
Modularity of Black Holes

and Ramanujan’s Tau Function

Rachel Ferguson, Jack Gilchrist,
Anito Marcarelli and Eliza Somerville

Supervisor: Dr. Aradhita Chattopadhyaya

Dublin Institute for Advanced Studies

31 July 2023



Outline

1. Introduction

2. Partition Functions in String Theory

3. Elliptic Genus of K3

4. Counting Black Hole Microstates

5. On the Ramanujan τ Function

Title slide: Contour plot of the modular form (2π)12η24(τ), plotted in Python using cplot [20].

Modularity of Black Holes and Ramanujan’s Tau Function 1 / 46



Background: Gravity

In 1687, Newton published his first theory of gravity, with his
universal gravitational law of attraction for two masses:

F =
GMm

r2
.

Although powerful, it failed to explain known phenomena.

In 1915, Albert Einstein published a new theory of gravity, general
relativity (GR), and introduced the concept of spacetime.

GR has been able to explain phenomena that Newton could not,
however there are still inconsistencies.

Newton’s
gravitational

constant

Force

Masses

Distance
between
masses
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Background: Quantum Physics

In 1900, Max Planck introduced the idea of packets of energy,
quanta, to explain blackbody radiation. This would become the
foundation to the theory of quantum mechanics (QM), the study of
subatomic particles.

One of the most important equations in QM is the Schrödinger
equation, which describes the position and momentum of a
wavefunction ψ:

i~
∂

∂t
ψ(r, t) = − ~2

2m
∇2ψ(r, t) + V (r)ψ(r, t).

This equation does not however account for relativistic effects, or
apply in scenarios with high energies.

Potential

Modularity of Black Holes and Ramanujan’s Tau Function Introduction 3 / 46



Background: Quantum Physics

In 1928, Paul Dirac derived a relativistic version of the Schrödinger
equation:

(i~γµ∂µ −mc)ψ = 0.

This equation is at the forefront of quantum field theory (QFT), and
accounts for the disparities of the Schrödinger equation. QFT better
explains subatomic interactions.

Examples of QFTs include quantum electrodynamics (QED),
quantum chromodynamics (QCD), and the standard model.

Question:

Can we construct a theory which combines both GR and QFT?
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What is String Theory?

A major aim of modern physics is to unify GR and QFT into a single
fundamental theory that fully describes all of the laws of nature.

One of the prime candidates for this unifying theory is string theory,
where point particles are replaced by one-dimensional strings.

Particles arise as oscillator modes of these strings.

Based on an image from Becker et al.1

1Katrin Becker, Melanie Becker, and John H. Schwarz. String Theory and M-Theory: A Modern
Introduction. Cambridge University Press, 2006.
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Supersymmetry

The string theories we will be working with require supersymmetry.

Supersymmetry is a symmetry which relates bosons to fermions.

Supersymmetry

(SUSY)
Bosons Fermions

BPS state: A state which preserves some subset of the full set
of supersymmetries of the theory.

We will consider 1/4 BPS states, which preserve one quarter of the
original supersymmetries.2

2Joseph Gerard Polchinski. String Theory, Volume I: An Introduction to the Bosonic String.
Cambridge University Press, 1998.
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What are Black Holes?

In 1916, Karl Schwarzschild found a spherically symmetric solution
to Einstein’s equation in vacuum, given by the line element

ds2 = −
(

1− 2GM

c2r

)
dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2 θdφ2).

where we use spherical coordinates (r, θ, φ).

We can see that the metric is singular at r = 0 and r = 2GM/c2,
with the latter being called the Schwarzschild radius rs.

The surface r = rs forms a boundary called the event horizon, and
the enclosed region within the event horizon is called a black hole.3

Newton’s
gravitational

constant

Mass of the
black hole

Speed of light

3Sean Carroll. Spacetime and Geometry: An Introduction to General Relativity. Benjamin
Cummings, 2004.
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Charged Black Holes

The most general static, spherically symmetric, charged solution of
Einstein’s field equation is the Reissner–Nordström metric, given by4

ds2 = −∆(r)

r2
dt2 +

(
∆(r)

r2

)−1

dr2 +r2 dΩ2,

where
∆(r) = r2 − 2Mr +Q2 + P 2.

Of interest to us are extremal black holes, where M =
√
Q2 + P 2.

We will be considering string-theoretic extremal black holes, where
the charges Q and P are vectors.

Electric charge Magnetic charge

Note: Here and on all subsequent slides, we use natural units, in which c = ~ = kB = G = 1.

4Sean Carroll. Spacetime and Geometry: An Introduction to General Relativity. Benjamin
Cummings, 2004.
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Black Hole Entropy

Hawking showed that the inclusion of quantum effects allows black
holes to radiate.5

A semiclassical treatment predicts that the entropy S of a black hole
is related to its area A by

SBH =
A

4
.

This is the Bekenstein–Hawking entropy.

In a consistent theory of quantum gravity, we should be able to
write this as a logarithm of the microstate degeneracy d:

Sstat = ln d(Q,P ).

Electric charge

Magnetic charge

5Stephen W. Hawking. “Particle creation by black holes”. Communications in Mathematical Physics
43.3 (1975), pp. 199–220.

Modularity of Black Holes and Ramanujan’s Tau Function Introduction 9 / 46



Black Hole Entropy: A Test of String Theory

Bekenstein–Hawking entropy

SBH =
A

4

Statistical entropy
Sstat = ln d(Q,P )

Black Hole Entropy

Computed using
microstate degeneracy6

Computed using
black hole area

Macroscopic

Microscopic

6Robbert Dijkgraaf, Erik Verlinde, and Herman Verlinde. “Counting dyons in N = 4 string
theory”. Nuclear Physics B 484.3 (Jan. 1997), pp. 543–561. arXiv: hep-th/9607026 [hep-th].
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Why Modular Forms?

The study of modular forms themselves is an exercise in complex
analysis. Modular forms are simply complex functions with some
strange transformation properties. Despite this, they have seen
remarkable applications in various seemingly unconnected areas
including

1. Number Theory7

2. Group Theory8

3. String Theoretic Black Holes

7Andrew Wiles. “Modular Elliptic Curves and Fermat’s Last Theorem”. Annals of Mathematics
141.3 (1995), pp. 443–551.

8Valdo Tatitscheff. “A short introduction to Monstrous Moonshine”. (2019). arXiv: 1902.03118

[math.NT].
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What are Modular Forms?

We first discuss some ideas we will need to define modular forms.

1. The Upper Half Plane, H, is defined as subset of C with strictly
positive imaginary part. That is H = {τ ∈ C : Im (τ) > 0}.

2. The Special Linear Group SL2 (Z) is the group of all 2× 2
matrices with integer coefficients and determinant 1.

SL2 (Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.
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What are Modular Forms?

A holomorphic function f : H→ C is a modular form of weight
k ∈ Z if it is bounded as τ → i∞ and

f

(
aτ + b

cτ + d

)
= (cτ + d)k f (τ)

for

(
a b
c d

)
∈ SL2 (Z).9

9Tom M. Apostol. Modular Functions and Dirichlet Series in Number Theory. 2nd ed. Graduate
Texts in Mathematics 41. Springer New York, 1976.
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Transformations of Modular Forms

We will now look at two key transformations of modular forms

under the matrices T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
, recalling that

modular forms transform as

f

(
aτ + b

cτ + d

)
= (cτ + d)k f (τ)

T =

(
1 1
0 1

)

f

(
τ + 1

0 + 1

)
= (0 + 1)k f (τ)

⇒ f (τ + 1) = f (τ) .

S =

(
0 −1
1 0

)

f

(
0− 1

τ + 0

)
= (τ + 0)k f (τ)

⇒ f

(
−1

τ

)
= τkf (τ) .
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Dedekind η Function

The Dedekind η function is a modular
form of weight 1

2 given by

η (τ) = q
1
24

∞∏
n=1

(1− qn) .

where q = e2πiτ .
Under the modular transformations
τ → τ + 1 and τ → −1

τ the η function
transforms as

η (τ + 1) = e(2πi)/24η (τ) ,

η

(
−1

τ

)
= (−iτ)1/2 η (τ) .

Figure: A phase plot of the
modular discriminant
∆ = η24.
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Superstring Theory

A superstring theory is a string theory which incorporates
supersymmetry between bosons and fermions.

Bosonic String Fermionic String

Superstring Theory
(supersymmetric string theory)

Only consistent in spacetime of dimension D = 10
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The Bosonic String

Figure: The bosonic string: A
1-D object that sweeps out a 2-D
surface called the worldsheet,
described by X(τ, σ).

Classically, the Lagrangian of the
closed bosonic string is

L =
1

4πα′

∫ 2π

0
(Ẋ2 −X ′2) dσ,

with corresponding Lagrangian
density

L =
1

4πα′
(Ẋ2 −X ′2).

The momentum density is thus

Π =
∂L
∂Ẋ

=
1

2πα′
Ẋ.

Based on an image from Tong.10

10David Tong. “Lectures on String Theory”. (2009). arXiv: 0908.0333 [hep-th].
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The Bosonic String

Applying the Euler-Lagrange equation

∂τ

(
∂L
∂τX

)
+ ∂σ

(
∂L
∂σX

)
− ∂L
∂X

= 0

gives the resulting equation of motion:

Ẍ −X ′′ = 0.

The general solution may be represented using oscillator modes as

X(τ, σ) = i

√
α′

2

∑
k 6=0

αk
k
e−ikτ+ikσ + i

√
α′

2

∑
k 6=0

α̃k
k
e−kτ−ikσ + α′pτ + x︸ ︷︷ ︸

Zero modes

.

The left-moving and right-moving solutions correspond to the
functions τ − σ and τ + σ respectively.

Left-moving
modes

Right-moving
modes

Convenient
normalisation
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Quantisation of the Bosonic String

The classical Hamiltonian for the bosonic string is

H =

∫ 2π

0
(ΠẊ − L) dσ =

1

4πα′

∫ 2π

0
(Ẋ2 +X ′2) dσ .

We first consider a closed bosonic string with periodic boundary
conditions, X(τ, σ) = +X(τ, σ + 2π) (and neglect zero modes).

To quantise the system, we impose the commutation relation[
X(σ),Π(σ′)

]
= iδ(σ − σ′),

which ultimately gives11

HL = − 1

24
+

∞∑
k=1

α−kαk, HR = − 1

24
+

∞∑
k=1

α̃−kα̃k.

11Here, we used zeta function regularisation to obtain
∑∞

k=1 k = − 1
12

.
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Bosonic Partition Functions

The partition function Z is a quantity from statistical
mechanics which relates the microscopic configurations of a
system to its macroscopic variables.

The general form of the partition function is given by the trace12

Z = tr
[
e−βLHL−βRHR

]
= e

βL
24

∞∏
k=1

tr
(
e−βLα−kαk

)
e
βR
24

∞∏
k=1

tr
(
e−βRα̃−kα̃k

)
= e

βL
24

∞∏
k=1

1

1− e−βLk
e
βR
24

∞∏
k=1

1

1− e−βRk
.

Hamiltonian
for left-movers

Hamiltonian
for right-movers

1 + e−βLk + e−2βLk + . . .

Thermodynamic beta;
βL = −2πiτ
βR = 2πiτ̄

12Joseph Gerard Polchinski. String Theory, Volume I: An Introduction to the Bosonic String.
Cambridge University Press, 1998.
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Bosonic Partition Functions

Given that q = e2πiτ and q̄ = e−2πiτ̄ :

Z =
1

q
1
24
∏∞
k=1(1− qk)

1

q̄
1
24
∏∞
k=1(1− q̄k)

=
1

η(q)

1

η(q̄)
=

1

|η(q)|2
.

We will later introduce a Z2 orbifold, on which we can also consider
anti-periodic boundary conditions on the closed string:
X(τ, σ) = −X(τ, σ + 2π).

The total partition function in that case is given by:

Z = e−
βL
48

∞∏
k=1

1

1− e−βL(k−1/2)
e−

βR
48

∞∏
k=1

1

1− e−βR(k−1/2)
.
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The Fermionic String

The fermionic case follows from the same general methodology as
the bosonic case.

Bosonic String
X(τ, σ)

Fermionic String
ψ(τ, σ)

αk

Left-moving modes

α̃k

Right-moving modes

ψk

Left-moving modes

ψ̃k

Right-moving modes

Commutation relations:

[X(σ),Π(σ′)] ∝ iδ(σ − σ′)
Anticommutation relations:

{ψ(σ),Π(σ′)} ∝ iδ(σ − σ′)

↔
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Fermionic Witten Index

The Witten index is a generalisation of the partition function,
defined by

χ = tr
[
(−1)FL+FRe−βLHL−βRHR

]
.

The periodic fermionic Witten index (without zero modes) is given
by:

χ = η(q)η(q̄) = |η(q)|2.

The anti-periodic fermionic Witten index is given by:

χ = e
βL
48

∞∏
k=1

(1− e−βL(k−1/2))e
βR
48

∞∏
k=1

(1− e−βR(k−1/2)).

Fermion number
operator
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Counting Black Hole Microstates: Procedure

ZK3(τ, z)

1

Φ̃10(ρ, σ, v)

d(Q,P )

c(n, r)

g(m,n, p)

Elliptic genus of K3

Igusa cusp form of weight 10

Black hole microstate degeneracy

Fourier

coefficients

Fourier

coefficients
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Compactification

Superstring theories are typically formulated in ten-dimensional
Minkowski spacetime M10.

To reconcile this with our everyday experience, we need a
compactification to four dimensions:

M10 = R1,3 ×X6.

4D Minkowski spacetime

Target space

(6D manifold)

We will consider the case of type II string theory compactified on
X6 = K3× T 2.13

13Atish Dabholkar and Suresh Nampuri. “Quantum Black Holes”. Strings and Fundamental Physics.
Springer Berlin Heidelberg, 2012, pp. 165–232. arXiv: 1208.4814 [hep-th].
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Introduction to K3

A K3 surface is a type of complex manifold of dimension two
(real dimension four) which is often used in string theory
compactifications.

To count black hole microstates on K3× T 2, we need to compute a
topological invariant of K3 called the elliptic genus.

We can do this by realising K3 as a superconformal field theory
(SCFT) in the orbifold limit T 4/Z2.14,15

14Katrin Wendland. “K3 en route: From Geometry to Conformal Field Theory”. (2015). arXiv:
1503.08426 [math.DG].

15Tohru Eguchi et al. “Superconformal algebras and string compactification on manifolds with
SU(n) holonomy”. Nuclear Physics B 315.1 (1989), pp. 193–221.
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Elliptic Genus of K3

X1

X2 X3

X4

Four bosons

ψ1

ψ2 ψ3

ψ4

Four fermions

Elliptic genus of K3
ZK3(τ, z)

Compactified on T 4/Z2

Group action of Z2:
g : (Xµ, ψµ)→ (−Xµ,−ψµ)

N = 4 SUSY
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Elliptic Genus of K3

The elliptic genus is defined16 to be the following trace, taken over
the Ramond-Ramond sector:

ZK3(τ, z) =
1

2

1∑
a,b=0

trRRga

[
(−1)FK3+F̄K3 gbyJK3qL0−c/24q̄L̄0−c̄/24

]
,

where q = e2πiτ and y = e2πiz.

This seems to depend on q̄ (and hence τ̄) as well as q, but due to
supersymmetry this dependence cancels.

Fermion number
operator

Angular momentum;
JK3 = ±1

Central charge;
6 for K3

16Edward Witten. “On the Landau-Ginzburg Description of N = 2 Minimal Models”. International
Journal of Modern Physics A 09.27 (Oct. 1994), pp. 4783–4800. arXiv: hep-th/9304026 [hep-th].
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Elliptic Genus of K3: (a, b) = (1, 0)

Twisted sector ⇒ Anti-periodic boundary conditions

• Number of states in the twisted sector: 24 = 16

• Fermionic modes:
∞∏
k=1

(
1− qk−1/2y

)2 (
1− qk−1/2y−1

)2 (
1− q̄k−1/2

)4

• Bosonic modes:
∞∏
k=1

1(
1− qk−1/2

)4 1(
1− q̄k−1/2

)4
Total:

8

∞∏
k=1

(
1− qk−1/2y

)2 (
1− qk−1/2y−1

)2(
1− qk−1/2

)4 = 8
θ2

4 (τ, z)

θ2
4 (τ, 0)
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Elliptic Genus of K3: Full Result

(a, b) = (1, 1):

8

∞∏
k=1

(
1 + qk−1/2y

)2 (
1 + qk−1/2y−1

)2(
1 + qk−1/2

)4 = 8
θ2

3 (τ, z)

θ2
3 (τ, 0)

(a, b) = (0, 1):

8 cos2 (πz)

∞∏
k=1

(
1 + qky

)2 (
1 + qky−1

)2
(1 + qk)

4 = 8
θ2

2 (τ, z)

θ2
2 (τ, 0)

Hence the elliptic genus of K3 is

ZK3(τ, z) = 8

(
θ2

2 (τ, z)

θ2
2 (τ, 0)

+
θ2

3 (τ, z)

θ2
3 (τ, 0)

+
θ2

4 (τ, z)

θ2
4 (τ, 0)

)
.

This is a Jacobi form of index one and weight zero.
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Jacobi Forms

A Jacobi form of weight k and index m is a holomorphic function
φ : H× C→ C satisfying:

1. φ
(
aτ+b
cτ+d ,

z
cτ+d

)
= (cτ + d)k exp

(
2πimcz
cτ+d

)
φ (τ, z) for all(

a b
c d

)
∈ SL2 (Z).

2. φ (τ, z + λτ + µ) = exp
(
−2πim

(
λ2τ + 2λz

))
φ (τ, z) for all

λ, µ ∈ Z.

3. φ has a Fourier expansion of the form

φ (τ, z) =

∞∑
n=0

∑
r2≤4nm

c (n, r) qnyr,

where q = e2πiτ and y = e2πiz.17

17Martin Eichler and Don Zagier. The Theory of Jacobi Forms. Progress in Mathematics 55.
Birkhäuser Basel, 1985.
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Jacobi Theta Functions

An important example of Jacobi forms are the Jacobi theta
functions which appear in the equation for the elliptic genus. They
are defined as follows:

θ1 (τ, z) = −i
∑
n∈Z

(−1)n q
1
2(n+ 1

2)
2

eπi(2n+1)z

θ2 (τ, z) =
∑
n∈Z

q
1
2(n+ 1

2)
2

eπi(2n+1)z

θ3 (τ, z) =
∑
n∈Z

q
1
2
n2
e2πinz

θ4 (τ, z) =
∑
n∈Z

(−1)n q
1
2
n2
e2πinz.
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Jacobi Theta Functions

It is important to note that in the derivation of the elliptic genus,
these theta functions appear, not in the sum form given on the
previous slide but in their product form.

For example, for θ3 we have

θ3 (τ, z) =
∞∏
m=1

(1− qm)
(

1 + q
2m−1

2 y
)(

1 +
q

2m−1
2

y

)
,

where as before, q = e2πiτ and y = e2πiz.
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Igusa Cusp Form of Weight Ten

The double expansion of the elliptic genus of K3 is

ZK3(τ, z) =
∑
n,r∈Z

c(n, r)qnyr.

This can be used to find the multiplicative lift of the elliptic genus:

Φ̃10 (ρ, σ, v) = e2πi(ρ+σ+v)
∏

k,l,j∈Z,k,l≥0
j<0 for k=l=0

(
1− e2πi(kσ+lρ+jv)

)c(kl,j)
.

This is the Igusa cusp form of weight ten.18

18Ashoke Sen. “Black hole entropy function, attractors and precision counting of microstates”.
General Relativity and Gravitation 40.11 (Apr. 2008), pp. 2249–2431. arXiv: 0708.1270 [hep-th].
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Black Hole Microstates

The degeneracy of black hole microstates is

d(Q,P ) = (−1)Q·P+1

∫
C
e−2πi(ρQ2/2+σP 2/2+vQ·P) 1

Φ̃10 (ρ, σ, v)
dρ dσ dv .

Hence if we make the Fourier series expansion

1

Φ̃10 (ρ, σ, v)
=
∑
m,n,p

g(m,n, p)e2πi(mρ+nσ+pv),

then

d(Q,P ) = (−1)Q·P+1g

(
Q2

2
,
P 2

2
, Q · P

)
.

The contour C corresponds to the expansion of 1/Φ̃10 first in powers
of e2πiρ, e2πiσ, and then in powers of e−2πiv.19

19Ashoke Sen. “Black hole entropy function, attractors and precision counting of microstates”.
General Relativity and Gravitation 40.11 (Apr. 2008), pp. 2249–2431. arXiv: 0708.1270 [hep-th].
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Implementation in Mathematica

1

Φ̃10 (ρ, σ, v)
= e−2πi(ρ+σ+v)

∏
k,l,j∈Z,k,l≥0
j<0 for k=l=0

(
1− e2πi(kσ+lρ+jv)

)−c(kl,j)
We split the calculation into three cases:

1. k > 0, l ≥ 0, and j ∈ Z;

2. k = 0 but l > 0, and j ∈ Z;

3. k = l = 0 and j < 0.

We used the following code, with x = e2πiρ, u = e2πiσ, w = e2πiv:
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Black Hole Microstates: Results for K3× T 2

We obtained the following values for d(Q,P ):

(Q2, P 2)\Q · P −2 0 1 2

(2, 2) –209304 50064 25353 648

(2, 4) –2023536 1127472 561576 50064

(4, 4) –16620544 32861184 18458000 3859456

(2, 6) –15493728 16491600 8533821 1127472

(4, 6) –53249700 632078672 392427528 110910300

(6, 6) 2857656828 16193130552 11232685725 4173501828

(6, 8) 91631080464 315614079072 233641003920 100673013264

These agree with the values found in the literature.20

20Ashoke Sen. “How do black holes predict the sign of the Fourier coefficients of Siegel modular
forms?” General Relativity and Gravitation 43.8 (Apr. 2011), pp. 2171–2183. arXiv: 1008.4209 [hep-th].
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Generalisation to Orbifolds of K3× T 2

The method used here can also be extended to the orbifolds of
K3× T 2.

In particular, we considered the 2A orbifold of K3× T 2.

In that case, the relevant function is a weight-six cusp form Φ̃6, and
the black hole degeneracies are given by

d(Q,P ) = (−1)Q·P+1g

(
Q2,

P 2

4
, Q · P

)
,

where g(m,n, p) are the Fourier coefficients of 1/Φ̃6.

Our results again agreed with the values found in the literature.21

21Ashoke Sen. “How do black holes predict the sign of the Fourier coefficients of Siegel modular
forms?” General Relativity and Gravitation 43.8 (Apr. 2011), pp. 2171–2183. arXiv: 1008.4209 [hep-th].
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Conclusion
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Ramanujan’s τ Function

Another important modular form is the modular discriminant, ∆, an
example of a modular form of weight 12, defined as

∆ (τ) := η24 (τ) = q

∞∏
n=1

(1− qn)24 .

In 1916, Ramanujan defined the following function, now called the
Ramanujan Tau function τ (n), as the nth Fourier coefficient of ∆.

That is, τ(n) is defined implicitly as

∞∑
n=1

τ(n)qn = q

∞∏
n=1

(1− qn) .

The first few values are given by

n 1 2 3 4 5 6 7 8

τ(n) 1 −24 252 −1472 4830 −6048 −16744 84480
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Lehmer’s Conjecture

In 1947, Lehmer22 conjectured that τ(n) 6= 0. Using advanced
methods regarding Galois representations, Derickx, van Hoeij, and
Zeng23 showed that τ(n) was non-vanishing up to at least
n < 8× 1023.

We considered an extension of this conjecture and considered if the
Fourier coefficients of powers of the ∆ function are also
non-vanishing. Using τm(n) to denote the nth Fourier coefficient of
∆m, we showed numerically:

Theorem 1

For 1 ≤ m ≤ 20 τm(n) is non-vanishing for n ≤ 106.

Theorem 2

For 21 ≤ m ≤ 100 τm(n) is non-vanishing for n ≤ 105.

22D. H. Lehmer. “The vanishing of Ramanujan’s function τ(n)”. Duke Mathematical Journal 14.2
(1947), pp. 429–433.

23Maarten Derickx, Mark van Hoeij, and Jinxiang Zeng. “Computing Galois representations and
equations for modular curves XH (`)”. (2013). arXiv: 1312.6819 [math.NT].
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Bounds for τ

When defining the τ function Ramanujan made three conjectures24.
One of these was that for primes p

|τ (p)| ≤ 2p11/2

We considered the behaviour of integers k such that |τ (k)| > 2k11/2.
We will use k (n) to denote the nth value of k for which
|τ (k)| > 2k11/2. Using computational methods we found k (n) for
n ≤ 83054.

n 1 2 3 4 5 6 7 8

k(n) 799 1751 2987 3149 3713 4841 5321 6157

24Srinivasa Ramanujan. “On certain arithmetical functions”. Trans. Cambridge Philos. Soc 22.9
(1916), pp. 159–184.
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Bounds for τ

p Proportion of k (n) : p|k (n) 1
p

2 0.126243167 0.5
3 0.039384015 0.333333333
5 0.027765069 0.2
7 0.00569509 0.142857143
11 0.067401931 0.090909091
13 0.000854866 0.076923077
17 0.121691911 0.058823529
19 0.034917042 0.052631579
23 0.000734462 0.043478261
29 0.066486864 0.034482759
31 0.000108363 0.032258065
37 2.41× 10−5 0.027027027
41 1.20× 10−5 0.024390244
43 8.43× 10−5 0.023255814
47 0.181400053 0.021276596
53 1.20× 10−5 0.018867925
59 0.007501144 0.016949153
61 0.015495942 0.016393443
67 0.068786573 0.014925373
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Bounds for τ

Figure: Plot of the rolling cumulative proportion of k (n) divisible by p for
various primes p
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