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Beyond Dirac Fermions Tomás Lannon

Abstract

The dynamics of all but one (neutrino) of the fermions in the standard model
are described by the Dirac equation. Other equations proposed by Majorana and
Weyl extend the reach of the Dirac equation to describe particles, albeit yet to be
observed, that may exist as emergent properties of condensed matter systems. In
this investigation, we construct the Hamiltonian describing Dirac-like fermions in 3 +
1 dimensions, whose wavefunctions satisfy SO(3) symmetry, rather than the SO(4)
symmetry of Dirac. We determine these Hamiltonians for n-component spinors with
5 ≤ n ≤ 8, and write down the matrix form of the spin projection operators for the spin-
j representation of SO(3). The Hamiltonians developed yield the same eigenvalue shape
as those of Dirac, that is, ±

√
p21 + p22 + p23 +m2

1, however, we also obtain eigenvalues
corresponding to a second, independent mass; ±

√
p21 + p22 + p23 +m2

2. For odd n, we
account for the odd number of eigenvalues by demanding a zero eigenvalue, resulting
in the theory not obeying Lorentz invariance. In one case (n = 8), we obtained a
Hamiltonian that produced this form of eigenvalue for three independent masses.
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1 Introduction

In the introductory section, we give a brief overview of Dirac’s theory for describing spin-half
particles including a discussion on the components of the Dirac Hamiltonian and Lagrangian,
as well as the eigenvalues of the Hamiltonian. Some elements of the second quantisation of
the Dirac field are discussed that solve some of the teething problems of Dirac’s theory. Then,
in Section 2, we give a description of the problem investigated in this report. We discuss
the methods used to solve this problem in Section 3, and present our results in Section 4.
Finally, a discussion on the consequences of our findings and a summary and conclusion will
be provided in Sections 5 and 6 respectively.

Dirac’s theory describing spin-1/2 fermions proved very successful, predicting the exist-
ence of the positron, discovered experimentally by Carl Anderson in 1932, and contributing
to Dirac’s Nobel prize the following year. Dirac’s theory of fermions is capable of describing
every fermion present in the standard model (with the exception of the nuetrino), and hence
is an essential tool for the development and investigation of fundamental particle physics.
Not only this, quasiparticles have been observed in low energy condensed matter systems,
such as graphene, that obey fermionic statistics, thus qualifying as Dirac fermions.

The goal of this investigation was to go beyond the Dirac picture and build models for
unconventional Dirac-like fermions. Some extended models already exist à la Majorana, who
constructed a theory describing fermions with real wavefunctions meaning that they are their
own antiparticle, and Weyl, whose theory describes massless fermions. Although no known
fundamental particles are confirmed to obey either of these models, there is much optimism
that they will be discovered in condensed matter systems as emergent quasiparticles. If suc-
cessful, Majorana fermions are a serious contender for building qubits in topological quantum
computing. Because of their topological nature, they are not sensitive to local perturbations
causing decoherence and hence may solve the problem of quantum error correction at the
hardware level – an exciting possibility!

1.1 Dirac Theory

The Dirac equation in 3 + 1 dimensions is,(
iγµ∂µ −

mc

ℏ

)
ψ = 0,

where the solutions ψ are spinors on 4 dimensions (as a result of working in spacetime)
describing the wavefunction of an electron, and transform according to the SO(4) group.
Since the spinors are vectors in R4, the resulting γµ matrices are 4×4. Under this formalism,
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these “gamma” matrices (of which there are four) are defined by,

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,

γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 , γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 ,

in the so-called Dirac basis. They satisfy the anti-commutation relation,

{γµ, γν} = 2ηµνI4,

and generate the Clifford algebra. The Hamiltonian density for a Dirac fermion with mass
m can be defined in terms of the gamma matrices as,

H = γipi + γ0m, (i = 1, 2, 3) , (1.1.1)

with Lagrangian density,

L = −cℏψ̄γµ∂µψ −mc2ψ̄ψ. (1.1.2)

Here ∂µ represents the 4-dimensional derivative and ψ̄ is the adjoint field to ψ. The spinors
transform as:

ψ′ = S(Λ)ψ,

where S(Λ) is a representation of the Lorentz group. To ensure the Dirac equation remains
covariant, we must enforce the following relation:

S(Λ)γµS−1(Λ) =
(
Λ−1

)µ
ν
γν . (1.1.3)

Defining the adjoint field as ψ̄ = ψ†γ0, its Lorentz transformation follows as ψ̄′ = ψ̄S−1(Λ).
From these definitions, the quantity ψ̄ψ is a scalar invariant under the Lorentz group;

ψ̄′ψ′ = ψ†Λµ
ν
−1γ0Λµ

νψ = ψ†γ0Λµ
ν
−1Λµ

νψ = ψ†γ0ψ = ψ̄ψ, (1.1.4)

and using the relation given by Equation 1.1.3,

ψ̄′γµψ′ = ψ̄S−1(Λ)γµS(Λ)ψ = ψ̄Λµ
νγ

νψ = ψ̄γµψ. (1.1.5)
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Since the final expressions in Equations 1.1.5 and 1.1.4 are exactly those (bar constants)
that appear in the Lagrangian in Equation 1.1.2, L is also invariant under a Lorentz trans-
formation.

When diagonalised, the Hamiltonian given by Equation (1.1.1) yields the eigenvalues,

E = ±
√
p21 + p22 + p23 +m2,

each with degeneracy 2. This is the standard expression for the energy of a relativistic
particle. Despite Dirac’s best efforts to remove the negative energy solutions of the re-
lativistic, spinless Klein-Gordon equation by linearising its Hamiltonian, they re-emerge
unharmed. This may have been OK for a quantum theory (the Dirac sea interpretation),
but upon taking the non-relativistic limit of the solutions to the Dirac equation, the negat-
ive energy solutions remained – negative energy of a free particle is not allowed in Classical
physics! In the Klein-Gordon model, the negative energy solutions could be ignored be-
cause the positive energy solutions formed a complete basis for all solutions – this is not
the case in Dirac. It wasn’t until 1949, when the Foldy-Wouthuysen transformation (FW)
was developed, that we could separate the negative and positive solutions, and upon taking
the non-relativistic limit, have the negative energies tend to zero. This FW transformation
consisted of a unitary transformation of the Dirac spinors such that one pair of components
(U (1) and U (2)) corresponded to the positive energy eigenvalues, and the other pair (U (3) and
U (4)) corresponded to the negative eigenvalues;

UFW =


U (1)

U (2)

U (3)

U (4)


Interpretation of the negative energy solutions outside the classical limit is still an issue
however, whose genius solution we shall discuss now. Upon second quantisation of the Dirac
field, ψ (r, t), it could be decomposed into a Fourier series given by:

ψ (r, t) =
1√
V

2∑
i=1

∫
d3p

√
mc2

Ep

[
a(i)p (t)U (i) (p) e

i
ℏp·r + b(i)p (t)†V (i) (p) e

i
ℏp·r

]
,

where the summation is over possible spins (up and down) and the integration is taken over
all momenta of the electrons. There is a lot to unpack from this equation; the factor 1/

√
V

is a normalisation constant over a quantisation volume V , Ep is the energy associated with
momentum state p, U (i) (p) and V (i) (p) are the ith components of the FW transformed
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spinors1 and the exponential terms are the space components of the plane wave solutions to
the Dirac equation. However, the most important parts are the factors a

(i)
p (t) and b

(i)
p (t)†,

which are the Fourier amplitudes that have been promoted to the role of operators. Upon
selection of an appropriate charge operator, Q, we find that the total charge in the volume
V is,

Q(t) = qe

2∑
i=1

∫
d3p

[
a(i)p (t)†a(i)p (t)︸ ︷︷ ︸

Ne

− b(i)p (t)†b(i)p (t)︸ ︷︷ ︸
Np

+1
]
, (1.1.6)

where Ne and Np are number operators. Notice that the Np is preceded by a negative
sign, meaning the b operators increase the total charge (since qe is negative), while the a
operators decrease the total charge. This means the b operators represent a particle with
the same mass as the electron, opposite charge, and positive energy – these are positrons.
This interpretation of the negative energy solutions as particles with opposite charge and
positive energy, resolves the negative energy problem. Notice that there is an infinite zero
point charge given by 1 under the integral in equation (1.1.6). This can be removed by
choosing a different, but equivalent, definition for the charge operator.

Another teething problem of Dirac’s theory, was the Hamiltonian postulated in Equation
(1.1.1) did not conserve the angular momentum of the particle it described. Consider the
time evolution of the component L1 of the angular momentum:

∂L1

∂t
∝ [H,L1] =

[
γipi + γ0m, r2p3 − r3p2

]
,

where we’ve used L = r × p. We use the fact that γ0m is a constant and the canonical
commutator [ri, pj] = iℏδij to obtain,

[H,L1] = −i
(
γ2p3 − γ3p2

)
̸= 0.

This issue was resolved by introducing a new angular momentum operator S = ℏ
2
Σ, where

the matrix Σ is:

Σi =

(
σi 02
02 σi

)
and the σi are the Pauli matrices. Letting the total angluar momentum be J = L + S, we
obtain,

∂J1
∂t

∝ [H, J1] = · · · = 0,

1Strictly speaking, U (i)(p) are the FW tansformed spinors and: V (1) (p) := −U (4) (−p) and V (2) (p) :=
U (3) (−p)
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and the total angular momentum J is conserved. This required additional angular mo-
mentum component S was coined spin.

2 The Model

This project moves away from the Dirac picture and considers the Hamiltonian of the form,

H = ψ̄Hψ,
where ψ is an n-component spinor and n a positive integer. The form of the Hamiltonian
density should be similar to that of the Dirac theory, i.e. linear in the mass and momentum
terms;

H = βipi + β4m1 + β5m2, (i = 1, 2, 3), (2.0.1)

where m1 and m2 are two independent masses and the pi are the usual components of
momentum. The βν terms in Equation (2.0.1) are n× n matrices, analogous to the γµ from
Dirac’s theory, except they won’t satisfy a Clifford algebra due to the inclusion of the fifth
matrix. Upon diagonalisation, we should expect the eigenvalues of the Hamiltonian to agree
with the relativistic energy-momentum relation to obtain,

E
(j)
1 = ±

√
p21 + p22 + p23 +m2

1, E
(k)
2 = ±

√
p21 + p22 + p23 +m2

2, E
(l)
3 = 0, (2.0.2)

with appropriate degeneracy2 (j, k, l) depending on the dimension of the Hamiltonian. It
goes without saying of course that another constraint on the Hamiltonian is that its spec-
trum must be real, so as to describe an observable. We include the possibility of a zero
eigenvalue because we will be working with Hamiltonian matrices of odd dimension. Each
“square root” eigenvalue comes in pairs, so to allow for the possibility of having an odd
number of eigenvalues, we include zero. The consequence of this is that the model will not
be relativistically invariant, which is not necessarily an issue if we imagine to find these
quasiparticle excitations in low-energy condensed matter systems.

The goal for this project was to identify the matrices βν for 5 ≤ n ≤ 8 that resulted in the
eigenvalues stated in Equation (2.0.2). We no longer consider the spinors as four dimensional
vectors in R3+1, but rather elements of R3. We can make this change because we only expect
to find these (quasi-)particles in low energy condensed matter systems, and thus they need
not obey Lorentz symmetry. We still demand the relativistic energy eigenvalues however
because this is what is obtained experimentally. The models investigated here then have
rotations described by the SO(3) group. The representation of this group will be different
for each value of n due to higher dimensional matrices describing particles of different spin,
and they will also be calculated in this investigation.

2The degeneracy given is the degeneracy of each the positive and negative versions of each eigenvalue.
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3 Method

In the initial stages of the investigation, our attention was focused on examining the form
of the characteristic polynomial that a matrix with given eigenvalues should have. Since the
eigenvalues of a matrix H are the solutions to,

|H − λ1| = 0,

the characteristic equation must factorise to (for the n = 5 case),

λ
(
λ2 − p21 − p22 − p23 −m2

1

) (
λ2 − p21 − p22 − p23 −m2

2

)
= 0.

Upon expansion of this quintic expression to,

λ5 + λ3
(
−2p21 − 2p22 − 2p23 −m2

1 −m2
2

)
+ λ

(
p41 + p42 + p43 + 2p21p

2
2 + 2p21p

2
3 + 2p22p

2
3+

p21m
2
1 + p22m

2
1 + p23m

2
1 + p21m

2
2 + p22m

2
2 + p23m

2
2 +m2

1m
2
2

)
,

the idea was to analyse the coefficients of each power of λ and, by trial and error, deduce the
form of the matrix that would eliminate the even powers of λ. From this line of reasoning,
we were able to obtain a matrix that gave the correct coefficient of λ3, however the linear
term proved too taxing to guess by hand (even for the smallest 5×5 case) and this approach
was abandoned.

In the next stage of the project, we moved our focus to the fact that the matrices we wish
to obtain should not satisfy a Clifford algebra. We were aware of the Gell-Mann matrices,
λi, used in the study of the strong nuclear force and the quark model3, and knew that they
did not satisfy any Clifford algebra, so they seemed like a reasonable staring point. Taking
the Hamiltonian density to be of the form,

Hn=3 = λ1p1 + λ2p2 + λ6p3 + λ7m1,

we could generate the correct eigenvalue shape;

±
√
p21 + p22 + p23 +m2

1.

Now the question remained on how we could use an increase the dimension (n) of this
Hamiltonian density to include a second, independent, mass. The key word here is inde-
pendent. It occurred to us that we could use a mixture of combinations of the 3×3 Gell-Mann
Hamiltonian density and the 4 × 4 Dirac Hamiltonian density to create square matrices of

3The Gell-Mann matrices used in the investigation are given in Appendix A.
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dimension 6, 7 and 8. The particular way to combine these matrices was obvious; a tensor
product wouldn’t work as this operation creates cross terms and we want to avoid crossing
m1 and m2, rather we would use a direct sum. A direct sum would leave the rows and
columns of each matrix used independent from each other, thus allowing us to assign one
Hamiltonian density m1 and the other m2, leaving them independent in the eigenvalues.

An issue with this approach of taking direct sums, was that in very few cases can the
Hamiltonian of a system be split up so that terms involving one mass term are completely
separate from those involving the other. To get around this, we considered generating a
Hamiltonian that had eigenvalues akin to:√

p21 + p22 + p23 +m2
1,

√
p21 + p22 + p23 +m2

1 +m2
2.

While m1 and m2 both appear in the second expression, we can take m2
1 +m2

2 = M2, and
regard m2 as a parameter which can be used to “tune” the value of M , thus M acts as if it
were independent to m1.

To determine the spin-j representation of SO(3), the following method was employed
which we will describe for the n = 5 case. The spin-j representation will have dimension
2j + 1, so we must have:

2j + 1 = 5 =⇒ j = 2,

hence the 5 × 5 model describes a spin-2 particle. If we work in the z basis, the possible
values for the spin (and thus the eigenvalues of the z projection of the spin operator, Sz)
are,

mj = 2ℏ, ℏ, 0,−ℏ,−2ℏ,

and the diagonalised matrix form of Sz is,

Sz = ℏ


2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

 . (3.0.1)

For the remaining projection operators Sx and Sy, we exploit the ladder operators which are
defined by,

S+ = Sx + iSy, S− = Sx − iSy. (3.0.2)
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Adding and subtracting Equations (3.0.2) gives:

Sx =
1

2
(S+ + S−) , Sy =

1

2i
(S+ − S−) . (3.0.3)

For some state |j,mj⟩, applying each ladder operator gives,

S± |j,mj⟩ = ℏ
√
j(j + 1)−mj (mj ± 1) |j,mj ± 1⟩ . (3.0.4)

To obtain the matrix form of Sx and Sy, we must first calculate the entries of the ladder
operators. Following our definition of Sz in Equation (3.0.1), the ladder operator matrices
are:

S± = ℏ

 ⟨2, 2|S± |2, 2⟩ . . . ⟨2, 2|S± |2,−2⟩
...

. . .
...

⟨2,−2|S± |2, 2⟩ . . . ⟨2,−2|S± |2,−2⟩

 .

Each of the bra-ket sandwiches were evaluated using the definitions in Equation (3.0.4), for
example we take,

⟨2, 1|S+ |2, 0⟩ = ⟨2, 1|
(
ℏ
√

2(2 + 1)− 0(0 + 1)
)
|2, 1⟩ =

√
6 ⟨2, 1|2, 1⟩ =

√
6,

where the last equality holds because |2, 1⟩ is normalised hence ⟨2, 1|2, 1⟩ = 1. For other
elements, we follow,

⟨2, 0|S− |2,−1⟩ = a ⟨2, 0|2,−2⟩ = 0,

where a is an irrelevant constant and the last equality holds because |2, 0⟩ and |2,−2⟩ are
orthogonal. This reasoning is used for each element of S± and we obtain:

S+ =


0 2 0 0 0

0 0
√
6 0 0

0 0 0
√
6 0

0 0 0 0 2
0 0 0 0 0

 , S− =


0 0 0 0 0
2 0 0 0 0

0
√
6 0 0 0

0 0
√
6 0 0

0 0 0 2 0

 .
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Finally, using Equations (3.0.3), we arrive at the spin-2 representation for SO(3):

Sx =
ℏ
2


0 2 0 0 0

2 0
√
6 0 0

0
√
6 0

√
6 0

0 0
√
6 0 2

0 0 0 2 0

 , Sy =
1

2i


0 2 0 0 0

−2 0
√
6 0 0

0 −
√
6 0

√
6 0

0 0 −
√
6 0 2

0 0 0 −2 0

 ,

Sz = ℏ


2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2


The same approach was used to obtain the spin-j representation of SO(3) for each invest-
igated value of n. All the generators, Si, for each spin-j representation should satisfy the
commutation relations,

[Sα, Sβ] = δαβSγ,

where α, β, γ = x, y, z.

4 Results

4.1 n = 8

We begin by presenting the results for the 8 × 8 Hamiltonian model. In this case, we were
able to obtain the desired results for three independent masses. The form of the Hamiltonian
density is:

Hn=8 = βipi +m1β4 +m2β5 +m3β6 +m4β7 +m5β8,

which in matrix form is,

Hn=8 =



0 p1 + im1 0 m2 + im3 0 0 0 ip2 − p3
p1 − im1 0 0 0 0 0 ip2 − p3 0

0 0 0 0 p1 + im2 ip2 − p3 0 0
m2 − im3 0 0 0 0 0 m4 + im5 0

0 0 p1 − im2 0 0 0 0 0
0 0 −ip2 − p3 0 0 0 0 0
0 −ip2 − p3 0 m4 − im5 0 0 0 −p1 + im1

−ip2 − p3 0 0 0 0 0 −p1 − im1 0


,
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which yielded the eigenvalues,

E
(1)
1 = ±

√
p21 + p22 + p23 +m2

1, E
(1)
2 = ±

√
p21 + p22 + p23 +m2

2, E
(2)
3 = 0,

E
(1)
4 = ±

√
p21 + p22 + p23 +m2

1 +m2
2 +m2

3 +m2
4 +m2

5.

We can use the parameters m3, m4, m5 to let,

m2
1 +m2

2 +m2
3 +m2

4 +m2
5 =M2, (4.1.1)

such that M acts independently from m1 and m2. Of course, we don’t require three para-
meters to achieve this, simply including only one, m3 would suffice. Below in Figure 1 shows
the energy spectrum plotted, with a view of each eigenvalue where m1 ̸= m2 ̸=M .

Figure 1: Side view of the 8 × 8 spectrum of the energy dispersion relations E(k) where
m1 ̸= m2 ̸=M . In the figure, kx and ky are the components p1 and p2 of the momentum.

To obtain the spin-j representation of SO(3) for the 8× 8 Hamiltonian, we must have,

2j + 1 = 8 =⇒ j =
7

2
.

Hence, this n = 8 model represents a spin-7/2 particle. Using the process highlighted in
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Section 3, the matrices describing the spin-7/2 representation of SO(3) were found to be,

Sx =
ℏ
2



0
√
7 0 0 0 0 0 0√

7 0 2
√
3 0 0 0 0 0

0 2
√
3 0

√
15 0 0 0 0

0 0
√
15 0 4 0 0 0

0 0 0 4 0
√
15 0 0

0 0 0 0
√
15 0 2

√
3 0

0 0 0 0 0 2
√
3 0

√
7

0 0 0 0 0 0
√
7 0


,

Sy =
ℏ
2i



0
√
7 0 0 0 0 0 0

−
√
7 0 2

√
3 0 0 0 0 0

0 −2
√
3 0

√
15 0 0 0 0

0 0 −
√
15 0 4 0 0 0

0 0 0 −4 0
√
15 0 0

0 0 0 0 −
√
15 0 2

√
3 0

0 0 0 0 0 −2
√
3 0

√
7

0 0 0 0 0 0 −
√
7 0


,

Sz =
ℏ
2



7 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −3 0 0
0 0 0 0 0 0 −5 0
0 0 0 0 0 0 0 −7


.

4.2 n = 7

For the 7× 7 case,we take the direct sum of the Dirac gamma matrices with the Gell-Mann
lambda matrices. This gave a possible set of beta matrices to be,

βi = γi ⊕ λi, β4 = γ0 ⊕ 03, β5 = 04 ⊕ λ0. (4.2.1)

Again the Hamiltonian density will have the form:

Hn=7 = βipi +m1β4 +m2β5,
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which, for the beta matrices defined in Equations (4.2.1), has eigenvalues,

E
(4)
1 = ±

√
p21 + p22 + p23 +m2

1, E
(2)
2 = ±

√
p21 + p22 + p23 +m2

2, E
(1)
3 = 0.

The corresponding Hamiltonian density in matrix form is:

Hn=7 =



m1 0 p3 p1 − ip2 0 0 0
0 m1 p1 + ip2 −p3 0 0 0

−p3 p1 − ip2 −m1 0 0 0 0
p1 + ip2 p3 0 −m1 0 0 0

0 0 0 0 0 p1 − ip2 0
0 0 0 0 p1 + ip2 0 p3 − im2

0 0 0 0 0 p3 + im2 0


The commutation relations satisfied by the 7 × 7 beta matrices given in Equation (4.2.1)
were found to be:

[βi, βi] = 0, [β4, β5] = 0,

[β1, β2] = −2i (σ3 ⊕ σ3)⊕−2iλ3, [β1, β3] = 2i (σ2 ⊕ σ2)⊕ iλ5, [β2, β3] = −2i (σ1 ⊕ σ1)⊕ iλ4,

[β1, β5] = −i (04 ⊕ λ4) , [β2, β5] = i (04 ⊕ λ5) , [β3, β5] = 2i (05 ⊕ σ2) ,

[βi, β4] = −2

(
02 σi
σi 02

)
⊕ 03,

where the final commutator is a block matrix and i = 1, 2, 3.
Using an alternative approach, we obtained a second possible Hamiltonian which gave

the desired eigenvalues after paramaterisation of additional mass terms. In matrix form, this
Hamiltonian density is,

Hn=7 =



0 p1 + im1 0 m2 + im3 0 0 ip2 − p3
px − im1 0 0 0 0 ip2 − p3 0

0 0 0 0 0 0 0
m2 − im3 0 0 0 0 m4 + im5 0

0 0 0 0 0 0 0
0 −ip2 − p3 0 m4 − im5 0 0 p1 + im1

−ip2 − p3 0 0 0 0 −p1 − im1 0


which gave the eigenvalues,

E
(1)
1 = ±

√
p21 + p22 + p23 +m2

1, E
(1)
2 = ±

√
p21 + p22 + p23 +M2, E

(3)
3 = 0.
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where we’ve let M2 = m2
1 +m2

2 +m2
3 +m2

4 +m2
5. Figure 2 below shows the energy spectrum

for each of the 7× 7 Hamiltonians developed.

Figure 2: Side of the 7× 7 real spectra of energy dispersion relations E(k). In the figure, kx
and ky are the components p1 and p2 of the momentum.

Again, to determine the spin representation of SO(3) for the n = 7 model, we must have,

2j + 1 = 7 =⇒ j = 3.

Hence the 7 × 7 Hamiltonian model describes a spin-3 particle. Using the procedure high-
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lighted in Section 3, the spin projection matrices were found to be,

Sx =
ℏ
2



0
√
6 0 0 0 0 0√

6 0
√
10 0 0 0 0

0
√
10 0 2

√
3 0 0 0

0 0 2
√
10 0 2

√
3 0 0

0 0 0 2
√
3 0

√
10 0

0 0 0 0
√
10 0

√
6

0 0 0 0 0
√
6 0


,

Sy =
ℏ
2i



0
√
6 0 0 0 0 0

−
√
6 0

√
10 0 0 0 0

0 −
√
10 0 2

√
3 0 0 0

0 0 −2
√
10 0 2

√
3 0 0

0 0 0 −2
√
3 0

√
10 0

0 0 0 0 −
√
10 0

√
6

0 0 0 0 0 −
√
6 0


,

Sz = ℏ



3 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −2 0
0 0 0 0 0 0 −3


.

4.3 n = 6

The Hamiltonian density in obtained for n = 6 had the form,

Hn=6 = βipi +m1β4 +m2β5 +m3β6 +m4β7 +m5β8,

and in matrix form is,
0 px + im1 m2 + im3 m4 + im5 0 ipy − pz

px − im1 0 0 0 ipy − pz 0
m2 − im3 0 0 0 0 0
m4 − im5 0 0 0 0 0

0 −ipy − pz 0 0 0 −px + im1

−ipy − pz 0 0 0 −px − im1 0

 ,
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which yielded the eigenvalues (after the same parameterisation in Equation (4.1.1)),

E
(1)
1 = ±

√
p21 + p22 + p23 +m2

1, E
(1)
2 = ±

√
p21 + p22 + p23 +M2, E

(2)
3 = 0.

The generators for the spin-j representation of SO(3) had dimension n = 6, giving the spin
for this model to be,

2j + 1 = 6 =⇒ j =
5

2
.

The matrix form of these generators, calculated using the method outlined in Section 3,
were,

Sx =
ℏ
2



0
√
5 0 0 0 0√

5 0 2
√
2 0 0 0

0 2
√
2 0 3 0 0

0 0 3 0 2
√
2 0

0 0 0 2
√
2 0

√
5

0 0 0 0
√
5 0


,

Sy =
ℏ
2i



0
√
5 0 0 0 0

−
√
5 0 2

√
2 0 0 0

0 −2
√
2 0 3 0 0

0 0 −3 0 2
√
2 0

0 0 0 −2
√
2 0

√
5

0 0 0 0 −
√
5 0


,

Sz =
ℏ
2


5 0 0 0 0 0
0 3 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −3 0
0 0 0 0 0 −5

 .
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4.4 n = 5

For the final case considered, we discovered a 5×5 Hamiltonian density that is non-Hermitian,
which gave the desired eigenvalues. It is,

Hn=5 =


0 px + im1 m2 0 ipy − pz

px − im1 0 0 ipy − pz 0
m2 0 0 m1 0
0 −ipy − pz −m1 0 −px + im1

−ipy − pz 0 0 −px − im1 0

 (4.4.1)

The non-Hermitian components are the m1 terms in positions (4, 3) and (3, 4). Despite this,
the spectrum of this Hamiltonian density is real and its elements are,

E1
1 = ±

√
p21 + p22 + p23 +m2

1, E1
2 = ±

√
p21 + p22 + p23 +m2

2, E1
3 = 0.

This real spectrum of a non-Hermitian operator is a consequence of the one-directional
implication of the real eigenvalues of a Hermitian operator;

H = H† =⇒ Spectrum of H is real,

meaning that there exists operators with a real spectrum that are not Hermitian. This is
the core of the field of study: pseudo-Hermitian quantum mechanics. The beta matrices for
this Hamiltonian density are,

β1 =


0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 −1
0 0 0 −1 0

 , β2 =


0 0 0 0 i
0 0 0 i 0
0 0 0 0 0
0 −i 0 0 0
−i 0 0 0 0

 , β3 =


0 0 0 0 −1
0 0 0 −1 0
0 0 0 0 0
0 −1 0 0 0
−1 0 0 0 0

 ,

β4 =


0 i 0 0 0
−i 0 0 0 0
0 0 0 1 0
0 0 −1 0 i
0 0 0 −i 0

 , β5 =


0 0 1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

The spin-2 representation of SO(3) matrices were calculated in Section 3.
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Figure 3: Side view of the 5 × 5 real spectra of energy dispersion relations E(k) where
m1 ̸=M . In the figure, kx and ky are the components p1 and p2 of the momentum.

5 Discussion

It is interesting to note that any Hamiltonian densities obtained in this investigation with at
least one zero eigenvalue are not consistent with special relativity. If in frame A, we measure
the energy of the system as 0, then,

EA = c
√

|p|2 +m2c2 = 0. (5.0.1)

There are only two possibilities for non-tachyonic4 fields;

1. The momentum and mass are both zero, or,

2. c = 0 in frame A.

Suppose now we perform a Lorentz transformation into a new frame A′, where the energy is
not zero, and measure the energy of the system again:

EA′ = c
√
|p′|2 +m2c2 ̸= 0 (5.0.2)

If we selected possibility 1 above, we would not have a system to describe since the momentum
and mass are both zero – this is just the trivial system. We are left with selecting possibility
2, which proves troublesome. According to the postulate of relativity, “the speed of light

4If the field were tachyonic, the square of the imaginary mass may cancel exactly with the momentum
term to give zero energy.
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is the same in every frame of reference”, c = 0 in frame A′ as well, resulting in EA′ = 0,
contradicting the non-equality in Equation (5.0.2). The models provided in this investigation
containing 0 as an eigenvalue then, cannot describe relativistic particles.

Further investigation in this topic could include looking into similar Hamiltonians, but
for which the particle’s momentum is restricted to, say, two dimensions (p3 = 0). Much
of the search for Majorana fermions is in the regime of 1 + 1-dimensional systems [1][2],
leading to a more diverse non-Abelian statistical nature – the source of its potential for
use in topological quantum computing. In three spatial dimensions, there are only two
available particle exachange statistics available; fermionic and bosonic. In the fermionic
case, swapping two particles results in each of their wavefunctions picking up a negative sign,
in the bosonic case, swapping two particles leaves their wavefunctions unchanged. In two
spatial dimensions, the order in which these swaps are performed matters, i.e. the operators
that perform the swap do not commute (non-Abelian). It could be found that restricting the
spatial dimensions of a system of several independent masses leads to a system with more
interesting particle exchange properties.

Another possible avenue for further investigation pertains to the non-Hermitian Hamilto-
nian found for the n = 5 case that yielded real eigenvalues. This fascinating branch of
quantum mechanics is called pseudo-Hermitian QM which replaces the Hermitian condi-
tion on the Hamiltonian with the condition that it must have exact parity and time (PT )
symmetry, i.e. for a wavefunction ψ(x), the operators P and T act as:

Pψ(x) := ψ(−x), T ψ(x) := ψ(x)∗.

This new condition means that the Hamiltonian will have a complete set of PT invariant
eigenvectors thus ensuring its spectrum is real [3].

6 Conclusion

We were able to construct Hamiltonian densities for each value of n stated, that yielded the
desired eigenvalues describing the energy of a particle consisting of two independent masses.
In addition, we successfully built a Hamiltonian density that described a particle containing
three independent masses for the n = 8 case. Furthermore, for each spin-j representation
of SO(3), we were able to construct the generators of this group and determine the spin of
the particle in question (j). This investigation prompted study in many directions including
group theory, condensed matter physics and quantum field theory, and has deepened my
understanding and curiosity for each of these fields.
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A Gell-Mann Matrices

Out of the set of 8 Gell-Mann matrices, the four that were used in this report are:

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 ,

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 .
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