09383052 0.082994197 0.055530137 0.053555518
10 0.092542201 0.083981506 0.054398343 0.054061213
11 0.082693188 0.054651191 0.055337491
12 0.083644376 0.055999711 0.054049173
13 0.055554218 0.052881258
14 0.055229128 0.052977581
15 0.054759554 0.052327401
16 0.054566908 0.053760204
17 0.054037132
18 0.053904689

Table 5.4: The proportions of k (n) such that k (n) ≡m mod p

Finally, we determined the rolling cumulative proportion of them divisible by various primes.

From Figure 5.1 we see that these proportions increase/decrease very slowly.

Figure 5.1: Plot of the rolling cumulaitve proportion of k (n) divisible by p for various primes p
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Chapter 6

Conclusion

In chapter 2 of this report, we considered some properties and examples of modular forms. We

discussed their transformations under the matrices S and T . We derived the Fourier series for

the Eisenstein series and discussed their importance in the study of modular forms. Jacobi forms

were examined in chapter 3, as were the properties of the Jacobi Theta functions. We considered

the behaviour of the Jacobi Theta functions under the modular transformations and applied the

Jacobi triple product identity to find their product expansions. We determined the degeneracies

of supersymmetric extremal black holes using Siegel modular forms in chapter 4. Finally, we

performed numerical analysis of the Ramanujan τ function in chapter 5 and considered the pro-

portion of positive Fourier coefficients of ∆m, the strange behaviour of the integers k (n) described

in section 5.2 and considered an extension of Lehmer’s conjecture to the Fourier coefficients of

powers of the modular discriminant ∆.

There are some aspects of this report worth exploring further.

1. The applications of modular forms and their generalisation is an exciting area of active

research at the interface of pure mathematics and physics worth further consideration.

2. The surprising behaviour of the values of k (n) given in section 5.2 is worth further consid-

eration both analytically and numerically.

3. Lehmer’s conjecture, first described in 1947, has yet to be proven. As such more work on

this and on the non-vanishing of the Fourier coefficients of ∆m is needed.
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