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Abstract

This report is for the investigation and application of string theory in supersymmetric black

holes, specifically concerning the statistical entropy of the extremal black hole computed using

string theory methods. As methods of string theory and general relativity are set out in this

investigation, readers should expect to gain insight into various fundamental mathematical and

physical principles in black holes in string theory which are foundational topics of current research.

3



Chapter 1

Introduction

At July 2023, during the writing of this report, the James Webb Space Telescope detected the

most distant active supermassive black hole to date [1]. At this time there is much taking place in

terms of the discovery of black holes. Thus, the study of black holes is a timely topic in theoretical

physics research, which is why I chose to study it. My personal aim for this project is to gain

knowledge of string theory and its applications to supersymmetric black holes. It is also my goal

that interested readers will learn more about these topics and that the principles explored would

be beneficial to both the reader and I in terms of future study. The topics discussed in this report

ultimately relate to the unification of quantum field theory (QFT) and general relativity (GR)

which is one of the most important goals of current research relating to black holes. String theory

is related as, although incomplete, it proposes to combine QFT and GR into a single framework.

1.1 Quantisation

A suitable starting point for a discussion of string theory in supersymmetric black holes is quan-

tisation, primarily the evolution of classical mechanics to quantum mechanics.

In classical mechanics, the state of a system is described in terms of canonical coordinates (qi, pi),

where qi are the generalised coordinates and pi are the generalised momentum [5]. The Poisson

bracket for two variables, A(qi, pi, t) and B(qi, pi, t) that are functions of the canonical coordinates
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and time, is given by

[A,B]PB =

N∑
i

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
. (1.1)

The specific Poisson bracket between the position and momentum of a system is

[qi, pi]PB = δij (1.2)

where δij is the Kronecker delta function of two variables. This function is defined to have a value

of 1 if the two variables are equal and a value of zero otherwise:

δij =


0 if i ̸= j

1 if i = j

(1.3)

Classical mechanics describes the behavior of macroscopic systems and is deterministic; if the

present state of a body is known, it is possible to predict its future state [2]. In contrast, quan-

tum mechanics gives a microscopic description of particles. It is probabilistic by Heisenberg’s

uncertainty principle [3].

In quantum mechanics the variables A and B change to linear operators and, analogous to Poisson

brackets, the commutator brackets between the two operators is

[Â, B̂] = ÂB̂ − B̂Â. (1.4)

The specific commutator between the position and momentum of a quantum mechanical system

is

[qi, pi] = iδij . (1.5)

Thus, in the quantum mechanical limit, Poisson brackets in classical mechanics are proportional

to the commutator brackets in quantum mechanics via the relation

[Â, B̂]PB =
[Â, B̂]

i
. (1.6)
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1.2 Quantum field theory

Quantum field theory is a theoretical framework that combines classical field theory, quantum

mechanics and special relativity. QFT provides the framework for the standard model, a theory of

all the observed forces of nature [8]. This theory describes electromagnetism, the weak interaction

responsible for radioactivity and the strong nuclear force that governs the structure of nuclei. No

other current theory has been so universally successful [8].

1.2.1 The Klein-Gordon and Dirac Equation

Two fundamental equations in QFT are the Klein-Gordon equation and the Dirac equation. These

equations describe the behavior of spin−0 and spin−1/2 particles respectively.

The Klein-Gordon equation (also Schrödinger’s relativistic wave equation) is a second-order partial

differential equation given by

(□+m2)ϕ = 0 (1.7)

where ϕ is the wavefunction describing the spin-zero particle, and the operator□ is the d’Alembertian

given by

□ =
1

c2
∂2

∂t2
−∇2. (1.8)

At its publication, the Klein-Gordon equation was noted to be limited in that the field satisfying

the Klein-Gordon equation describes a negative energy wave-function of a particle [9].

It is now known that in the QFT multi-particle description, this problem does not arise. Never-

theless, the proposed problem motivated Dirac to construct his relativistic first order differential

equation which holds for spin 1
2 particles, denoted ψ.

The Dirac equation is given by

(γµpµ −m)ψ = 0 (1.9)

where γµ are the gamma matrices and pµ is equal to the Kronecker delta function, δµ.
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1.2.2 Canonical quantisation

Canonical quantisation is the process of quantising a field. Field theory is different from mechanics

as it predicts how fields, rather than sets of point particles, interact with matter. A field is a

physical quantity represented by a scalar, vector or tensor that has a value for each point in

spacetime [11].

In order to express the state of a system in classical field theory, the coordinates of classical

mechanics take the continuum limit [4]. Practically, this means that in equation 1.1, N → ∞

and the discrete index i is set to continuous position coordinates, x = (x, y, z). The summation

becomes an integration over the continuum position coordinate, and the coordinates qi and pi

become ψ(x) and π(x) respectively.

The Poisson bracket for classical fields becomes

[A,B]PB =

∫ (
∂A

∂ψ(x)

∂B

∂π(x)
− ∂A

∂π(x)

∂B

∂ψ(x)

)
dx. (1.10)

A and B are now functions of the field coordinate ψ(x) and the momentum density Π(x). The

momentum density is given by

Π(x) =
∂L
∂ψ̇

(1.11)

where L is the Lagrangian density, a measure of the distribution of the Lagrangian over space.

The Poisson brackets between field coordinates and momentum density in classical field theory

are given by

[ψ(x),Π(y)]PB = δ(x-y) (1.12)

where δ(x-y) is the Dirac delta function, analogous to the Kronecker delta function but used in

the continuum limit.

Canonical quantisation is now applied to derive quantum field theory from classical field theory.

For a quantum description, the fields ψ and Π are set to field operators ψ̂ and Π̂. By the same

relation as equation 1.6, the Poisson bracket can be written in terms of the commutator bracket.

In quantum field theory the commutator brackets between the field coordinates and momentum
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are given by

[ψ̂(x), Π̂(y)] = iδ(x-y). (1.13)

1.3 General Relativity

General relativity is the geometric theory of gravity that generalizes Einstein’s special relativity

and Newton’s law of universal gravitation, providing a unified description of gravity as a geometric

property of spacetime [6].

QFT and GR are known as the pillars of modern theoretical physics [12]. Both are equally

successful, however, intrinsically incompatible. Quantum gravity has the ability to unify QFT

and GR, however, is currently not a functional theory. It is estimated to be most significant at

the plank length scale, which is outside of direct experimental reach.

1.3.1 Black holes

A large part of quantum gravity research focuses on the black hole, as its thermodynamic properties

are expected to be an important feature of quantum gravity theory [12]. Black holes are points in

space that are so dense they create deep gravity sinks [21]. Gravity is so strong there that even light

cannot escape [13]. A black hole is remarkably simple in that it is completely specified by three

observable quantities, mass (M), spin (S) and charge (Q). A black hole is also remarkably complex

in that it possesses a huge entropy. Entropy gives an account of the number of microstates of a

system. Therefore, the entropy of a black hole signifies an incredibly complex microstructure. [16]

1.3.2 Black hole geometry

The simplest spherically symmetric black hole is static and uncharged and is described by Schwarzschild

geometry. This geometry was derived by Karl Schwarzschild at the close of 1915, a few weeks

after Albert Einstein published his fundamental paper on the Theory of General Relativity [10].

Schwarzchild geometry is described by a metric which is the static solution of the vacuum Einstein-

Hilbert action, given by

S =
1

16πG

∫
R
√
gd4x− 1

16π
F 2
µν

√
gd4x (1.14)
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where G is Newton’s gravitational constant, R is the Ricci scalar of the metric gµν , where g =

det(gµν). Fµν is the electromagnetic field strength. In this convention, the indices µ and ν take

values 0, 1, 2 and 3.

The metric solution to the Einstein-Hilbert action is given by

ds2 = gµνdx
µdxν . (1.15)

which can also be written as

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ. (1.16)

Here, t is the Schwarzschild time which represents the time recorded by a standard clock at rest

at spatial infinity and r is the Schwarzschild radial coordinate. It does not measure the spatial

distance from the orgin but defined so that the area of a sphere at r is 4πr2 [6]. Ω is the solid

angle of this sphere [16].

1.3.3 The event horizon and the surface gravity

From equation 1.16, the metric appears to be singular at r = 2GM . Although there is not a real

singularity here, many of the quantum properties of black holes come from the geometry in the

region near the Schwarzschild radial coordinate, r which can be labelled rH and is renamed the

event horizon. The event horizon defines the boundary where the velocity needed to escape the

black hole exceeds the speed of light [13]. The area of the event horizon is given by

AH = 4πr2H . (1.17)

Another important parameter for the study of black holes is the surface gravity. To define this

parameter, notice that the Schwarzchild metric of equation 1.15 looks precisely like

ds2 = −ρ2κ2dt2 + dρ2 (1.18)
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which is the metric in an alternative coordinate system called Rindler coordinates. The coordinate

ρ measures the shortest radial distance of the black hole and κ, which is given by

κ =
1

4GM
(1.19)

represents the surface gravity of the black hole. The surface gravity of the black hole is defined

as the acceleration due to gravity experienced by a test particle which is very close to the surface

of the black hole [14].

1.3.4 Black hole mechanics

As already discussed, an important property of black holes for the proposed unification of QFT

and GR is that the laws of black hole mechanics closely resemble the laws of thermodynamics.

In thermodynamics, the zeroth law states that the temperature of a body at thermal equilibrium

is constant throughout the body. For a stationary black hole, the surface gravity κ is constant

at the event horizon. In correspondence with the zeroth law, this is like saying that a stationary

black hole is at thermal equilibrium [16].

The first law of thermodynamics concerns the conservation of energy equation:

dE = TdS + µdQ+ΩdJ (1.20)

where E is the energy of the system and T is the temperature. Q is the charge of the system, which

has an associated chemical potential µ and J is the spin with an associated chemical potential Ω.

For black holes, the equation which corresponds to the first law is

dM =
κ

8πG
dA+ µdQ+ΩdJ. (1.21)

This equation relates the mass, rotation and charge of a black hole to its entropy. Thus, the

entropy of a black hole, S is related to the area, A of the event horizon, previously defined as

AH [25].

By the first law of thermodynamics, if the black hole has energy E and entropy S, it must also have

temperature. If the black hole has temperature, like any hot body it must radiate. Classically
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this is impossible, however, Hawking showed that, after including quantum effects, it is possible

for the black hole to radiate [16]. This theoretical thermal blackbody radiation released outside

of a black hole’s event horizon is called Hawking radiation [7].

The second law of thermodynamics states that in a physical process, the total entropy never

decreases so that ∆S ≥ 0. Black holes obey a version of this law. A black hole possesses an

entropy that is proportional to the area of the event horizon. In fact it can be shown that the net

area A of the event horizon in any process never decreases so that ∆A ≥ 0 [15]. More specifically,

the black hole entropy is given by

SBH =
A

4
(1.22)

where natural units are used and SBH is the Bekenstein-Hawking entropy. The Bekenstein-

Hawking entropy of a black hole never decreases.

The advantage of black hole mechanics is that it provides a starting point to understanding the

complex interactions of black holes.

1.4 String theory

As already discussed, QFT and GR are not unified, and although still incomplete, string the-

ory proposes to be the all-encomposing theory of the universe, unifying all the forces of nature,

including gravity into a single framework [24].

At a fundamental level, string theory says that elementary matter does not consist of point particles

as in conventional QFT, but of one-dimensional loops of string (of zero thickness) [17]. The low

energy limit of string theory gives rise to gravity coupled to other fields. As a result, string theories

typically have black hole solutions [19].

1.4.1 Black hole entropy in string theory

String theory is consistent with the black hole entropy prediction since strings have a variety of

string states, so have entropy like the black hole. The entropy in string theory is proportional to

the mass of the string, unlike the black hole entropy which is proportional to the area of the event

horizon. It is, however, possible to shrink a black hole’s size and reduce its mass while keeping its
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entropy constant.

When the string is reduced to the size of a parameter called the string length scale ls and the black

hole has the minimum mass possible that is compatible with its charge and angular momentum,

it is called an extremal black hole [16].

The entropy for an extremal black hole is indistinguishable from the string entropy [21]. Thus,

extremal black hole entropy can be calculated from string theory.

Why is entropy so important for black holes in string theory? The significance of entropy is that

it contains information about the microstructure of a black hole, therefore gives valuable and

quantifiable information about it [19].

1.4.2 Supersymmetric black holes in string theory

Extremal black holes are often supersymmetric. Supersymmetry is an important extension to the

standard model. Supersymmetry is a special type of symmetry that maps bosons to fermions and

fermions to bosons [27].

For any bosonic or fermionic state of zero energy, there may be an arbitrary number nE=0
B of

bosonic states and an arbitrary number nE=0
F of fermionic states. The difference between these

two numbers nE=0
B − nE=0

F is important as it provides information about the supersymmetry

of the system [27]. If this difference is zero, the supersymmetry is broken, but if non-zero, the

supersymmetry remains unbroken. The quantity nE=0
B −nE=0

F is related to the trace of the operator

(−1)F so that bosonic states contribute +1 to the trace and fermionic states contribute −1 to the

trace [27], and

Tr(−1)F = nE=0
B − nE=0

F . (1.23)

From the black hole to string theory correlation, string theory is shown to have the ability to

create a framework for studying the classical and quantum properties of black holes [19].

1.5 Outline

The foundational concepts surrounding black holes in string theory have been set out in the intro-

duction. Chapter 2 focuses on Partition functions in string theory. This will include calculations
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of the partition functions on the torus for both bosonic and fermionic cases. The bosonic case will

begin with an introduction to action principles, including the Nambu-Goto and Polyakov action.

The equations of motion and oscillator modes for the string will then lead to the partition function

calculations. Following much of the same methodology, the fermionic partition functions on the

torus will be calculated.

In Chapter 3 the concepts of modular forms, elliptical functions, and Jacobi forms are introduced.

Specific Jacobi functions known as Jacobi theta functions are defined and used in the computation

of the elliptic genus of K3, which is also defined.

In Chapter 4 the elliptic genus of K3 calculation is used to quantify the degeneracy of black hole

microstates and Chapter 5 concludes the discussion.

The ultimate aim of this report is to use string theory to investigate the properties of supersym-

metric black holes. In doing this, it will provide an anchor for various foundational concepts in

theoretical physics and scope to further study of the concepts presented in the report.
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Chapter 2

Partition Functions in String

Theory

Partition functions are a tool derived from statistical mechanics where they are used to obtain

expression for temperature and chemical potential of a system. Here they are applied to string

theory as a method of obtaining expressions for these quantities in terms of the black hole.

2.1 Bosonic partition functions

The bosonic string is the simplest string theory model, so is a good place to start. Although the

bosonic string itself is not a viable physical model, since most particles are fermions, it requires

the same structures and formalism required for the analysis of more realistic models [22].

The bosonic string is a one dimensional object that sweeps out a two dimensional surface as it

moves through spacetime. This two dimensional surface is called the worldsheet. The points on

the worldsheet are described by a function of two coordinates X(τ, σ), where τ is the time-like

coordinate and σ is the space-like coordinate [18].

14
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2.1.1 Action Principles

The dynamics of a closed bosonic string can be described by the action. A general expression for

the action is

S =

∫
M

L dτdσ (2.1)

where M denotes the worldsheet. L is the Lagrangian density and the Lagrangian associated with

the Lagrangian density is given by

L =

∫
M

L dσ. (2.2)

The simplest invariant action in bosonic string theory is the Nambu-Goto action which is pro-

portional to the proper area of the worldsheet. In order to express the Lagrangian in terms of

X(τ, σ), the Nambu-Goto action is used where the induced metric hα is introduced:

hα = ∂αX∂
αX. (2.3)

The indices α run over the values (τ ,σ) and the Lagrangian associated with this induced metric is

LNG = − 1

2πα′

∫ 2π

0

(−h)1/2dσ (2.4)

which is defined as the Nambu-Goto Lagrangian [18]. Here dethα is denoted as h and the parameter

α′ is the Regge slope. The tension in the string is equal to the mass per unit length of the string [24]

and is related to the Regge slope by

T =
1

2πα′ . (2.5)

The action SNG corresponding to the Nambu- Goto Lagrangian is given by

SNG = − 1

2πα′

∫
dτdσ(−h)1/2 (2.6)

The Nambu-Goto action can be simplified by introducing an independent worldsheet metric

γab(τ, σ). With this metric the action becomes

SP [X, γ] = − 1

4πα′

∫
dτdσ(−detγab)

1/2γab∂αX∂
αX (2.7)
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This SP is called the Polyakov action. Varying the SP with respect to the worldsheet metric

γab such that δγ = γ + δγ shows the classical equivalence between the Polyakov action and the

Nambu-Goto action:

δγSP = − 1

4πα′

∫
dτdσδ((−γ)1/2γab)∂αX∂αX (2.8)

where detγab is denoted as γ and, via the chain rule,

δγSP = − 1

4πα′

∫
dτdσ[(−γ)1/2δ(γab)∂αX∂αX − δ((−γ)1/2)γab∂αX∂αX]. (2.9)

It must be noted that the variation of the determinant of a general two-by-two matrix A is given

by a general form of Jacobi’s formula

δ(detA) = (detA)Tr(Adj(A)δA). (2.10)

If A is invertible, which is the case for the Polyakov action, then Adj(A) = A−1.

Applying this to the variation of the determinant of γab it is given that

δγ = δdet(γab) = γ(γabδγab). (2.11)

Further using the fact that for covariant and contravariant tensors

γabδγabγ = −γabδγabγ, (2.12)

δ(−γ)1/2 is computed as follows

δ(−γ1/2) = −1

2

δγ

(−γ)1/2
= −1

2

(−γ)δγabγab
(−γ)1/2

= −1

2
(−γ)1/2δγabγab. (2.13)

Using the above information, the variation of SP with respect to the worldsheet metric from 2.9

becomes

δγSP = − 1

4πα′

∫
dτdσ(−γ)1/2δ(γab)[∂αX∂αX − 1

2
γab(γcd∂cX∂dX)] (2.14)

which gives

∂αX∂
αX − 1

2
γab(γcd∂cX∂dX) = 0 (2.15)
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where it is recognised that ∂αX∂
αX is equivalent to hab so that

hab =
1

2
γab(γcd∂cX∂dX). (2.16)

Taking the square root of minus the determinant of both sides of equation 2.16 gives

1

2
(−γ)1/2γabδαXδαX = (−h)1/2. (2.17)

Since γα is proportional to the induced metric hα, it can be eliminated from the Polyakov action.

Thus, it is shown to be equivalent to the Nambu-Goto action, and

Sp[X, γ] = − 1

2πα′

∫
dτdσ(−h)1/2 (2.18)

= SNG[X]. (2.19)

Substitution of the induced metric into the action equivalents gives

S = − 1

2πα′

∫
dτdσ(−∂αX∂αX)1/2

=
1

4πα′

∫
dτdσ(∂αX∂

αX) (2.20)

which is the simplest invariant action in bosonic string theory.

2.1.2 The Lagrangian and Hamiltonian equations

From the action, the Lagrangian for a closed bosonic string [23] is given by

L =
1

4πα′

∫ 2π

0

∂αX∂
αX dσ, (2.21)

The associated Lagrangian density is

L =
1

4πα′ ∂αX∂
αX. (2.22)

Since the string is closed, the boundary conditions on sigma are periodic

X(τ, σ) = X(τ, σ + 2π) (2.23)
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and limits of integration are 0 and 2π.

In Minkowski space, the Lagrangian can be written as

L =
1

4πα′

∫ 2π

0

(Ẋ2 −X ′2) dσ (2.24)

where the Lagrangian density is

L =
1

4πα′ (Ẋ
2 −X ′2). (2.25)

Ẋ is the derivative of X with respect to τ and X ′ is the derivative of X with respect to σ.

The Hamiltonian associated with the Lagrangian density is

H =
∂L
∂Ẋ

Ẋ − L

=
1

4πα′

∫ 2π

0

(2Ẋ2 − Ẋ2 +X ′2)dσ

=
1

4πα′

∫ 2π

0

(Ẋ2 +X ′2)dσ (2.26)

2.1.3 Equations of motion

In Minkowski space, the Euler-Lagrangian equation can be written in the following form

∂τ

(
∂L
∂σẊ

)
+ ∂σ

(
∂L
∂σẊ

)
− ∂L
∂X

= 0 (2.27)

where the Lagrangian density is given by equation 2.25 so that by the Euler-Lagrangian equation,

the equation of motion is

2Ẍ − Ẍ −X ′′ = 0 (2.28a)

Ẍ −X ′′ = 0. (2.28b)

Or in Euclidean space, the Euler-Lagrangian equation

∂α

(
∂L
∂αX

)
− ∂L
∂X

= 0 (2.29)
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gives from equation 2.22, the equation of motion to be

∂α∂
αX = 0. (2.30)

Using the method of separation of variables, X can be expressed as X = a(τ)b(σ). From this the

equation of motion 2.28b becomes

äb− b′′a = 0 (2.31a)

and

ä

a
=
b′′

b
. (2.31b)

Since equation 2.31b must be true for all (τ, σ), it must be equal to some arbitrary constant,

chosen to be k2. The solutions of the equation of motion for non-zero k are then

a = e±ikσ (2.32a)

b = e−ikτ (2.32b)

which upon substitution can be shown to satisfy equation 2.31b. Linear solutions for a and b

result from the the special case that k = 0, these are given by

a = βσ + γ (2.33a)

b = ζτ + x. (2.33b)

where β, γ, ζ and x are chosen constants.

2.1.4 Oscillator modes

Using these linear solutions defined in equations 2.33a and 2.33b, and the periodic boundary

conditions defined in equation 2.23, it can be shown that the harmonic function X(τ, σ) takes the

general form

X(τ, σ) = x+ α′pτ + βσ (2.34)
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where x is the centre of mass position of the string and p is the centre of mass momentum carried

by the string.1 The harmonic function is also expressed in terms of the oscillator modes

X(τ, σ) = XL +XR + α′pτ + x (2.35)

where XL and XR are the left moving and right moving solutions respectively which correspond

to the functions τ − σ and τ + σ.

The general solution to the equation of motion is given by

X(τ, σ) = i

√
α′

2

∑
k ̸=0

αk

k
e−ikτ+ikσ + i

√
α′

2

∑
k ̸=0

α̃k

k
e−kτ−ikσ + α′pτ + x (2.36)

where the αk and α̃k represent the two independent sets of oscillators corresponding to the left-

moving and right-moving waves along the string.

2.1.5 The Hamiltonian in terms of oscillator modes

To write the Hamiltonian H in terms of oscillator mode sectors αk and α̃k, the commutation

between X(σ) and π(σ′) is used, where Π is the canonical momentum density given by

Π =
∂L
∂Ẋ

=
1

2πα′ Ẋ (2.37)

and the commutation relation between the position and the momentum density is given by

[X(σ),Π(σ′)] = iδ(σ − σ′). (2.38)

where δ(σ − σ′) is the Dirac delta function for periodic boundary conditions. Taking equal times

and setting τ = 0,

[X, Ẋ] = 2πiα′δ(σ − σ′). (2.39)

1The periodic boundary conditions of equation 2.23 imply that the momentum modes are quantised to integers.
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The derivative of X with respect to τ at τ = 0 is

Ẋ = i

√
α′

2

∑
k

(−ik)αk

k
e−ikτ+ikσ + i

√
α′

2

∑
k

(−ik) α̃k

k
e−ikτ−ikσ + α′p

=

√
α′

2

∑
k

αke
−ikτ+ikσ +

√
α′

2

∑
k

α̃ke
−ikτ−ikσ + α′p (2.40)

Thus, at τ = 0,

X = i

√
α′

2

∑
k

1

k

(
αke

ikσ + α̃ke
−ikσ

)
+ α′p+ x (2.41)

and

Ẋ =

√
α′

2

∑
k

(
αke

ikσ + α̃ke
−ikσ

)
+ α′p. (2.42)

The Fourier transformation of X(τ, σ) allows expressions to be found for αk and α̃k. A system of

equations are formed by multiplying both sides of equations 2.41 and 2.42 by e−ik′σ and integrating

over sigma.

The equation for X is given by

∫ 2π

0

Xe−ik′σdσ = i

√
α′

2

∑
k

1

k

∫ 2π

0

(
αke

ikσ + α̃ke
−ikσ

)
e−ik′σ

= i

√
α′

2

∑
k

1

k

∫ 2π

0

(
αke

i(k−k′)σ + α̃ke
−i(k−k′)σ

)
dσ

= i

√
α′

2

∑
k

2π

k
(αke

i(k−k′)σ + α̃ke
−i(k−k′)σ)

= i

√
α′

2

∑
k

2π

k
(αkδk,k′ + α̃kδk,−k′)

=
2πi

k′

√
α′

2
(αk′ + α̃−k′) (2.43)

where the Kronecker delta function was used. Similarly, the Ẋ equation gives

∫ 2π

0

Ẋe−ik′σdσ = 2π

√
α′

2
(αk′ + α̃−k′) (2.44a)
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This gives the following system of equations, where for simplicity k′ is replaced with k

αk − α̃k =
k

2πi
√

α′

2

∫ 2π

0

Xe−ikσdσ (2.45a)

αk + α̃k =
1

2πi
√

α′

2

∫ 2π

0

Ẋe−ikσdσ. (2.45b)

These equations are solved simultaneously to find the oscillation modes

αk =
1

4πi
√

α′

2

(
k

∫ 2π

0

Xe−ikσdσ + i

∫ 2π

0

Ẋe−ikσdσ

)
(2.46a)

α̃k =
1

4πi
√

α′

2

(
− k

∫ 2π

0

Xeikσdσ + i

∫ 2π

0

Ẋeikσdσ

)
(2.46b)

The commutation is then given by

[αk, αk′ ] = αkαk′ − αk′αk (2.47)

which is equivalent to

[αk, αk′ ] = − 1

8π2α′

∫ 2π

0

∫ 2π

0

[
kX(σ) + iẊ(σ), k′X(σ′) + iẊ(σ′)

]
e−ikσ−ik′σ′

dσdσ′

= − i

8π2α′

∫ 2π

0

∫ 2π

0

(
k

[
X(σ), Ẋ(σ′)

]
+ k′

[
Ẋ(σ), Ẋ(σ′)

])
e−ikσ−ik′σ′

dσdσ′

= −ik − k′

8π2α′

∫ 2π

0

∫ 2π

0

2πiα′δ(σ − σ′)e−ikσ−ik′σ′
dσdσ′

=
k − k′

4π

∫ 2π

0

ei(−k+k′)σ′
dσ

=
k − k′

4π
2πδk,−k

= kδk,−k (2.48)

Therefore,

[αk, αk′ ] = k (2.49)

where the commutation relation [X(σ), X(σ′)] = [Ẋ(σ), Ẋ(σ′)] = 0 was used. Using much the
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same method, it can be shown that

[α̃k, α̃k′ ] = k (2.50)

and that any commutators of α and α̃ are equal to zero.

2.1.6 Periodic partition function calculations

The partition functions of a closed bosonic string are an important mathematical method leading

to the investigation of modular invariance. Partition functions are built from complex quantities

that are functions of τ for left moving oscillation modes and of τ̄ for right moving oscillation

modes.

The full partition is the product of the left moving part of the string and the corresponding right

moving part. The most general form of the Partition function for a closed bosonic string is given

by a modification of the standard formula for path integrals in quantum mechanics

Z = Tr[e−βLHL−βRHR ] (2.51)

where HL and HR correspond to the energy levels of the left and right moving oscillations. βL =

2πiτ and βR = −2πiτ̄ where the torus moduli parameter τ̄ is complex conjugate of τ . From the

periodic boundary conditions τ = 1 such that thermodynamic β is defined as βL = βR = β where

β = 1
T .

Depending on the theory it is possible to have periodic and anti-periodic boundary conditions.

The periodic case has already been defined in equation 2.23. In this case, k runs over integers

from −∞ to +∞, except zero.

For the periodic case, the left and right moving mode solutions can be written in the form

Tr[e−βLHL ] = e
βL
24 = e−

βL
24

∞∏
k=1

1

1− eβLk

Tr[e−βRHR ] = e−
βR
24

∞∏
k=1

1

1− eβRk
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where zeta function regularization
∞∑
k=1

k = − 1

12
(2.52)

is used. In terms of parameters τ and τ̄ , the total partition function can be written as

Z = e−
2πiτ
24

∞∏
k=1

1

1− e2πiτk
e

2πiτ̄
24

∞∏
k=1

1

1− e−2πiτ̄k

Z =
1

e
2πiτ
24

∞∏
k=1

1

1− e2πiτk
1

e−
2πiτ̄
24

∞∏
k=1

1

1− e−2πiτ̄k

The partition function can then be written in terms of q and q̄ where q = e2πiτ and q̄ = e−2πiτ̄ .

Thus,

Z = Tr[e−βLHL−βRHR ] =
1

q
1
24

∏∞
k=1(1− qk)

1

q̄
1
24

∏∞
k=1(1− q̄k)

The Dedekind η function is a function of q given by

η(q) =
1

q
1
24Π∞

k=1(1− qk)
(2.53)

The partition function can be written in terms of the Dedekind η function as

Z = Tr[e−βLHL−βRHR ] =
1

η(q)

1

η(q̄)
=

1

|η(q)|2
(2.54)

2.1.7 Anti-periodic partition function calculations

The anti-periodic boundary conditions are given by

X(τ, σ) = −X(σ + 2π) (2.55)

In this case, k runs over half-integers from −∞ to +∞.

The quantisation conditions for the anti-periodic case are given by

[αk+1/2, α−k − 1/2] = k + 1/2 (2.56)

[αk−1/2, α−k + 1/2] = k − 1/2 (2.57)
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This commutator sum is -1/24 [18] so that the partition function for the anti-periodic case is given

by

Tr[e−βLHL ] = e
βL
48

∞∏
k

1

1− e−βL(k−1/2)
(2.58)

Tr[e−βRHR ] = e
βR
48

∞∏
k

1

1− e−βR(k−1/2)
(2.59)

where the total partition function is

Z = Tr[e−βLHL−βRHR ] = e
βL
48

∞∏
k

1

1− e−βL(k−1/2)
e

βR
48

∞∏
k

1

1− e−βR(k−1/2)
(2.60)

2.2 Fermionic partition functions on the torus

2.2.1 The Lagrangian, action and Hamiltonian

The Lagrangian for a single fermion is given by

L =
1

4π

∫ 2π

0

(ψ̄∂ωψ + ψ̃∂ω̄
˜̄ψ)dσ (2.61)

so that the action is given by

S =
1

4π

∫ ∫ 2π

0

(ψ̄∂ωψ + ψ̃∂ω̄
¯̃
ψ)dσdτ (2.62)

where ω = τ + iσ, ω̄ = τ − iσ,

∂ω = ∂τ + i∂σ (2.63a)

∂ω̄ = ∂τ − i∂σ. (2.63b)

The action may then be written as

S =
1

4π

∫ 2π

0

∫ 2π

0

(ψ̄(∂τ + i∂σ)ψ + ψ̃(∂τ − i∂σ)
˜̄ψ)dσdτ (2.64a)

=
1

4π

∫ 2π

0

∫ 2π

0

(ψ̄∂τψ + iψ̄∂σψ + ψ̃∂τ
˜̄ψ − iψ̃∂σ

˜̄ψ)dσdτ (2.64b)
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Introducing the Jacobian J which is given by

J =

∣∣∣∣∣∣∣
∂ω

∂τ

∂ω

∂σ

∂ω̄

∂τ

∂ω̄

∂σ

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 i

1 −i

∣∣∣∣∣∣∣ = −2i =
2

i
(2.65)

The action in terms of the Jacobian is

S =
1

8π

∫ ∫ 2π

0

(ψ̄∂τψi− ψ̄∂σψ + ψ̃∂τ
˜̄ψi+ ψ̃∂σ

˜̄ψ)Jdσdτ (2.66)

So that the Lagrangian density is

L =
1

8π
(ψ̄∂τψi− ψ̄∂σψ + ψ̃∂τ

˜̄ψi+ ψ̃∂σ
˜̄ψ)
2

i
(2.67a)

=
1

4πi
(ψ̄∂τψi− ψ̄∂σψ + ψ̃∂τ

˜̄ψi+ ψ̃∂σ
˜̄ψ). (2.67b)

In terms of ∂ω and ∂ω̄

L =
1

4πi
(ψ̄∂ωψ + ψ̃∂ω̄

¯̃
ψ) (2.68)

The Hamiltonian in terms of the Lagrangian density is given by

H =
∂L

∂(∂τψ)
∂τψ +

∂L
∂(∂τ ψ̃)

∂τ ψ̃ − L (2.69)

From equation 2.67b this becomes

H =
1

4πi
(ψ̄∂τψi+

¯̃
ψ∂τ ψ̃ − (ψ̄∂τψi− ψ̄∂σψ + ψ̃∂τ

˜̄ψi+ ψ̃∂σ
˜̄ψ)) (2.70)

Thus,

H =
1

4πi
(ψ̄∂σψ − ψ̃∂σ

˜̄ψ). (2.71)

2.2.2 Equations of motion

In mode expansion, the term holomorphic is used to describe the left-moving oscillatory mode,

represented by ψ. The term antiholomorphic is used to describe the right-moving oscillatory mode

which is represented by ψ̃.
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The Euler-Lagrangian equation for the holomorphic case

∂ω

(
∂L
∂ωψ̄

)
+ ∂ω̄

(
∂L
∂ωψ̄

)
− ∂L
∂ψ̄

= 0 (2.72)

gives

1

4π
(0 + 0 + ∂ωψ) = 0 (2.73)

and

∂ωψ = 0. (2.74)

so that the equation of motion is

∂τψ + i∂σψ = 0. (2.75)

Similarly for the antiholomorphic case

∂ω

(
∂L
∂ω

¯̃
ψ

)
+ ∂ω̄

(
∂L
∂ω

¯̃
ψ

)
− ∂L
∂
¯̃
ψ

= 0 (2.76)

so that the second equation of motion is

∂τ ψ̃ − i∂σψ̃ = 0. (2.77)

2.2.3 Solutions to the equations of motion

Using the Lagrangian density 2.67b, the canonical momenta are given by

Π(ψ) =
∂L

∂(∂τψ)
=

1

4πi
ψ. (2.78)

and

Π(ψ̃) =
∂L

∂(∂τ ψ̃)
=

1

4πi
ψ. (2.79)

where it is noted that in two dimensions ψ̄ = ψ and ˜̄ψ = ψ̃.

Using the method of separation of variables, ψ can be expressed as ψ = a(τ)b(σ) so that

∂τψ = ∂τ (a(τ)b(σ)) = ȧb (2.80)
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and

∂σψ = ∂σ(a(τ)b(σ)) = ab′ (2.81)

Hence, the equation of motion for the holomorphic case is

∂τψ + i∂σψ = ȧb+ ib′a = 0 (2.82)

So that division by ab gives

ȧ

a
= −i b

′

b
(2.83)

which must be true for all values of τ and σ. Since τ and σ are independent variables, the only

way for the two sides to be equal for all τ and σ is if they are equal to a constant. For convenience

this constant is set equal to -k so that ȧ = −ka and b′ = −ikσ.

The solutions to these equations are

ȧ = −kαke
−kτ = −ka (2.84)

and

b′ = −ikβke−ikσ = −ikb (2.85)

The equation of motion for a particular value of k is

ψ(τ, σ) = a(τ)b(σ) = ψke
−kτ−ikσ (2.86)

where ψk = αkβk.

Recalling the periodic boundary condition given by

ψ(τ, σ + 2π) = ψ(τ, σ) (2.87)

lead to

ψke
−kτ−ikσ−2πik = ψke

−kτ−ikσ ⇐⇒ e−2πik = 1. (2.88)

which only holds true if k is an integer.
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The general solution to the equation of motion is given by equation 2.86 summed over all the

integers k

ψ =
√
−i

∑
k∈Z

ψke
−kτ−ikσ (2.89)

where a normalisation constant of
√
−i has been chosen for later convenience.

The oscillation modes at equal times are considered so that τ is set equal to zero and

ψ =
√
−i

∑
k∈Z

ψke
−ikσ. (2.90)

From equation 2.80 and equation 2.81 the equation of motion for the antiholomorphic case is

∂τ ψ̃ − i∂σψ̃ = ȧb− ib′a = 0 (2.91)

Following the same method as for the holomorphic case, the equation of motion for a particular

value of k is

ψ(τ, σ) = a(τ)b(σ) = ψke
−kτ+ikσ (2.92)

which gives

ψ̃ =
√
−i

∑
k∈Z

ψ̃ke
ikσ (2.93)

where constraints at equal times are again applied.

2.2.4 Oscillation modes

To find the an expression for the oscillation mode ψk in terms of ψ, both sides of equation 2.90

are multiplied by eik
′σ and the result is integrated over sigma between 0 and 2π:

∫ 2π

0

ψeik
′σdσ =

∫ 2π

0

√
−i

∑
k∈Z

ψke
−ikσeik

′σdσ

=
√
−i

∑
k∈Z

ψk

∫ 2π

0

ei(k
′−k)σdσ (2.94)
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If k = k′

∫ 2π

0

ψeik
′σdσ =

√
−i

∑
k∈Z

ψk

∫ 2π

0

dσ

= 2π
√
−i

∑
k∈Z

ψk(1) (2.95)

if k ̸= k′

∫ 2π

0

ψeik
′σdσ =

√
−i

∑
k∈Z

ψk
ei(k

′−k)σ

i(k′ − k)

∣∣∣∣∣
2π

0

=
√
−i

∑
k∈Z

ψk
e2π(k

′−k)σ − 1

i(k′ − k)

= 2π
√
−i

∑
k∈Z

ψk(0) (2.96)

Thus,

∫ 2π

0

ψeik
′σdσ = 2π

√
−i

∑
k∈Z

ψk


1 k = k′

0 k ̸= k′

= 2π
√
−i

∑
k∈Z

ψkδk,k′

= 2π
√
−iψk′ (2.97)

This equation holds for any integer k’ and, for simplicity k’ is labelled k. The resulting equation

for ψk is given by

ψk =
1

2π
√
−i

∫ 2π

0

ψeikσdσ (2.98)

To find an expression for the oscillation mode ψ̃k in terms of ψ, both sides of equation 2.93 are

multiplied by e−ik′σ and the result is integrated over sigma between 0 and 2π. This gives

∫ 2π

0

ψ̃e−ik′σdσ = 2π
√
−i ψ̃k′ (2.99)
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where for simplicity k’ is labelled k so that the resulting equation for ψ̃k is given by

ψ̃k =
1

2π
√
−i

∫ 2π

0

ψ̃e−ikσdσ. (2.100)

Using the quantisation rules given by the anticommutators

{ψ(σ), ψ(σ′)} = −2πiδ(σ − σ′)

=

{
1

2π
√
−i

∫ 2π

0

ψ(σ)eikσdσ,
1

2π
√
−i

∫ 2π

0

ψ(σ′)eik
′σ′
dσ′

}

=
i

(2π)2

∫ 2π

0

∫ 2π

0

{ψ(σ), ψ(σ′)}eikσ+ik′σ′
dσdσ′

=
i

(2π)2

∫ 2π

0

∫ 2π

0

(−2πiδ(σ − σ′))eikσ+ik′σ′
dσdσ′

=
1

2π

∫ 2π

0

∫ 2π

0

δ(σ − σ′)eikσ+ik′σ′
dσdσ′

=
1

2π

∫ 2π

0

ei(k+k′)σdσ

=
1

2π
2πei(k+k′)σ

= δk,−k′ (2.101)

which applies for any k and k′. The remaining anticommutators are computed similarly and are

given by

{ψ̃k, ψ̃−k} = 1, (2.102)

{ψ̃k, ψ̃
′
k} = δk,−k′ (2.103)

and the rest of the anticommutators are equal to zero. These quantisation rules can be used to

compute the partition function.

2.2.5 Ramond and NS sectors

For Fermionic Fields, Lorentz invariance allows for periodic and anti-periodic boundary conditions.

These boundary conditions have associated sectors. The periodic conditions correspond to the

Ramond (R) sector and the anti-periodic conditions correspond to the Neveu-Schwarz (NS) sector.

31



DIAS Summer Internship 2023 Rachel Ferguson

As in the bosonic case, the partition functions for the fermionic case is written using the trace

function. Consider the fermionic partition functions on the Ramond sector given by

Z = Tr[(−1)FL+FRe−βLHL−βRHR ]. (2.104)

where (−1)F = 1 if the state is unoccupied by an oscillator and (−1)F = −1 if the state is occupied

by an oscillator.

The general form of the partition function is given by

Z = Tr[(−1)Fe−βH] = e−
β
24

∞∏
k=1

(1− e−βk) (2.105)

where the value of k runs over the integers and

Z = Tr[(−1)FL+FRe−βLHL−βRHR ] = e−
βL
24

∞∏
k=1

(1− e−βLk)e−
βR
24

∞∏
k=1

(1− e−βRk) (2.106)

where βL and βR are defined as before so that

Z = e−
2πiτ
24

∞∏
k=1

(1− e−2πiτk)e
2πiτ̄
24

∞∏
k=1

(1− e2πiτ̄k). (2.107)

In terms of q and q̄

Z =
1

q
1
24

∏∞
k=1(1− qk)

1

q̄
1
24

∏∞
k=1(1− q̄k)

(2.108)

and in terms of the Dedekind η function

η(q) =
1

q
1
24Π∞

k=1(1− qk)
, (2.109)

the fermionic partition function in the Ramond sector is given by

ZR = η(q)η(q̄). (2.110)

which is the inverse of the bosonic periodic case, where it has been assumed in the solution that

no zero modes are present.

For the NS sector with anti-periodic boundary conditions, the value of the range of k must be
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changed. Here k runs over half integers, so will be replaced with k − 1/2 where k ∈ Z.

Similarly, the partition function is given by

Z = Tr[(−1)FL+FRe−βLHL−βRHR ] (2.111)

Z = e−
βL
48

∞∏
k=1

(1− e−βL(k−1/2))e−
βR
48

∞∏
k=1

(1− e−βR(k−1/2)) (2.112)
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Chapter 3

Elliptic genus and twisted elliptic

genus of K3

The elliptic genus of K3 is calculated via Jacobi forms, derived by adding a chemical potential

to the partition functions of chapter 2. Jacobi forms combine the concept of both modular forms

and elliptical functions.

3.1 The modular group and modular forms

The definition of the modular group follows from the transformation

τ → aτ + b

cτ + d
. (3.1)

This is called a unimodular transformation if a,b,c and d are integers and if ad− bc = 1 [29]. The

set of all unimodular transformations form a group called the modular group which is denoted Γ.

The modular group Γ is represented by a two-by-two integer matrix

A =

a b

c d

 . (3.2)
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where detA = 1. The modular group Γ is generated by two matrices

T =

1 1

0 1

 S =

0 −1

1 0

 . (3.3)

From this, a modular form can be defined. A function f is a modular form if it satisfies 3 specific

conditions [29]. The first is that f is meromorphic in the upper half complex plane H. That is, f

is of the form

f(z) =
g(z)

h(z)
(3.4)

where g(z) and h(z) are complex functions that are analytical at the point i∞, and at all finite

points of the upper half of the complex plane H. The second condition is that f(Aτ) = F (A)f(τ)

for every A representing the modular group Γ and F (A) ∈ C is an analytic function given for each

(A). The final condition is that the Laurent series of f , which is a representation of complex f as

as power series, should have the form

f(τ) =

∞∑
n=−m

a(n)e2πinτ . (3.5)

3.2 Elliptic functions

An elliptic function is defined as a doubly periodic function with periods 2ω1 and 2ω2 such that

f(z + 2ω1) = f(z + 2ω2) = f(z) (3.6)

which is analytic and has no singularities except in the finite part of the complex plane [29], where

they are called poles. Elliptic functions obey a number of properties involving the cell which is a

parallelogram region in the complex plane in which the function f is single-valued [29].

To be an elliptic function, the number of roots (or ‘zeros’) in a cell must be finite, the number of

poles (complex singularities) in a cell should also be finite. An elliptic function with no poles in

a cell is a constant (by Liouville’s first theorem [29]).
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3.3 Jacobi forms and Jacobi theta functions

As has been highlighted, adding a chemical potential to the partition functions of bosons and

fermions on the torus studied in Chapter 2 leads to Jacobi forms. Jacobi forms are a mixture

of modular forms and elliptic functions. Jacobi forms have two variables and as such have two

integers associated with them. The first of these integers is the weight k which describes the

transformation properties of the Jacobi form with respect to the modular group. The second

integer is the index m which describes the transformation properties with respect to the elliptic

variable [28].

A Jacobi form of weight k and index m is formally defined as a function ϕ(τ, z) of two complex

variables where the variable τ is on the upper half plane such that

ϕ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke

2πimcz2

cτ+d ϕ(τ, z) for

a b

c d

 ∈ SL2(Z) (3.7a)

and

ϕ(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)ϕ(τ, z) for all integers λ and µ. (3.7b)

where ϕ has a Fourier expansion

ϕ(τ, z) =
∑
n≥0

∑
r2≤4mn

C(n, r)e2π(nτ+rz), (3.7c)

Jacobi theta functions are derived from the generalised theta function, which for τ ∈ H and ν ∈ C

is given by

θa,b(τ, ν) =
∑
Z
eπiτ(n+a)2e2πi(n+a)(ν+b) (3.8)

From this, the Jacobi theta functions are defined as

θ1(τ, ν) = −θ 1
2 ,

1
2
(τ, ν)

= −i
∑
Z
(−1)nq

1
2 (n+

1
2 )

2

eπi(2n+1)ν (3.9a)
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θ2(τ, ν) = θ 1
2 ,0

(τ, ν)

=
∑
Z
q

1
2 (n+

1
2 )

2

eπi(2n+1)ν (3.9b)

θ3(τ, ν) = θ0,0(τ, ν)

=
∑
Z
q

1
2n

2

e2πinν (3.9c)

θ4(τ, ν) = θ0, 12 (τ, ν)

=
∑
Z
(−1)nq

1
2n

2

e2πinν . (3.9d)

The Jacobi theta function equations are used in the calculation of the Elliptic genus of K3.

3.4 Elliptic Genus of K3

A genus is an integer representing the maximum number of cuttings along non-intersecting closed

simple curves without a resultant manifold being disconnected [31]. Intuitively, a genus is the

number of ‘holes’ in a surface [32]. For example, a sphere has a genus of zero whilst a torus has a

genus of 1.

In mathematics, a K3 surface is a four dimensional manifold. It is a topological space in which

each point has neighbourhood one-to-one mapping to the four dimensional Euclidean space R4.

Thus, K3 can be described as a Z2 orbifold (which is a generalised manifold [34]) of the four

dimensional torus T 4 [16].

The computation of the elliptic genus of K3 on the torus T 4 required the compactification of 2

complex bosons and 2 complex fermions on the torus T 4. For this reason, the elliptic genus of K3

can be written in terms of the Jacobi theta functions defined in Section 3.3 and derived from the

fermionic and bosonic partition functions of Chapter 2.

The elliptic genus of K3 is given by the following trace

ZK3(τ, z) =
1

2

∑
a,b=0

(a,b)̸=(0,0)

TrRRa
g

[
(−1)FK3v+F̄K3g

be2πiνJK3qL0−c/24q̄L̄0−c̄/24

]
(3.10)

where (c, c̄) are the central charges of the system and c = 6 and c̄ = 6 for K3. L0 and L̄0 are the

37



DIAS Summer Internship 2023 Rachel Ferguson

left and right Hamiltonian’s with zero-point energy subtracted out. For fermions, Jk3 represents

the angular momentum and can take values of ±1 [23].

To compute the elliptic genus of K3, the Jacobi theta functions are defined in terms of z = e2πiν .

The formula for the elliptic genus of K3 becomes

χ(q, z) = 8

(
θ22(q, z)

θ22(q, 1)
+
θ23(q, z)

θ23(q, 1)
+
θ24(q, z)

θ24(q, 1)

)
(3.11)

where the first term arises from the untwisted projected partition function, the second from

the twisted unprojected partition function and the third from the twisted projected partition

function [16].

A(q, z) is a Jacobi form of index m = 1 and weight k = 0 and is given by

A(q, z) =

(
θ22(q, z)

θ22(q, 1)
+
θ23(q, z)

θ23(q, 1)
+
θ24(q, z)

θ24(q, 1)

)
(3.12)

so that the elliptic genus of K3 is equal to 8A(q, z).

Following computation of the Fourier series expansion of the elliptic genus of K3 using the Jacobi

theta functions, the first three terms in the elliptic genus of K3 are explicitly are given by

χ(q, z) = 20 +
2

z
+ 2z + ... (3.13)

The evaluation of the elliptic genus of K3 is an important result for the calculation of the degen-

eracy of black hole microstates investigated in Chapter 4.
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Chapter 4

Degeneracy of Black Hole

Microstates

As already discussed in Chapter 1, the entropy of the black hole is known as Bekenstein-Hawking

entropy and is given by

SBH =
AH

4
(4.1)

where AH is the area of the event horizon. An important question to consider relates to how this

entropy may be understood from a statistical viewpoint. The statistical definition of entropy was

developed by Boltzmann who showed that the definition of statistical entropy is equivalent to the

definition of thermodynamic entropy within a constant factor, known as the Boltzmann constant.

Specifically, entropy is a logarithmic measure of the number of microstates of a system:

Sstat = kB lnΩ (4.2)

In the same way, can the entropy of a black hole be understood from a statistical viewpoint as a

logarithm of the number of states associated with the black hole [19]?

For a special class of black holes in string theory, known as N = 4 supersymmetric BPS black

holes in type II string theory, the answer to this question is complete [19]. This class of black

holes do not Hawking radiate since they have zero temperature and are usually stable. They are
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also invariant under certain supersymmetry transformations. The stability and supersymmetry

properties of this class of black holes allows a certain amount of control over its microscopic

configuration. This allows the calculation of the degeneracy of the black hole. In string theory, in

the limit where the N = 4 supersymmetric BPS black hole is large,

SBH = Sstat (4.3)

where Sstat is the statistical entropy for black holes and is given by

Sstat = − lnB6. (4.4)

The index −B6 associated with the specific class of N = 4 supersymmetric BPS black holes in

type II string theory is considered [35]. This index is equal to the degeneracy of the BPS black

hole microstates which is given by d(Q,P ) so that

Sstat = ln d(Q,P ) (4.5)

where Q and P are the electric and magnetic charge vectors respectively. This degeneracy gives

an understanding of the Bekenskein-Hawking entropy from a microscopic perspective.

The degeneracy of the black hole microstates is given by the integral

d(Q,P ) = (−1)Q.P+1

∫
C

e−πi(ρQ2+σρ2+2νQ.P ) 1

Φ̃(ρ, σ, ν)
dρdσdν (4.6)

where the contour C is defined over a three dimensional subspace of the three complex dimensional

space labelled by ρ = ρ1 + iρ2, σ = σ1 + iσ2 and ν = ν1 + iν2 [19].

The degeneracy calculation d(Q,P ) is extracted from the Fourier coefficients of 1/Φ̃. Thus, the

expansion of 1/Φ̃ should be applied in powers of e2πiρ and e2πiσ, then each term expanded in

powers of e−2πiν . This is best done using the product representation of Φ̃ given by a particular

Siegel modular form [35], which is a generalisation of the conventional elliptic modular form.
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It is given by

Φ̃(ρ, σ, ν) = e−2πi(ρ+σ/N+ν)×
1∏

b=0

N−1∏
r=0

∏
k∈Z+ r

N
,l∈Z,j∈2Z+b

k,l≥0fork=l=0

(1− e2πi(kσ+lρ+jν))−
∑N−1

s=0 e−2πisl/N c(r,s)(4kl−j2)

(4.7)

where the coefficients cr,s are the Fourier coefficients of F r,s(τ, z) defined as

F (0,0)(τ, z) =
8

N
A(τ, z), (4.8a)

F (0,s)(τ, z) =
8

N(N + 1)
A(τ, z)− 2

N + 1
B(τ, z)EN (z)

for 1 ≤ s ≤ (N − 1) (4.8b)

and

F (r,rk)(τ, z) =
8

N(N + 1)
A(τ, z) +

2

N + 1
EN (

τ + k

N
)B(τ, z)

for 1 ≤ r ≤ (N − 1), 0 ≤ k ≤ (N − 1). (4.8c)

The Φ̃ written in terms of α̃ and β̃ is given by

1

Φ̃(ρ, σ, ν)
= e−2πi(α̃ρ+β̃σ+ν)×

1∏
b=0

N−1∏
r=0

∏
k∈Z+ r

N
,l∈Z,j∈2Z+b

k,l≥0fork=l=0

(1− e2πi(kσ+lρ+jν))−
∑N−1

s=0 e−2πisl/N c(r,s)(4kl−j2)

(4.9)

where α̃ = 1 and β̃ = 1
N . For the N = 1 model, s = r = 0. Thus equation 4.9 becomes

1

Φ̃(ρ, σ, ν)
= e−2πi(ρ+σ+ν)

∏
k,l,j∈Z

k,l≥0fork=l=0

(1− e2πi(kσ+lρ+jν))−
∑N−1

s=0 c(0,0)(4kl−j2). (4.10)

The coefficients for c(0,0) are defined as

F (0,0)(τ, z) =
∑
n,j∈Z

c(0,0)(4n− j2)qnzj (4.11)

= 8A(τ, z) (4.12)

which are the coefficients of the elliptic genus of K3, computed already in Chapter 3.
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Using the Fourier expansion

1

Φ̃(ρ, σ, ν)
=

∑
m,n,p

g(m,n, p)e2πi(mρ+nσ+pν), (4.13)

the degeneracy of the black hole microstates in equation 4.6 is given by

d(Q,P ) = (−1)Q.P+1
∑
m,n,p

g(m,n, p)

∫
C

e2πi(mρ+nσ+pν)e−πi(ρQ2+σρ2+2νQ.P )dρdσdν

= (−1)Q.P+1
∑
m,n,p

g(m,n, p)

∫
C

e2πi((m−Q2/2)ρ+(n−P 2/2)σ+(p−Q.P/2)ν)dρdσdν

= (−1)Q.P+1
∑
m,n,p

g(m,n, p)

∫
C

e2πi(mρ+nσ+pν)e−πi(ρQ2+σρ2+2νQ.P )dρdσdν

= (−1)Q.P+1
∑
m,n,p

g(
Q2

2
,
P 2

2
, Q.P ) (4.14)

Defining x = e2πiρ, y = e2πiσ and w = e2πiν equation 4.13 gives

1

Φ̃(ρ, σ, ν)
=

∑
m,n,p

g(m,n, p)xmynwp (4.15a)

= (xyw)−1
∏

k,l,j∈Z
k,l≥0fork=l=0

(1− xkylwj)−c
(0,0)
b (4kl−j2) (4.15b)

The expansion of equation 4.15b around x = 0, y = 0 and w = ∞ determines the coefficient of

xmynwp, hence determines g(m,n,p). To do this computationally, three separate cases should be

considered. First all cases are included, except where k = 0, then all cases are included, except

where l = 0. The remaining special case of k = l = 0 is considered, where j < 0.

The resulting computed coefficient expansions give the degeneracy of the black hole microstates

for different values of Q2, P 2 and Q.P which are given in Table 4.1 below.

(Q2, P 2)\Q.P -2 0 1 2 3 4

(2,2) -209304 50064 25353 648 327 0
(2,4) -2023536 1127472 561576 50064 8376 -648
(4,4) -16620544 32861184 18458000 3859456 561576 12800
(2,6) -15493728 16491600 8533821 1127472 130329 -15600
(4,6) -53249700 632078672 392427528 110910300 18458000 1127472
(2,8) -97722288 185738352 100390104 16491600 1598376 -209304
(4,8) 945811584 9337042944 6216536784 2073849984 392427528 32861184
(6,6) 2857656828 16193130552 11232685725 4173501828 920577636 110910300
(6,8) 91631080464 315614079072 233641003920 100673013264 26563753008 4173501828

Table 4.1: Computed results for the the degeneracy of N = 4 supersymmetric BPS black holes in
type II string theory for specific values of Q2, P 2 and Q.P .
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The results of Table 4.1 signify an important result in the relation between string theory and black

holes. The entropy of supersymmetric N = 4 BPS black holes in type II string theory can be

represented as a logarithm of the counted microstates of the black hole. This is in line with both

statistical mechanics and classical thermodynamics.
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Chapter 5

Conclusions

The investigation and application of string theory in supersymmetric black holes has been studied.

The central results of this work is found in table 4.1 where the entropy of supersymmetric N = 4

supersymmetric black holes in type II string theory was computed. This result followed from

the calculation of the elliptic genus of K3, derived from the partition functions for the fermionic

string. From the outset, this report presented the fundamental principles involved in string theory

and supersymmetric black holes. String theory was described and its application to black holes

was discussed, then applied practically.

At the conclusion of this report, the reader should have an understanding not only of black holes

and string theory, but of action principles, partition functions, oscillator modes, Jacobi theta func-

tions, degeneracy of black hole microstates and many other mathematical concepts. The knowledge

and experience I have gained from writing this report cannot be understated. My favourite part

of this project was the study of black hole mechanics and its relation to thermodynamics. In the

future, I would like to complete a comprehensive study of black holes thermodynamics in general

relativity and gain understanding of how these laws can constrain the physics, even beyond general

relativity.
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