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1 Abstract

This report investigates the classical limit of a quantum mechanical model of the
dynamics of a system of D0-branes. The energy dependence of the Lyapunov
exponent was found to be λL(E) = (0.100 ± 0.0077)E0.24±0.011 for the system
of four D0-branes, and λL(E) = (0.080± 0.0025)E0.220±0.0059 for the system of
seven D0-branes. To study what properties of a black hole this model retains
in the classical limit, it was verified that the system is a fast scrambler using a
classical analogue of the scrambling time t∗ by showing that t∗ scales as the log
of the degrees of freedom, t∗ ∼ ln(N2).
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3 Introduction and Theory

3.1 Chaos theory

This report deals with chaos theory in the framework of classical mechanics,
which is a completely deterministic model of the dynamic evolution of systems.
If all aspects of the system are completely known then the outcome, no matter
how far in the future, is guaranteed if the system obeys classical mechanics.
However in real world situations all properties of the system can never be com-
pletely accurately measured. Because of this, the rate at which two initially
similar states of a system diverge as they evolve in time is an important property
to study. A chaotic system experiences exponential divergence of its properties
with time.

In a dynamical system that obeys ergodic theory, the system’s average be-
havior over long periods of time equals its phase average [2]. If such a system
is allowed to evolve for a long enough period of time from any arbitrary ini-
tial state, thermodynamic properties of the system can then be computed. The
initial system under investigation here will therefore be thermalised for one thou-
sand seconds before simulation measurements and observations will be made.

A black hole has temperature as can be derived from its Hawking radiation.
It has also been conjectured that black holes are maximally chaotic systems in
the sense that they are the fastest scramblers in nature [5]. Under string theory
a set of D0-branes may be used to model a black hole. It is therefore of interest
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to study if a system of D0-branes in the classical limit exhibits chaotic nature
as well.

3.2 Lagrangian formalism

The endpoints of open strings are subject to either Dirichlet or Neumann bound-
ary conditions in the nine spatial dimensions of sting theory. If an endpoint is
subject Dirichlet boundary conditions in some dimension its position remains
constant in that dimension while Neumann boundary conditions mean it is free
to move along a hyperplane spanning those dimensions. These hyperplanes
are called D-branes. D0-branes are point-like objects which do not allow the
endpoints of any string attached to them to move as the endpoint obeys Dirich-
let boundary conditions in all spatial dimensions. The D0-Branes themselves
can move in space however and the chaotic nature of their dynamics is under
investigation here.

In a system of N D0-branes close together, many types of open strings can
be constructed, a string can have both endpoints on one D0-brane, or it can go
from one D0-brane to any other. To quantify the possible string configurations,
N × N matrices are required for each spatial dimension to capture the positions
of the D0-branes along with the coupling of D0-branes together.

The Lagrangian of N D0-Branes under investigation given by Shenker et. al.
[4] is the following:

L =
1

2g2
Tr(

∑
i

[DtX
i]2) +

1

4g2
Tr(

∑
j ̸=i

[Xi, Xj ]2) + .... (1)

Xi = N × N Hermitian traceless matrix, i = 1,...,9.

The other terms in the Lagrangian not explicitly written down here involve
fermions and go to zero in the classical approximation which is taken in this
report. g quantifies the coupling of the system and allows the coupling strength
to be increased or decreased. In order to reach the classical approximation, a
weak coupling/high temperature limit must be reached. This is because any
quantum system in the high temperature limit is well approximated by its
classical dynamics. Therefore g will be scaled as g = 1/

√
N in the analysis.

DtX
i = ∂tX

i − [At, X
i] is the covariant derivative of Xi, with At being the

SU (N) gauge field we choose for the system. This is set to At = 0 for the
analysis done here so that [DtX

i]2 = [∂tX
i]2 = [Ẋi]2.

The Lagrangian equations of motion provide the dynamics of the system.

0 =
d

dt
(
∂L

∂Ẋi
)− ∂L

∂Xi
.

Ẍi(t) =
∑
j

[Xj , [Xi, Xj ]]. (2)
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The equation of motion for the generalised coordinate At can also be found and
leads to a constraint on the system known as the Gauss’ law constraint [4].

0 =
d

dt
(
∂L

∂Ȧt

)− ∂L

∂At
.

0 =
∑
i

[Xi, Ẋi]. (3)

Derivations of equations (2) and (3) are available in the appendix.
The system is closed so total energy is conserved throughout the simulations:

E =
1

2g2
Tr(

∑
i

[DtX
i]2)− 1

4g2
Tr(

∑
j ̸=i

[Xi, Xj ]2) + .... (4)

The equipartition theorem is used to find the temperature of the system [4]:

E =
3

4
fT. (5)

Where f is the number of degrees of freedom of the system. There are nine
N2 position matrices for this system so at first glance f = 9N2. However
these matrices are traceless which makes f = 9(N2 − 1) as you can find the
final diagonal element of each matrix from subtracting the sum of the other
diagonal elements. Gauss’ law allows one matrix to be found from the other
eight so f = 8(N2 − 1). Finally the total angular momentum of the system,

Tr(XiẊj−XjẊi), is conserved lowering the degrees of freedom by
∑8

n nmaking
the final value for f = 8(N2 − 1)− 36.

3.3 Perturbation

Once the system is thermalised, it must be perturbed while keeping the Gauss’
law constraint. This is done by adding an extra term into the potential of the
Lagrangian:

L =
1

2g2
Tr(

∑
i

[DtX
i]2) +

1

4g2
Tr(

∑
j ̸=i

[Xi, Xj ]2) +

2∑
k=1

kckTr(
∑
i

[Xi]2)

The coefficients ck are randomly chosen from the Gaussian distribution with
mean zero and standard deviation σ = 10−8 which allow the perturbations to
be both random and small. The equations of motion for this new Lagrangian
are:
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Ẍi =
∑
j

[Xj , [Xi, Xj ]] +

2∑
k=1

kck{Xi, (
∑
j

X2
j )

k−1}.

Here,{...} is the anti-commutator.
For k = 1; (

∑
j X

2
j )

k−1 = (
∑

j X
2
j )

0 = Identity matrix. The identity matrix
in an anti-commutator works as follows:

{A, I} = AI + IA = 2A.

Therefore the perturbation equation of motion is simplified to the following:

Ẍi =
∑
j

[Xj , [Xi, Xj ]] + 2c1X
i + 2c2{Xi, (

∑
j

X2
j )}. (6)

3.4 Chaotic divergence

As discussed in section 3.1, a system is chaotic if the divergence of two initially
similar states of the system is exponential. Let the distance between two states
of the system with the same energy be defined as follows [4]:

|δX(t)| =
√∑

i

Tr(Xi
1(t)−Xi

2(t))
2. (7)

Xi
1 is the Xi position matrix of one state and Xi

2 the position matrix of the
other state. Then the chaotic behaviour of a system is defined by the following
equation:

|δX(t)| = |δX(0)|eλLt. (8)

The Lyapunov exponent, λL, must be positive for the system to be chaotic.

From equation (8), λL can be calculated as the slope of the graph of ln( |δX(t)|
|δX(0)| )

against time t.
As the system in question has its total energy conserved, the phase space

of all possible configurations of the system is bounded, which means that the
two states cannot diverge for infinite time. They will diverge at a constant
exponential rate defined by the Lyapunov exponent until such a time, t∗, where
the perturbation is of the same order as the system size [4]. This t∗ is the
classical analogue of the scrambling time. |δX(t)| for t > t∗ stays a constant
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and cannot be used when λL is being calculated. Figure 1 shows a log scale
graph of |δX(t)| against time, displaying the scrambling time and the maximum
distance the two states can be apart. Therefore, when calculating λL as the slope

of ln( |δX(t)|
|δX(0)| ) against t, only data points with t < t∗ may be used as the fact that

|δX(t)| converges to a maximum distance has nothing to do with the Lyapunov
exponent but on the constraints of the system.

Figure 1: Example graph of distance against time for four D0-branes. The
graph is linear and the y-axis is log-scaled, meaning that the distance has an
exponential dependence on time. Exponential growth continues until the per-
turbation is of the same order as the system size at t = t∗ (scrambling time).

3.5 Fast scrambler

It has been conjectured that the upper bound for the rate at which a quantum
system can scramble information is logarithmic in the degrees of freedom [7].
In quantum mechanics, to scramble information effectively means to alter an
original system so that any information it contained can only be recovered by
analysing at least half of the degrees of freedom. The time the system takes to
do this is called the scrambling time t∗. Under this definition black holes are the
fastest scramblers in nature [7]. It must be verified that the D0-brane system
in question here still retains its fast scrambling behaviour in the classical limit
and with the classical analogue of scrambling time which is the time it takes for
|δX(t)| to reach its maximum, t∗. In this system we have seen that the number
of degrees of freedom is f = 8(N2 − 1) − 36 which scales as N2. Therefore we
expect the following:
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t∗ ∼ ln(N2).

t∗ ∼ k

2
ln(N2) (9)

For some constant k.
t∗ is also the time it takes ln( |δX(t)|

|δX(0)| ) to reach its maximum and λL is the

slope of the linear graph of ln( |δX(t)|
|δX(0)| ) against t. Decreasing the slope of a linear

graph directly correlates with increasing the time it takes for the function to
reach its maximum value. Therefore t∗ is inversely dependent on λL. If the
way in which λL scales is independent of N then this inverse dependence can be
added to equation (9):

t∗ ∼ k

2λL
ln(N2)

λLt
∗ ∼ k

2
ln(N2)

The above scaling rule can be expressed in terms of |δX(t∗)| by using equa-
tion (8) and taking the exponential of both sides:

eλLt∗ ∼ Nk

|δX(t∗)| ∼ Nk

|δX(t∗)|
Nk

= constant (10)

In order to determine if the system of D0-branes is a fast scrambler, equation
(10) is tested in this report for multiple values of N. It must also be verified that
the λL is indeed independent of N in order for equation (10) to be valid.

4 Method

4.1 Simulating the dynamic evolution of D0-branes

Numerical algorithms are usually necessary in dynamical simulations as there
are most likely large amounts of objects being simulated. This makes analytical
solutions to their equations of motion impossible. The numerical integration
velocity Verlet algorithm is used to determine the values of X(t + ∆t) and
Ẋ(t+∆t) [3]. This gives insight into the time dependent dynamics of this system.
The dynamics of the simulated phase space will be obtained by numerically
solving Lagrange’s equations of motion.
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X(t+∆t) = X(t) + Ẋ(t)∆t+
1

2
Ẍ(t)∆t2. (11)

Ẋ(t+∆t) = Ẋ(t) +
1

2
(Ẍ(t) + Ẍ(t+∆t))∆t. (12)

Equations (11) and (12) are the numerical integration equations needed to
perform the velocity Verlet algorithm and allow us to calculate Xi and Ẋi from
only the information of the previous time step or our initial conditions. The
derivation of equations (11) and (12) is given in the appendix. Using these
equations and the equations of motion, the dynamics of the system can now be
numerically solved using the velocity Verlet algorithm:

• Set initial position (Xi(t)) and velocity (Ẋi(t)) matrices for the system.

• Use equation (2) to calculate the initial acceleration (Ẍi(t)) matrices.

• Use equation (11) to calculate Xi(t+∆t).

• Calculate Ẍi(t+∆t) using equation (2).

• Use equation (12) to calculate Ẋi(t+∆t).

• Define Xi(t+∆t), Ẋi(t+∆t), and Ẍi(t+∆t) as Xi(t), Ẋi(t), and Ẍi(t)
respectively.

• Repeat the previous four steps, increasing the time by ∆t each iteration.

∆t was set to 10−4 seconds for all simulations. The elements of the initial ve-
locity matrices were set to Ẋi

ij(0) = 0 for all i so that the total momentum
of the system would be set to zero and conserved throughout the simulation.
Xi(0) were random N × N Hermitian traceless matrices. The diagonal el-
ements of these matrices were real numbers as the matrices were Hermitian
and were created by sampling from a Gaussian distribution with mean of zero
and standard deviation σ, i.e. Xi

ii(0) ∼ N(0, σ). To make Xi(0) traceless,

Xi
NN (0) = −

∑N−1
i Xi

ii(0). Finally the off-diagonal complex elements had their
real and imaginary parts sampled from the same Gaussian distribution N(0, σ).
In order to change the total energy (E) of the system, σ was increased or de-
creased until Xi(0) gave an E within ±0.01 of the required value by equation
(4).

The initial system was thermalised for one thousand seconds so that a typical
state was reached using the velocity Verlet algorithm. This stopped any atypical
behaviour being recorded as a result of the arbitrary initial conditions used to
start the simulation. Starting from these thermalised coordinates, a perturbed
state was reached by swapping out equation (2) for equation (6) in the algorithm
and evolving the simulation for one second. Equation (2) was replaced back into
the algorithm and the original thermalised state was evolved for one second, thus
giving two initially very similar states. These are the states described by Xi

1(t)

8



and Xi
2(t) in equation (7). If the Lyapunov exponents for the N = 4 and N

= 7 cases are very similar for the same energy, then the Lyapunov exponent
can be said to be independent of N to leading order which is necessary for the
reasoning in section 3.5 to hold.

4.2 Lyapunov exponent

In order to check the chaotic nature of the system both Xi
1(t) and Xi

2(t) were
evolved for 100 seconds and all Xi were recorded every 0.1 seconds. For these
recorded values the distance between both states was calculated using equation
(7) so that the exponential increase of this distance may be verified. If the
scrambling time was found to be ninety seconds or above then the simulation
was instead run for one hundred and fifty seconds so that the maximum distance
was certainly reached.

In order to analyse the energy dependence on the Lyapunov exponent, six
simulations were run for the N = 4 case with E = 63, 157.5, 315, 630, 1260, and
1890 respectively. Another four simulations were run for the N = 7 case with E
= 26.1, 130.5, 195.75, and 522 respectively.

4.3 Fast scrambler

In order to test if the system is a fast scrambler, three simulations for N = 8, 12,
and 16 were performed. The initial perturbations |δX(0)| were made constant
for these three simulations and the systems all had the same temperature T =
1 so that the difference in scrambling time was entirely because of the change in
N. These simulations were also used to compare the methodology used in this
report to other literature values of the Lyapunov exponent in this system.

5 Results

5.1 Lyapunov exponent

This report has found good agreement of the value of the Lyapunov exponent
with other work on the same system. For example the following equation for
the Lyapunov exponents from similar simulation runs has been found:

λL = (0.29252− 0.424

N2
)(g2NT )

1
4 . (Shenker et. al. [4])

Comparing simulation runs with T = 1 and g2N = 1 to results from this
equation give the following results.

Case Equation Experiment

N = 8 λL = 0.2853 λL = 0.2865

N = 12 λL = 0.2891 λL = 0.2893

N = 16 λL = 0.2903 λL = 0.2884

9



For each simulation, the graph of |δX(t)| was plotted against time t in order
to find the scrambling time for the system. Such a graph for the N = 4 case
with various energies is presented in figure 2. This graph displays that the
maximum distance |δX(t∗)| was very similar for all simulations, ranging from
4 to 9 overall, meaning that |δX(t∗)| has at most a small dependence on the
energy of the system. It is also clear that the initial distances are not the same
for each experimental run as the data sets do not line up at t = 0. This is
because the perturbations were random as discussed in section 3.3 so |δX(0)|
was random too. This is not important however as the slopes of these graphs
are not affected by |δX(0)|.

Figure 2: Graph of |δX(t)| against time for multiple total energies of four D0-
branes. Exponential growth continues until the perturbation is of the same
order as the system size. |δX(t∗)| is roughly the same for all simulations.

The relationship between λL and energy is more readily seen once the data

sets are rescaled to start at zero by plotting ln( |δX(t)|
|δX(0)| ) against time in figure 3.

The Lyapunov exponent equals the slope of each data set before t∗ is reached.
It is clear from figure 3 that the higher the energy of the system, the steeper
the slope and the greater the Lyapunov exponent.
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Figure 3: Graph of ln( |δX(t)|
|δX(0)| ) against time for multiple total energies of four

D0-branes. The slope of the data set equals the Lyapunov exponent for that
simulation. Exponential growth continues until the perturbation is of the same
order as the system size. The increase in the slope of each data set correlates
with the increase in energy of the system.

It was found that the Lyapunov exponent does depend on the total energy
of the system E. Figure 4 displays this relation for the N = 4 case.

Figure 4: Graph of the Lyapunov exponent against total energy of the system
for the N = 4 case. λL(E) ∝ E0.24.

Similar analysis was done for the system of seven D0-branes, leading to figure
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5 which displays the same kind of dependence of λL on E.

Figure 5: Graph of the Lyapunov exponent against total energy of the system
for the N = 7 case. λL(E) ∝ E0.220.

The curves of best fit for figures 4 and 5 are as follows:

λL(E) = (0.100± 0.0077)E0.24±0.011 (13)

λL(E) = (0.080± 0.0025)E0.220±0.0059 (14)

for the N = 4 and N = 7 case respectively. These equations show that λL scales
as E0.24 for these simulation runs.

5.2 Fast scrambler

Equation (10) sets out the relationship that is expected of a fast scrambling

system. It is expected that the graph of |δX(t)|
Nk against time for some particular

value of k should reach the same maximum value for all N. In order to test
this, three simulations were performed for N = 8, 12, and 16. Empirically it

was found that for this system of D0-branes, k = 1
2 . The graph of |δX(t)|√

N
for

the three simulations is displayed in figure 6. All three data sets have the same

maximum distance |δX(t∗)|√
N

= constant which is the relationship predicted by

equation (10).
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Figure 6: Graph of |δX(t)|√
N

against t for N = 8, 12, and 16. .

By the reasoning in section 3.5 this result shows that the scrambling time
does indeed scale as ln(N2) or as the logarithm of the degrees of freedom of the
system. This shows that the system of D0-branes still retains the fast scrambling
property of a black hole in the classical limit.

5.3 Error analysis

The errors presented for equations (13) and (14) are an underestimate as they
only represent the error in the linear least squares curves of best fit assuming
the data points are completely accurate which is not true. They do not take
into account the statistical inaccuracies brought into the simulations due to
numerical integration techniques.

Errors are always present in simulations by the fact that we numerically
integrate the equations of motion. The velocity Verlet equations are derived
by truncating the Taylor expansion of X(t) and this truncation means that the
values we get from using this algorithm will never be completely accurate. In
the derivation of the velocity Verlet equations in the appendix, adding equations
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(22) and (23) cancels out the third order terms in the Taylor expansions, mean-
ing we only need to truncate the expansions at the fourth order. This makes
the local error of the velocity Verlet equations O(∆t4). The global error from
the velocity Verlet equations is however O(∆t2) as the error from one iteration
accumulates with the error from the next. Therefore in practice, this is a second
order integrator. Using a small time step of ∆t = 10−4 throughout simulations
reduces the size of this error. Decreasing the step size more would reduce this
error but was deemed too computationally intensive for this project.

A method of analysing error introduced by the numerical integration is to
check the conservation of energy throughout a simulation run. This was done
by calculating the total energy of the system from equation (4) every second. A
graph of total energy against time is displayed in figure 7, where it is seen that
over one hundred seconds the system’s energy was conserved to seven signifi-
cant figures. There are no trends in the graph which shows that although the
numerical errors were accumulating over time as in all numerical simulations,
they did not get large enough over the course of the simulation to skew the total
energy. This suggests that the errors were small and the step size chosen was
adequate.

Figure 7: Graph of total system energy over time for a simulation with tem-
perature T = 7.5 and N = 4. The total energy is conserved to seven significant
figures throughout the one hundred second simulation, and there are no trends
in the graph.
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6 Discussion

The close agreement of Lyapunov exponents obtained here to those produced
elsewhere [4] provides a good level of confidence in the methodology employed.
This gives more weight to the other results presented here. Equations (13) and
(14) display that λL scales as E0.24±0.011 for N = 4 and E0.220±0.0059 for N =
7. The two exponents are not within error of each other, however the errors
presented are underestimates as explained in section 5.3. Therefore the way in
which λL scales with E does not depend on N to leading order. This is necessary
for equation (10) to be valid as explained in section 3.5. The energy dependence
of λL in this system also obeys a conjecture that the energy dependence of the
Lyapunov exponent in any chaotic system is at most linear in the high energy
limit [6]. In other words, the conjecture is that λL(E) ∝ Ec(E → ∞) , c ≤ 1
which holds for this system. Figures 4 and 5 exemplify this relationship as the
curve of best fit increases slower than a linear relationship would.

From section 3.5 and figure 6, the system is now known to be a fast scrambler.
This shows that the system of D0-branes analysed here still retains this property
of a black hole even in the classical limit. There are string theoretic models of
black holes using D2- and D6-branes, further research is required to analyse
if these models also have chaotic nature and have Lyapunov exponents with
particular energy dependences.

7 Summary

The system of N D0-branes who’s dynamics are governed by equation (1) is
found to be a chaotic system as the divergence of similar initial states grows
exponentially. The energy dependence of the Lyapunov exponent was found to
be

λL(E) = (0.100± 0.0077)E0.24±0.011

λL(E) = (0.080± 0.0025)E0.220±0.0059

for the case of N = 4 and N = 7 respectively. Further research is required to
analyse the energy dependence of the Lyapunov exponent for other values of N.

Figure 6 displays that the classical analogue of scrambling time, t∗ has been
found to scale as the logarithm of the degrees of freedom of the system. This
shows that the system of D0-branes modelled here is a fast scrambler.

8 Appendix

8.1 Derivation of equations of motion

The Lagrangian equations of motion are calculated as follows:
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0 =
d

dt
(
∂L

∂Ẋk
)− ∂L

∂Xk
.

d

dt
(
∂L

∂Ẋk
) =

d

dt
(
∂ 1

2g2Tr(
∑

i[DtX
i]2)

∂Ẋk
).

=
1

2g2
d

dt
(
∂Tr(

∑
i[Ẋ

i]2)

∂Ẋk
).

=
1

2g2
d

dt
(2ẊkT )

=
1

g2
(ẌkT ). (15)

Next calculate the derivative of the Lagrangian with respect to Xk:

∂L

∂Xk
=

∂

∂Xk
(
1

4g2
Tr(

∑
j ̸=i

[Xi, Xj ]2)).

=
1

4g2
∂

∂Xk
(Tr(

∑
i

[Xi, Xk]2 +
∑
j

[Xk, Xj ]2)).

=
1

2g2
∂

∂Xk
(Tr(

∑
i

[Xi, Xk]2)).

=
1

2g2
∂

∂Xk
(
∑
i

Tr([XiXk −XkXi][XiXk −XkXi])).

=
1

2g2
∂

∂Xk
(
∑
i

Tr(Xk[XiXk −XkXi]Xi)− Tr(XkXi[XiXk −XkXi])).

=
1

2g2
∂

∂Xk
(
∑
i

Tr(2XkXiXkXi − 2XkXkXiXi)).

=
1

2g2
∂

∂Xk
(
∑
i

2Tr(XkXiXkXi −XkXkXiXi)).

=
1

g2

∑
i

(2(XiXkXi)T − (XkXiXi)T − (XiXiXk)).

=
1

g2

∑
i

([Xi, Xk]Xi −Xi[Xi, Xi])T .

=
1

g2

∑
i

[[Xi, Xk], Xi]T .

= − 1

g2

∑
i

[Xi, [Xi, Xk]]T .

=
1

g2

∑
i

[Xi, [Xk, Xi]]T . (16)
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Substitute equations (15) and (16) into the equations of motion, take the
transpose of both sides, and then swap the dummy variables k for i and i for j:

0 =
1

g2
ẌkT − 1

g2

∑
i

[Xi, [Xk, Xi]]T .

0 = ẌkT −
∑
i

[Xi, [Xk, Xi]]T .

ẌkT =
∑
i

[Xi, [Xk, Xi]]T .

Ẍi =
∑
j

[Xj , [Xi, Xj ]].

(17)

8.2 Derivation of Gauss’ Law

The equation of motion for the generalised coordinate At can be found and leads
to the Gauss’ law constraint. There is no dependence on Ȧt so the first term in
the equation of motion is zero.

0 =
d

dt
(
∂L

∂Ȧt

)− ∂L

∂At
.

0 = − ∂L

∂At
.

0 = − 1

2g2
∂Tr(

∑
i[DtX

i]2)

∂At
.

0 = − 1

2g2
∂Tr(

∑
i(Ẋ

i − [At, X
i])2)

∂At
. (18)

Tr(
∑
i

(Ẋi − [At, X
i])2) =Tr(

∑
i

Ẋi2)− Tr(
∑
i

AtX
iAtX

i)

+ Tr(
∑
i

XiAtX
iAt)− Tr(

∑
i

ẊiAtX
i)

− Tr(
∑
i

AtX
iẊi) + Tr(

∑
i

ẊiXiAt)

+ Tr(
∑
i

XiAtẊ
i)− Tr(

∑
i

AtX
iXiAt)

− Tr(
∑
i

XiAtAtX
i). (19)
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Since Tr(ABC) = Tr(CAB) = Tr(BCA), many terms cancel and add together
in the above equation and the commutator of Xi and Ẋi appears:

(19) =Tr(
∑
i

Ẋi2)− 2Tr(
∑
i

ẊiAtX
i) + 2Tr(

∑
i

ẊiXiAt)− 2Tr(
∑
i

AtX
iXiAt).

(19) =Tr(
∑
i

Ẋi2)− 2Tr(At

∑
i

XiẊi) + 2Tr(At

∑
i

ẊiXi)− 2Tr(A2
t

∑
i

Xi2).

(19) =Tr(
∑
i

Ẋi2)− 2Tr(At

∑
i

[Xi, Ẋi])− 2Tr(A2
t

∑
i

Xi2). (20)

Plug equation (20) into equation (18) and solve the derivatives:

0 = − 1

2g2
∂

∂At
(Tr(

∑
i

Ẋi2)− 2Tr(At

∑
i

[Xi, Ẋi])− 2Tr(A2
t

∑
i

Xi2)).

0 =
1

g2
∂

∂At
(Tr(At

∑
i

[Xi, Ẋi]) + Tr(A2
t

∑
i

Xi2)).

0 =
1

g2
((
∑
i

[Xi, Ẋi])T + (At

∑
i

Xi2 +
∑
i

Xi2At)).

(21)

Let At = 0 and Gauss’ law is found.

0 =
1

g2
(
∑
i

[Xi, Ẋi])T .

0 = (
∑
i

[Xi, Ẋi])T .

0 =
∑
i

[Xi, Ẋi].

8.3 Derivation of velocity Verlet algorithm

To derive the velocity Verlet algorithm, the position X is Taylor expanded about
the time point t [3]:

X(t+∆t) = X(t) + Ẋ(t)∆t+
1

2
Ẍ(t)∆t2 +

1

6

dẌ(t)

dt
∆t3 +O(∆t4). (22)

X(t−∆t) = X(t)− Ẋ(t)∆t+
1

2
Ẍ(t)∆t2 − 1

6

dẌ(t)

dt
∆t3 +O(∆t4). (23)

18



Equation (22) and (23) are added together and the first and third order
terms cancel:

X(t+∆t) +X(t−∆t) = 2X(t) + Ẍ(t)∆t2 +O(∆t4).

X(t+∆t) = 2X(t)−X(t−∆t) + Ẍ(t)∆t2 +O(∆t4). (24)

Equation (24) is the Verlet algorithm and can be used to calculate the new
position from old variables. However it requires knowing the position X(t−∆t)
which is not possible at the start of the simulation. To improve on this, the
velocity Verlet algorithm [3] will be used in this report. The velocity Verlet
algorithm is derived by subtracting equation (23) from (22), and solving for
X(t−∆t):

X(t+∆t)−X(t−∆t) = 2Ẋ(t)∆t+O(∆t3). (25)

X(t−∆t) = X(t+∆t)− 2Ẋ(t)∆t. (26)

Substitute equation (26) into the Verlet algorithm, equation (24), and solve
for X(t+∆t):

X(t+∆t) = 2X(t)− [X(t+∆t)− 2Ẋ(t)∆t] + Ẍ(t)∆t2.

X(t+∆t) = X(t) + Ẋ(t)∆t+
1

2
Ẍ(t)∆t2. (27)

We then solve equation (25) for Ẋ(t), and substitute equation (24) into it:

Ẋ(t) =
X(t+∆t)−X(t−∆t)

2∆t
.

Ẋ(t) =
[2X(t)−X(t−∆t) + Ẍ(t)∆t2]−X(t−∆t)

2∆t
.

Ẋ(t) =
X(t)−X(t−∆t)

∆t
+

1

2
Ẍ(t)∆t. (28)

Finally increase the time of equation (28) by ∆t and substitute equation
(27) into it:

Ẋ(t+∆t) =
X(t+∆t)−X(t)

∆t
+

1

2
Ẍ(t+∆t)∆t.

Ẋ(t+∆t) =
[X(t) + Ẋ(t)∆t+ 1

2Ẍ(t)∆t2]−X(t)

∆t
+

1

2
Ẍ(t+∆t)∆t.

Ẋ(t+∆t) = Ẋ(t) +
1

2
(Ẍ(t) + Ẍ(t+∆t))∆t. (29)

Equations (27) and (29) make up the velocity Verlet algorithm.
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