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Classical Black Holes

In classical physics, a black hole is a region of spacetime where
the gravitational field is so strong that once a particle enters,
it can never escape.

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr 2 + r 2dΩ2︸ ︷︷ ︸

Schwarzschild metric

Black Hole MassBlack Hole Mass

The surface r = 2M is known as the Event Horizon of the
black hole. This is the point of no return.
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Quantum Black Holes

In 1972, Jacob Bekenstein proposed that black holes should
have entropy which should be proportional to the area of the
event horizon.

In 1974, Stephen Hawking showed that black holes are thermal
systems which readiate energy continuously. He was able to
derive a precise formula for the entropy of a black hole.

SBH =
kBA

4ℏ
(1)

Boltzmann’s
constant

Planck’s
constant

Area of Event
Horizon

The statistical origin of the Bekenstein-Hawking entropy
remained unclear
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Black Hole Chaos

Thermal behaviour is closely related to chaos. Since black
holes are thermal systems, it is natural to look for chaotic
behaviour in black holes.

Recent work has placed an upper bound on the chaotic
behvaiour of thermal systems.

λL ≤
2πkBT

ℏ
(2)

Temperature

Black holes saturate this bound and thus are the most chaotic
systems found in nature.
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Classical Chaos

Consider choosing a point x0 in the phase space of some
system and perturbing it slightly to obtain a new point δx0.

Hamilton’s equations describe the time evolution of each
point. We can define a metric on phase space
|δX (t)| ≡ |x0(t)− δx0(t)| to define the distance between
these two points at late time.

For chaotic systems, we expect the perturbation to grow
exponentially

|δX (t)| ∼ |δX (0)|eλLt (3)
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System under analysis

String theory: 9 space dimensions, 1 time dimension.
Spatial position of one D0-brane requires 9 position
coordinates.
Let N be the number of D0-branes.
X i = N × N Hermitian traceless matrix, i = 1, ..., 9.

L =
1

2g 2
Tr(

∑
i

[DtX
i ]2) +

1

4g 2
Tr(

∑
j ̸=i

[X i ,X j ]2) + ...

DtX
i = ∂tX

i − [At ,X
i ].

At = 0.

[DtX
i ]2 = [Ẋ i ]2
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Classical Approximation

Classical mechanics provides a good approximation in the
weak coupling/high temperature limit:

g 2N

T 3
∼ small

Lagrangian is simplified in the classical limit.

X i Equations of motion: At Equation of motion:

0 =
d

dt
(
∂L

∂Ẋ i
)− ∂L

∂X i
. 0 =

d

dt
(
∂L

∂Ȧt

)− ∂L

∂At
.

Ẍ i(t) =
∑
j

[X j , [X i ,X j ]]. 0 =
∑
i

[X i , Ẋ i ].
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Perturbation

To perturb the system while preserving Gauss’ law
constraint:

L =
1

2g 2
Tr(

∑
i

[DtX
i ]2)+

1

4g 2
Tr(

∑
j ̸=i

[X i ,X j ]2)+
2∑

k=1

kckTr(
∑
i

X i2)

ck ∼ N(0, 10−8)

The perturbing equations of motion:

Ẍ i =
∑
j

[X j , [X i ,X j ]] +
2∑

k=1

kck{X i , (
∑
j

X 2
j )

k−1}

Cillian Kelly, Robert Kelly Classical Chaos in String Theoretic Black Holes



Simulations

Evolve initial system for 1 second with original equations
of motion.
State 1: X i

1

Perturb initial system for 1 second with perturbation
equations of motion.
State 2: X i

2

Evolve both states under original equations of motion for
100 seconds while measuring the distance between them.

|δX (t)| =

√√√√ 9∑
i=1

Tr[(X i
1(t)− X i

2(t))
2]
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Lyapunov Exponent

|δX (t)| = |δX (0)|eλLt

Expect |δX (t)| against t to be linear on a log-scale plot.

Solve for λLt:

λLt = ln(
|δX (t)|
|δX (0)|

)

Expect λL to be the slope of the plot of ln( |δX (t)|
|δX (0)|) against

t.
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Results: Distance and Energy

Simulate N = 4 case with varied total energy E.
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Results: Distance and Energy

Figure: |δX (t)| against t for multiple total energies for 4 D0-branes.

Growth continues until the perturbation is of the same order as the

system size.
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Results: Distance and Energy

Simulate N = 4 case with varied total energy E.

Rescale the y-axis to be ln( |δX (t)|
|δX (0)|)
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Results: Distance and Energy

Figure: ln( |δX (t)|
|δX (0)| ) against t. Growth continues until the perturbation is

of the same order as the system size. Increasing slope correlates with

increasing energy of the system.
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Results: Distance and Energy

Simulate N = 4 case with varied total energy E.

Rescale the y-axis to be ln( |δX (t)|
|δX (0)|)

Linear fit the sloped sections of the data to find λL(E )

Plot λL(E ) against E.
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Results: Distance and Energy

Figure: λL(E ) against total energy E. λL(E ) ∝ E 0.24.
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Results: Distance and Energy

Repeat for N = 7
case.

Figure: λL(E ) against total energy E.
λL(E ) ∝ E 0.22.
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Lyapunov exponent and Energy

Experimental data:

N = 4 case: λL(E )= (0.100± 0.0077) E 0.24±0.011

N = 7 case: λL(E )= (0.080± 0.0025)E 0.220±0.0059

An upper bound on the energy dependence of the
Lyapunov exponent for any chaotic system has been
conjectured*:

c ≤ 1 for λL(E ) ∝ E c(E → ∞)

*Hashimoto, K. Murata, K. Tanahashi, N. Watanabe, R. (2022). A bound on energy dependence of chaos. Phys. Rev. D. 106(12)



Lyapunov exponent comparison

Compare λl with Shenker et. al.*

λL = (0.29252− 0.424

N2
)(g 2NT )

1
4

Case Equation Experiment

N = 4 λL = 0.2655 λL = 0.270

N = 8 λL = 0.2853 λL = 0.2865

N = 12 λL = 0.2891 λL = 0.2893

N = 16 λL = 0.2903 λL = 0.2884

* Gur-Ari, G. Hanada, M. Shenker, S. (2016). Chaos in Classical D0-Brane Mechanics. Journal of High Energy Physics. 91(2016).



Fast Scrambler

A chaotic system is a ‘fast scrambler’ if the scrambling
time t∗ scales as ln(N2).

For a fast scrambler: t∗ ∼ k
2
ln(N2)

t∗ has an inverse dependence on λL: t
∗ ∼ 1

λL

t∗ ∼ 1
λL

k
2
ln(N2)

Then: eλLt
∗ ∼ Nk

|δX (t∗)| ∼ Nk

|δX (t∗)|
Nk = constant

* Gur-Ari, G. Hanada, M. Shenker, S. (2016). Chaos in Classical D0-Brane Mechanics. Journal of High Energy Physics. 91(2016).



Fast Scrambler

|δX (t∗)|
Nk = constant

Empirical answer: k = 1
2

|δX (t∗)|√
N

= constant
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Fast Scrambler

Figure: |δX (t)|/
√
N against time for N = 8, 12, 16.
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Conclusion

Energy dependence of the Lyapunov exponent for four
D0-branes and for seven D0-branes.

λL(E ) = (0.100± 0.0077)E 0.24±0.011

λL(E ) = (0.080± 0.0025)E 0.220±0.0059

Good agreement with previous literature values for λL.

System is a fast scrambler.
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Numerical Integration

Velocity Verlet algorithm:

X (t +∆t) = X (t) + Ẋ (t)∆t +
1

2
Ẍ (t)∆t2. (4)

Ẋ (t +∆t) = Ẋ (t) +
1

2
(Ẍ (t) + Ẍ (t +∆t))∆t. (5)

Algorithm:

Set initial position X i and velocity Ẋ i matrices for the
system.
Use equations of motion to calculate the initial
acceleration Ẍ i matrices.
Use equation (4) to calculate X i(t +∆t).
Use equations of motion to calculate Ẍ (t +∆t).
Use equation (5) to calculate Ẋ (t +∆t).
Repeat the previous steps.
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