Beyond Dirac Fermions

Abdulhakim Mohd NAZIR ${ }^{1}$ Tomás LANNON ${ }^{2}$
${ }^{1}$ University College Dublin
${ }^{2}$ Queen's University Belfast
Supervisor: Dr. Giandomenico Palumbo
Dublin Institute of Advanced Studies, August 1, 2023

Table of Contents

(1) Motivation For Project
(2) Dirac Theory in 3+1 Dimensions
(3) The Model - Dirac-Like Theory in 3+1 Dimensions
(4) Results

- $\mathcal{H}_{n=5}$
- $\mathcal{H}_{n=6}$
- $\mathcal{H}_{n=7}$
- $\mathcal{H}_{n=8}$
- Possible β_{6} for m_{3}
(5) Summary and Conclusion
(6) Further Study

Motivation For Project

Dirac fermions play a fundamental role in both particle physics and condensed matter physics. Unconventional Dirac-like fermions can be used to construct new theoretical models.

- Emergent quasiparticle excitations \Longrightarrow topological protection of quantum information \Longrightarrow Potential use in topological quantum computing [1].
- Quasiparticles in conventional crystals \Longrightarrow unconventional exotic fermion types.

Band topology \Longrightarrow fascinating surface states, ARPES (angle-resolved photoemission spectroscopy) signatures and magnetotransport properties of many material candidates [B. Bradlyn et.al, Science 353, (2016)].

Figure 1: Energy dispersion near a threefold degeneracy (A and B) of exotic fermion types [2].

Dirac Theory in 3+1 Dimensions

The Dirac theory of fermions in $3+1$ dimensions is described by the following Hamiltonian:

$$
\begin{equation*}
H=\psi^{\dagger} \mathcal{H} \psi \tag{1}
\end{equation*}
$$

where $\psi=\left(\psi_{1}, \psi, \ldots, \psi_{n}\right)^{T}$ is a n-component spinor with $n=4$ in $3+1$ dimensions. The density Hamiltonian \mathcal{H} can be written as the following:

$$
\begin{equation*}
\mathcal{H}=\alpha_{i} p_{i}+\alpha_{0} m \tag{2}
\end{equation*}
$$

where m is the Dirac mass, $p_{i}=\left(p_{x}, p_{y}, p_{z}\right)$ are the momenta and $\alpha_{\mu}=\left(\alpha_{0}, \alpha_{x}, \alpha_{y}, \alpha_{z}\right)$ are Dirac matrices that satisfy the Clifford algebra $\mathrm{Cl}_{3,1}$:

$$
\begin{equation*}
\left\{\alpha_{\mu}, \alpha_{\nu}\right\}=2 \delta_{\mu \nu} \mathbb{1} \tag{3}
\end{equation*}
$$

where $\delta_{\mu \nu}$ is the Kronecker delta and $\mathbb{1}$ is the identity matrix.

Dirac Theory in 3+1 Dimensions

One can prove that α_{μ} are even-order matrices $2^{s} \times 2^{s}$, where s is some positive integer. In $3+1$ dimensions, the value of s is 2 .

Upon diagonalisation of the density Hamiltonian \mathcal{H}, the following eigenvalues are obtained:

$$
\begin{equation*}
E_{-}^{j}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m^{2}}, \quad E_{+}^{j}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m^{2}} \tag{4}
\end{equation*}
$$

where j is the degeneracy of the eigenvalues, which is equal to $j=2^{s-1}=2$ in $3+1$ dimensions.

Dirac Theory in 3+1 Dimensions

Properties of the matrices α_{i} and α_{0} :
(1) \mathcal{H} is Hermitian: $\hat{\mathcal{H}}=\mathcal{H}^{\dagger} \longrightarrow \alpha_{i}=\alpha_{i}^{\dagger}$ and $\alpha_{0}=\alpha_{0}^{\dagger}$
(2) α_{i} and α_{0} are square matrices: $\alpha_{i}, \alpha_{0} \in M_{n}(\mathbb{C})$
(3) α_{i} and α_{0} yield eigenvalues ± 1
(9) α_{i} and α_{0} are constant matrices \longrightarrow no dependence on \vec{r} and t.
(5) Anti-commutation relations: $\left\{\alpha_{i}, \alpha_{j}\right\}=\left\{\alpha_{i}, \alpha_{0}\right\}=0$
(0) The trace of the matrices α_{i} and α_{0} are zero: $\operatorname{Tr}\left(\alpha_{i}\right)=0$ and $\operatorname{Tr}\left(\alpha_{0}\right)=0$

$$
\begin{equation*}
\left(\alpha^{2}=\alpha_{0}^{2}=\mathbb{1}\right) \tag{5}
\end{equation*}
$$

(1) α_{i} and α_{0} are even-order matrices: $2^{s} \times 2^{s}$, where s is some positive integer. This follows from conditions 2,3 and 6 .

Dirac Theory in 3+1 Dimensions

It is evident that in $3+1$ dimensions, the lowest value of s is 2 .

Recall that α_{μ} are $2^{s} \times 2^{s}$, where s is some positive integer.
Consider Pauli spin matrices (2×2) :

$$
\sigma_{x}=\left[\begin{array}{ll}
0 & 1 \tag{6}\\
1 & 0
\end{array}\right] \quad \sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad \sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Satisfies all above properties but unable to construct α_{0} for m in the 2×2 representation. Next available representation is $4 \times 4 \Longrightarrow$ lowest value of s is 2 in $3+1$ dimensions.

Thus α_{μ} are 4×4 matrices which are the Dirac matrices that satisfy the $C_{\text {Clifford }}$ algebra $\mathrm{Cl}_{3,1}$ $\Longrightarrow\left\{\alpha_{\mu}, \alpha_{\nu}\right\}=2 \delta_{\mu \nu} \mathbb{1}$.

Dirac Theory in 3+1 Dimensions

One such 4×4 representation is also known as the Pauli-Dirac represention.

$$
\begin{array}{cl}
\alpha_{x}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\underline{0} & \sigma_{x} \\
\sigma_{x} & \underline{0}
\end{array}\right] \quad \alpha_{y}=\left[\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\underline{0} & \sigma_{y} \\
\sigma_{y} & \underline{0}
\end{array}\right] \tag{7}\\
\alpha_{z}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\underline{0} & \sigma_{z} \\
\sigma_{z} & \underline{0}
\end{array}\right] \quad \alpha_{0}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]=\left[\begin{array}{cc}
\mathbb{1} & \underline{0} \\
\underline{0} & -\mathbb{1}
\end{array}\right]
\end{array}
$$

where $\underline{0}$ is the 2×2 zero-matrix and $\mathbb{1}$ is the 2×2 identity matrix.
Dirac spinor $\psi=\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right)^{T}$ is a 4-component spinor in $3+1$ dimensions.

The Model - Dirac-Like Theory in 3+1 Dimensions

The model for Dirac-like theory of fermions in 3+1 dimensions should be described by the following Hamiltonian:

$$
\begin{equation*}
H=\psi^{\dagger} \mathcal{H} \psi \tag{8}
\end{equation*}
$$

where $\psi=\left(\psi_{1}, \psi, \ldots, \psi_{n}\right)^{T}$ is a n -component spinor with n some positive integer. The density Hamiltonian \mathcal{H} can be written as the following:

$$
\begin{equation*}
\mathcal{H}=\beta_{i} p_{i}+\beta_{4} m_{1}+\beta_{5} m_{2} \tag{9}
\end{equation*}
$$

where m_{1} and m_{2} are two independent masses, $p_{i}=\left(p_{x}, p_{y}, p_{z}\right)$ are the momenta and $\beta_{\mu}=\left(\beta_{x}, \beta_{y}, \beta_{z}, \beta_{4}, \beta_{5}\right)$ are $n \times n$ matrices, which do not satisfy the Clifford algebra $\mathrm{Cl}_{3,1}$ $\Longrightarrow\left\{\beta_{\mu}, \beta_{\nu}\right\} \neq 2 \delta_{\mu \nu} \mathbb{1}$.

The Model - Dirac-Like Theory in 3+1 Dimensions

The density Hamiltonian \mathcal{H} constructed with these β_{μ} matrices should have eigenvalues:

$$
\begin{equation*}
E_{0}^{j}=0, \quad E_{1, \pm}^{k}= \pm \sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}}, \quad E_{2, \pm}^{\prime}= \pm \sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{2}^{2}} \tag{10}
\end{equation*}
$$

where j, k, l is the degeneracy of each eigenvalue.
The presence of the zero-energy eigenvalue, $E_{0}^{j}=0$, means that our Dirac-like model is not Lorentz invariant.

This non-Lorentz invariant property is representative of why our Dirac-like model cannot satisfy the Clifford algebra $\mathrm{Cl}_{3,1} \Longrightarrow\left\{\beta_{\mu}, \beta_{\nu}\right\} \neq 2 \delta_{\mu \nu} \mathbb{1}$.

The Model - Dirac-Like Theory in 3+1 Dimensions

A set of eight linearly independent 3×3 Hermitian matrices with $\operatorname{SU}(3)$ symmetry. Used in the study of the strong interaction in particle physics. Using these particular four out of the set of eight:

$$
\lambda_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \lambda_{2}=\left[\begin{array}{ccc}
0 & i & 0 \\
-i & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Diagonalisation yields Dirac-like eigenvalues:

$$
E_{0}^{1}=0, \quad E_{1,-}^{1}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m^{2}}
$$

$$
E_{1,+}^{1}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m^{2}}
$$

These matrices are not compatible with the Clifford algebra $\mathrm{Cl}_{3,1} \Longrightarrow\left\{\lambda_{i}, \lambda_{j}\right\} \neq 2 \delta_{i j} \mathbb{1}$.

The Model - Dirac-Like Theory in $3+1$ Dimensions

(1) This model follows $S O(3)$ symmetry.
(2) The Lie algebra for $S O(3)$ for dimension n is:

$$
\text { so(3) }:=\left\{X: n \times n \text { matrix } \mid X^{T}+X=0, \operatorname{Tr}(X)=0\right\}
$$

(3) The generators $\left(J_{1}, J_{2}, J_{3}\right)$ of this algebra obey:

$$
\left[J_{i}, J_{j}\right]=J_{k} \delta_{i j}
$$

(9) Each value of n we consider corresponds to particles of different spin, j :

$$
2 j+1=n
$$

The Model - Dirac-Like Theory in 3+1 Dimensions

The goals of this project are:
(1) Construct $n \times n$ matrices β_{μ} for $5 \leq n \leq 8$ such that the corresponding density Hamiltonian \mathcal{H} has the desired Dirac-like eigenvalues.
(2) Plot the real spectra of energy dispersion relations $E(k)$ for each n.
(3) Identify possible β_{6} associated with a third independent mass term m_{3} such that

$$
\begin{equation*}
\mathcal{H}=\beta_{i} p_{i}+\beta_{4} m_{1}+\beta_{5} m_{2}+\beta_{6} m_{3} \tag{11}
\end{equation*}
$$

Results $-\mathcal{H}_{n=5}=\beta_{i} p_{i}+\beta_{4} m_{1}+\beta_{5} m_{2}$

$$
\mathcal{H}_{n=5}=\left[\begin{array}{ccccc}
0 & p_{x}+i m_{1} & -m_{2}+i m_{3} & 0 & i p_{y}-p_{z} \tag{12}\\
p_{x}-i m_{1} & 0 & 0 & i p_{y}-p_{z} & 0 \\
-m_{2}-i m_{3} & 0 & 0 & i m_{4}+m_{5} & 0 \\
0 & -i p_{y}-p_{z} & -i m_{4}+m_{5} & 0 & -p_{x}+i m_{1} \\
-i p_{y}-p z & 0 & 0 & -p_{x}-i m_{1} & 0
\end{array}\right]
$$

$$
\begin{equation*}
E=0, \pm \sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}}, \pm \sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2}+m_{5}^{2}} \tag{13}
\end{equation*}
$$

Grouping with sufficient free parameters $\Longrightarrow m_{1}{ }^{2}+m_{2}{ }^{2}+m_{3}{ }^{2}+m_{4}{ }^{2}+m_{5}{ }^{2}=M^{2}$

$$
\begin{array}{rll}
E_{0}^{1}=0, & E_{1,-}^{1}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}}, & E_{1,+}^{1}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}} \\
E_{2,-}^{1}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+M^{2}}, & E_{2,+}^{1}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+M^{2}} \tag{14}
\end{array}
$$

Results - Non-Hermitian $\mathcal{H}_{n=5}$?

An unexpected result occurred. We managed to construct the following Hamiltonian $\mathcal{H}_{n=5}$

$$
\mathcal{H}_{n=5}=\left[\begin{array}{ccccc}
0 & p_{x}+i m_{1} & m_{2} & 0 & i p_{y}-p_{z} \tag{15}\\
p_{x}-i m_{1} & 0 & 0 & i p_{y}-p_{z} & 0 \\
m_{2} & 0 & 0 & m_{1} & 0 \\
0 & -i p_{y}-p_{z} & -m_{1} & 0 & -p_{x}+i m_{1} \\
-i p_{y}-p z & 0 & 0 & -p_{x}-i m_{1} & 0
\end{array}\right]
$$

$$
\begin{array}{lll}
E_{0}^{1}=0, & E_{1,-}^{1}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}}, & E_{1,+}^{1}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}} \\
& E_{2,-}^{1}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{2}^{2}}, & E_{2,+}^{1}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{2}^{2}} \tag{16}
\end{array}
$$

This is an interesting case to consider. The 5×5 matrix is clearly not Hermitian, yet the eigenvalues are real, describing $E(k)$. Every non-Hermitian Hamiltonian with a real spectrum is pseudo-Hermitian [3].

Results - Real Spectra of Pseudo-Hermitian $\mathcal{H}_{n=5}$

Using standard notation of crystal momentum k for energy dispersion relations $E(k)$:

Figure 2: 5×5 real spectra of $E(k)\left[m_{1} \neq m_{2}\right]$

Figure 3: Side view of 5×5 real spectra of $E(k)$

Results $-\mathcal{H}_{n=6}=\beta_{i} p_{i}+\beta_{4} m_{1}+\beta_{5} m_{2}$
(1) Simply the direct sum of two 3×3 density Hamiltonians from Gell-Mann matrices $\lambda_{i=1,2,6,7}$.
(2) This gives the beta matrices $\beta_{\mu}=\left(\beta_{x}, \beta_{y}, \beta_{z}, \beta_{4}, \beta_{5}\right)$ to be:

$$
\begin{equation*}
\beta^{i}=\lambda^{i} \oplus \lambda^{i}, \quad \beta^{4}=\lambda^{0} \oplus 0_{3}, \quad \beta^{5}=0_{3} \oplus \lambda^{0} \tag{17}
\end{equation*}
$$

(3) In matrix form, the density Hamiltonian $\mathcal{H}_{n=6}$ is:

$$
\mathcal{H}_{n=6}=\left[\begin{array}{cccccc}
0 & p_{x}+i p_{y} & 0 & 0 & 0 & 0 \tag{18}\\
p_{x}-i p_{y} & 0 & p z+i m_{1} & 0 & 0 & 0 \\
0 & p_{z}-i m_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & p_{x}+i p_{y} & 0 \\
0 & 0 & 0 & p_{x}-i p_{y} & 0 & p_{z}+i m_{2} \\
0 & 0 & 0 & 0 & p_{z}-i m_{2} & 0
\end{array}\right]
$$

(1) Not compatible with the Clifford algebra $\mathrm{Cl}_{3,1} \Longrightarrow\left\{\beta_{\mu}, \beta_{\nu}\right\} \neq 2 \delta_{\mu \nu} \mathbb{1}$, due to the nature of the Gell-Mann matrices λ_{i}.

Results $-\mathcal{H}_{n=6}=\beta_{i} p_{i}+\beta_{4} m_{1}+\beta_{5} m_{2}$

$$
\mathcal{H}_{n=6}=\left[\begin{array}{cccccc}
0 & p_{x}+i m_{1} & m_{2}+i m_{3} & m_{4}+i m_{5} & 0 & i p_{y}-p_{z} \tag{19}\\
p_{x}-i m_{1} & 0 & 0 & 0 & i p_{y}-p_{z} & 0 \\
m_{2}-i m_{3} & 0 & 0 & 0 & 0 & 0 \\
m_{4}-i m_{5} & 0 & 0 & 0 & 0 & 0 \\
0 & -i p_{y}-p_{z} & 0 & 0 & 0 & -p_{x}+i m_{1} \\
-i p_{y}-p_{z} & 0 & 0 & 0 & -p_{x}-i m_{1} & 0
\end{array}\right]
$$

Grouping with sufficient free parameters $\Longrightarrow m_{1}{ }^{2}+m_{2}{ }^{2}+m_{3}{ }^{2}+m_{4}{ }^{2}+m_{5}{ }^{2}=M^{2}$

$$
\begin{array}{lll}
E_{0}^{2}=0, & E_{1,-}^{1}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}}, & E_{1,+}^{1}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}} \\
& E_{2,-}^{1}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+M^{2}}, & E_{2,+}^{1}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+M^{2}} \tag{20}
\end{array}
$$

where m_{1} and M can act as independent mass terms, satisfying our Dirac-like model.

Results $-\mathcal{H}_{n=6}=\beta_{i} p_{i}+\beta_{4} m_{1}+\beta_{5} m_{2}$

$$
\begin{array}{lll}
E_{0}^{2}=0, & E_{1,-}^{1}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}}, & E_{1,+}^{1}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}} \\
& E_{2,-}^{1}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{2}^{2}}, & E_{2,+}^{1}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{2}{ }^{2}} \tag{21}
\end{array}
$$

Figure 4: 6×6 real spectra of $E(k)\left[m_{1} \neq m_{2}\right]$

Figure 5: Side view of 6×6 real spectra of $E(k)$

Results $-\mathcal{H}_{n=7}=\beta_{i} p_{i}+\beta_{4} m_{1}+\beta_{5} m_{2}$
(1) We take the direct sum of a 3×3 Gell-Mann Hamiltonian with a 4×4 Dirac Hamiltonian.
(2) This gives the beta matrices $\beta_{\mu}=\left(\beta_{x}, \beta_{y}, \beta_{z}, \beta_{4}, \beta_{5}\right)$ to be:

$$
\begin{equation*}
\beta^{i}=\lambda^{i} \oplus \gamma^{i}, \quad \beta^{4}=\lambda^{4} \oplus 0_{4}, \quad \beta^{5}=0_{3} \oplus \gamma^{0} \tag{22}
\end{equation*}
$$

(0) In matrix form, the Hamiltonian $\mathcal{H}_{n=7}$ is:

$$
\mathcal{H}_{n=7}=\left[\begin{array}{ccccccc}
0 & p_{x}+i p_{y} & 0 & 0 & 0 & 0 & 0 \tag{23}\\
p_{x}-i p_{y} & 0 & p_{z}+i m_{1} & 0 & 0 & 0 & 0 \\
0 & p_{z}-i m_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & m_{2} & 0 & p_{z} & p_{x}-i p_{y} \\
0 & 0 & 0 & 0 & m_{2} & p_{x}+i p_{y} & -p_{z} \\
0 & 0 & 0 & p_{z} & p_{x}-i p_{y} & -m_{z} & 0 \\
0 & 0 & 0 & p_{x}+i p_{y} & -p_{z} & 0 & -m_{z}
\end{array}\right]
$$

Results $-\mathcal{H}_{n=7}=\beta_{i} p_{i}+\beta_{4} m_{1}+\beta_{5} m_{2}$

$$
\begin{array}{lll}
E_{0}^{1}=0, & E_{1,-}^{1}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}}, & E_{1,+}^{1}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}} \\
& E_{2,-}^{2}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{2}^{2}}, & E_{2,+}^{2}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{2}{ }^{2}} \tag{24}
\end{array}
$$

Figure 6: 7×7 real spectra of $E(k)\left[m_{1} \neq m_{2}\right]$

Figure 7: Side view of 7×7 real spectra of $E(k)$

Results $-\mathcal{H}_{n=7}=\beta_{i} p_{i}+\beta_{4} m_{1}+\beta_{5} m_{2}$

$$
\mathcal{H}_{n=7}=\left[\begin{array}{ccccccc}
0 & p_{x}+i m_{1} & 0 & m_{2}+i m_{3} & 0 & 0 & i p_{y}-p_{z} \tag{25}\\
p_{x}-i m_{1} & 0 & 0 & 0 & 0 & i p_{y}-p_{z} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
m_{2}-i m_{3} & 0 & 0 & 0 & 0 & m_{4}+i m_{5} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -i p_{y}-p_{z} & 0 & m_{4}-i m_{5} & 0 & 0 & -p_{x}+i m_{1} \\
-i p_{y}-p_{z} & 0 & 0 & 0 & 0 & -p_{x}-i m_{1} & 0
\end{array}\right]
$$

Grouping with sufficient free parameters $\Longrightarrow m_{1}{ }^{2}+m_{2}{ }^{2}+m_{3}{ }^{2}+m_{4}{ }^{2}+m_{5}{ }^{2}=M^{2}$

$$
\begin{array}{rlr}
E_{0}^{3}=0, & E_{1,-}^{1}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}}, & E_{1,+}^{1}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}} \\
E_{2,-}^{1}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+M^{2}}, & E_{2,+}^{1}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+M^{2}} \tag{26}
\end{array}
$$

where m_{1} and M can act as independent mass terms, satisfying our Dirac-like model.

Results - Possible β_{6} of m_{3} for $\mathcal{H}_{n=8}$

The 8×8 case is perhaps the most interesting case to study for $5 \leq n \leq 8$. So far, this is the only case where we were able to build a matrix \mathcal{H} that incorporated a β_{6} for a third independent mass term, m_{3}, such that

$$
\mathcal{H}_{n=8}=\beta_{i} p_{i}+\beta_{4} m_{1}+\beta_{5} m_{2}+\beta_{6} m_{3}:
$$

$$
\left[\begin{array}{cccccccc}
0 & p_{x}+i m_{1} & 0 & m_{2}+i m_{3} & 0 & 0 & 0 & i p_{y}-p_{z} \tag{27}\\
p_{x}-i m_{1} & 0 & 0 & 0 & 0 & 0 & i p_{y}-p_{z} & 0 \\
0 & 0 & 0 & 0 & p_{x}+i m_{2} & i p_{y}-p_{z} & 0 & 0 \\
m_{2}-i m_{3} & 0 & 0 & 0 & 0 & 0 & m_{4}+i m_{5} & 0 \\
0 & 0 & p_{x}-i m_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -i p_{y}-p_{z} & 0 & 0 & 0 & 0 & 0 \\
0 & -i p_{y}-p_{z} & 0 & m_{4}-i m_{5} & 0 & 0 & 0 & -p_{x}+i m_{1} \\
-i p_{y}-p_{z} & 0 & 0 & 0 & 0 & 0 & -p_{x}-i m_{1} & 0
\end{array}\right]
$$

Results - Possible β_{6} for $m_{3}: \mathcal{H}_{n=8}=\beta_{i} p_{i}+\beta_{4} m_{1}+\beta_{5} m_{2}+\beta_{6} m_{3}$

$$
\begin{align*}
E= & 0,0, \pm \sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}}, \pm \sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{2}^{2}} \\
& \pm \sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2}+m_{5}^{2}} \tag{28}
\end{align*}
$$

Grouping with sufficient free parameters $\Longrightarrow m_{1}^{2}+m_{2}^{2}+m_{3}{ }^{2}+m_{4}{ }^{2}+m_{5}{ }^{2}=M^{2}$

$$
\begin{array}{rll}
E_{0}^{2}=0, & E_{1,-}^{1}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}}, & E_{1,+}^{1}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{1}^{2}} \\
& E_{2,-}^{1}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{2}^{2}}, & E_{2,+}^{1}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m_{2}^{2}} \\
E_{3,-}^{1}=-\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+M^{2}}, & E_{3,+}^{1}=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+M^{2}} \tag{29}
\end{array}
$$

where m_{1}, m_{2} and M can act as independent mass terms, satisfying our Dirac-like model.

Results - Real Spectra Involving m_{3}

The inclusion of a third independent mass term, $m_{3}=M$, resulted in an additional positive and negative dispersion $E(k)$.

Figure 9: 8×8 real spectra of $E(k)\left[m_{1} \neq m_{2} \neq m_{3}\right]$

Figure 10: Side view of 8×8 real spectra of $E(k)$

Summary and Conclusion

(1) Found $n \times n$ density Hamiltonians \mathcal{H} with appropriate eigenvalues for each value of $5 \leq n \leq 8$.
(2) Additionally, obtained matrix β_{6} associated with a third mass term m_{3} for $n=8$.
(3) Hamiltonians with zero-energy eigenvalues are not Lorentz invariant (exotic fermion types not constrained by full Poincaré symmetry) [2].
(4) Only suitable for describing low-energy systems e.g. condensed matter systems [2].

Further Study

(1) Anti-commutators for β matrices, general theory, precise band model applications etc.
(2) Dirac-like model in $\mathcal{P} \mathcal{T}$ symmetric QM [3]:

$$
\mathcal{P} \psi(x)=\psi(-x), \quad \mathcal{T} \psi(x)=\psi(x)^{*}
$$

(3) Restricting momentum components to $2+1$ or $1+1$ dimensions.[1][4]

References

1. Mourik, V. et al. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science 336, 1003-1007. https://doi.org/10.1126\%2Fscience. 1222360 (May 2012).
2. Bradlyn, B. et al. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals. Science 353. https://doi.org/10.1126\%2Fscience.aaf5037 (Aug. 2016).
3. Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. Journal of Mathematical Physics 43, 205-214. https://doi.org/10.1063\%2F1. 1418246 (Jan. 2002).
4. Sánchez-Monroy, J. \& Bustos, A. Dynamics of Majorana fermions in two-dimensions. Annals of Physics 397, 234-242. https://doi.org/10.1016\%2Fj.aop.2018.08.011 (Oct. 2018).
