Physics opportunities of CEvNS experiments

Diego Aristizabal USM

vBDX-DRIFT collaboration:

Diego Aristizabal (USM), Joshua Barrow (Minnesota), Bhaskar Dutta (Texas A&M)

Doojin Kim (Texas A&M), Daniel Snowden-Ifft (Occidental College, LA)

Louis Strigari (Texas A&M), Michael Wood (Canisius College, NY)

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

 Neutrino processes at different energy scales

Intermediate regime

 A few comments on theoretical uncertainties
 Low-energy regime

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

Final remarks

Why Coherent Elastic v-nucleus Scattering (CEvNS)?

Why Coherent Elastic v-nucleus

Scattering (CEvNS)?

 Neutrino processes at different energy scales

 Intermediate regime
 A few comments on theoretical uncertainties
 Low-energy regime

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

DM detectors

Final remarks

Neutrino EM properties in G3

Intermediate regime

	QES (CC)	ES (NC)	RES (NC & CC)
Why Coherent Elastic v-nucleus	$v_{\mu} + n \rightarrow \mu^{-} + p$	$\nu + p \rightarrow \nu + p \overline{\nu} + p \rightarrow \overline{\nu} + p$	$ u_{\mu}N ightarrow \mu^{-}N^{*} ightarrow \mu^{-}\pi N'$
Scattering (CEvNS)? Neutrino processes at different energy scales	$\overline{\nu}_{\mu} + p \rightarrow \mu^{+} + n$	$v + n \rightarrow v + n \overline{v} + n \rightarrow \overline{v} + n$	$ u_{\mu}N ightarrow u_{\mu}N^{*} ightarrow u_{\mu}\pi N'$

Theoretically calculations are challenging Theoretical uncertainties are large!

Scattering (CEvNS)? Neutrino processes at different energy scales Intermediate regime A few comments on theoretical uncertainties

• Low-energy regime

CEvNS: Cross section,

CEvNS physics with the

Neutrino EM properties in G3

vBDX-DRIFT detector

environments and

measurements

DM detectors

Dominant effects

Pauli blocking: Final-state fermion states must be assured an unoccupied quantum state.

Fermi motion: Nucleons in the nuclear environment are not at rest.

<u>Reinteractions</u>: The recoiling nucleon can reinteract in the nuclear medium

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

 Neutrino processes at different energy scales
 Intermediate regime

• A few comments on

theoretical uncertainties • Low-energy regime

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

Low-energy regime

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

• CEvNS cross section

• CEvNS environments

- Neutrino sources and CEvNS "regimes"
- Measurements
- Ongoing projects worldwide
- Multi-ton DM detectors

 Physics program (opportunities)

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

Final remarks

CEvNS: Cross section, environments and measurements

CEvNS cross section

 $CE_{\nu}NS$ occurs when the neutrino energy E_{ν} is such that nucleon amplitudes sum up coherently \Rightarrow cross section enhancement

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and

easurements ● CEvNS cross section

- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- Measurements
- Ongoing projects worldwide
- Multi-ton DM detectors
- Physics program (opportunities)

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

CEvNS environments

Neutrino sources and CEvNS "regimes"

Measurements

CEvNS observed by COHERENT more than 40 years after its prediction

Akimov et. al. 2017

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and

measurements

- CEvNS cross section
- CEvNS environments
- Neutrino sources and CEvNS "regimes"

Measurements

	Ongoing	projects	worldwide
-	Chigoling	projecto	wonawiac

- Multi-ton DM detectors
- Physics program (opportunities)

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

Final remarks

COHERENT uses neutrinos produced at the SNS

@ Oak Ridge National Laboratory in the collision p - Hg

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$
$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

Presence of CEvNS favored @ the 6.7 σ level. Data consistent with SM @ the 1 σ

Measured in LAr CENNS-10 2003.10630 Ge expected in 2024

Ongoing projects worldwide

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and

measurements

- CEvNS cross section
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- Measurements

Ongoing projects worldwide

- Multi-ton DM detectors
- Physics program (opportunities)

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

- Argentina vIOLETA (Neutrino Interaction Observation with a Low Energy Threshold Array)
- Mexico SBC (Scintillating Bubble Chamber)
- Belgium SoLid (Search for oscillations with Lithium 6 detector)
- South Korea NEON (Neutrino Elastic-scattering Observation experiment with Nal[TI] crystal)

Multi-ton DM detectors

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and

measurements

- CEvNS cross section
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- Measurements
- Ongoing projects worldwide

Multi-ton DM detectors

 Physics program (opportunities)

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

Final remarks

Lux-Zeplin (LZ) [G2 detector]
SURF, South Dakota, USA
Total: 10 ton of LXe
Fiducial: 5.6 ton of LXe
DM sensitivity: 10⁻⁴⁸ cm²
XLZD Consortium: 40-100 ton

Neutrino-induced NR and ER will be abundant

in thrid generation DM detectors (XLZD)

D.A.S, De Romeri, Flores, Papoulias, 2006.12457

Physics program (opportunities)

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and

measurements

- CEvNS cross section
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- Measurements
- Ongoing projects worldwide
- Multi-ton DM detectors

 Physics program (opportunities)

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

Final remarks

The combination of measurements from different sources

and different detectors define a rather rich physics program

CEvNS measurements

CONUS (Ge), CONNIE (Si), COHERENT (Ar, CsI, Nal) vBDX-DRIFT (CS₂, CF₄, C₈H₂₀Pb), XLZD (LXe), Captain-Mills (LAr)

SM measurements

Measurements of $\sin^2 \theta_W$ at a new energy scale

... Complementary to DUNE measurements in electron channel

Measurements of neutron distributions in e.g. Ge, C, S, F, Pb...

BSM searches

Neutrino NSI, NGI, Dark-neutrino interactions, dark sectors

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

- vBDX-DRIFT: Basics
- Signals in CS₂ and CF₄
- Measurements of R_n via CEvNS
- Neutron density distributions: Results
- Measurements of the WMA via CEvNS
- Weak mixing angle at vBDX-DRIFT
- Neutrino Nonstandard Interactions (NSI)

Neutrino EM properties in G3 DM detectors

Final remarks

CEvNS physics with the vBDX-DRIFT detector

vBDX-DRIFT: Basics

☐ ☐ Directional low pressure TPC detector

 \Box Operates with CS₂ (other gases possible CF₄, C₈H₂₀Pb...)

Show the second sec

 $r > CS_2^-$ ions used to transport the ionization to the readout planes (MWPCs)

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

● vBDX-DRIFT: Basics

- \bullet Signals in CS $_2$ and CF $_4$
- Measurements of R_n via CEvNS
- Neutron density distributions: Results
- Measurements of the WMA via CEvNS
- Weak mixing angle at vBDX-DRIFT
- Neutrino Nonstandard Interactions (NSI)

Neutrino EM properties in G3 DM detectors

Signals in CS₂ and CF₄

CEvNS: Cross section, environments and

measurements

CEvNS physics with the

vBDX-DRIFT detector

vBDX-DRIFT: Basics

ullet Signals in CS_2 and CF_4

• Measurements of *R_n* via CEvNS

 Neutron density distributions: Results

- Measurements of the WMA via CEvNS
- Weak mixing angle at vBDX-DRIFT
- Neutrino Nonstandard Interactions (NSI)

Neutrino EM properties in G3 DM detectors

Final remarks

Signal peaks at 400 Torr

Expected signal: 370 events

Expected signal: 880 events

Measurements of R_n via CEvNS

 $F_W(q^2) = \frac{1}{Q_W} \left[Z g_V^p F_V^p(q^2) + (A - Z) g_V^n F_V^n(q^2) \right]$

 \Rightarrow F_V^p : Depends on $R_p \Rightarrow$ known at 0.1% level ($e^- - N$ scattering)

 \Rightarrow F_V^n : Depends on $R_n \Rightarrow$ poorly known (hadron experiments)

$$N_{\text{CEvNS}} = N_{\text{CEvNS}}(R_n)$$

$$N_{\mathsf{CEvNS}}^{\mathsf{Exp}} \Rightarrow R_n$$

Miranda et al, JHEP 05 (2020)

 12

 10

 10

$$10$$
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10

COHERENT 90% CL limits Csl: $R_n^{Cs} = R_n^1$: $R_n \subset [3.4, 7.2]$ fm Ar: $R_n < 4.33$ fm

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

• vBDX-DRIFT: Basics

• Signals in CS₂ and CF₄

• Measurements of R_n via CEvNS

- Neutron density distributions: Results
- Measurements of the WMA via CEvNS
- Weak mixing angle at vBDX-DRIFT
- Neutrino Nonstandard Interactions (NSI)

Neutrino EM properties in G3 DM detectors

Neutron density distributions: Results

D.A.S. et al. PRD, 104 (2021)

Measurements of the WMA via CEvNS

 $F_W(q^2) = \frac{1}{Q_W} \left[Z \, g_V^p \, F_V^p(q^2) + (A - Z) \, g_V^n \, F_V^n(q^2) \right]$

$$g_V^p = 1/2 - 2\sin^2\theta_W$$

 \Rightarrow Measurements of CEvNS are done at $q \ll \Lambda_{EW}$

 \Rightarrow Done using CsI and LAr COHERENT data, recently using Dresden-II data

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

- vBDX-DRIFT: Basics
- \bullet Signals in CS $_2$ and CF $_4$
- Measurements of R_n via CEvNS
- Neutron density distributions: Results
- Measurements of the WMA via CEvNS
- Weak mixing angle at vBDX-DRIFT
- Neutrino Nonstandard Interactions (NSI)

Neutrino EM properties in G3 DM detectors

Weak mixing angle at vBDX-DRIFT

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

vBDX-DRIFT: Basics

Signals in CS₂ and CF₄

• Measurements of *R_n* via CEvNS

 Neutron density distributions: Results

 Measurements of the WMA via CEvNS

 Weak mixing angle at vBDX-DRIFT

 Neutrino Nonstandard Interactions (NSI)

Neutrino EM properties in G3 DM detectors

Final remarks

How this compares with COHERENT?

Csl: $q \in [35, 68]$ MeV

Csl: $q \in [38, 78]$ MeV

*v*BDX-DRIFT: *q* ⊂ [78, 397] MeV

$$\mathcal{L}_{\text{NSI}} \sim G_F \bar{\nu}_a \gamma_\mu (1 - \gamma_5) \nu_b \, q \gamma^\mu \epsilon^q_{ab} q$$

Initial state flavor, v_{μ} : Only $\epsilon_{\mu b}$ parameters are testable

environments and measurements

CEvNS physics with the vBDX-DRIFT detector

Why Coherent Elastic v-nucleus

• vBDX-DRIFT: Basics

Scattering (CEvNS)?

CEvNS: Cross section,

- Signals in CS₂ and CF₄
- Measurements of R_n via CEvNS
- Neutron density distributions: Results
- Measurements of the WMA via CEvNS
- Weak mixing angle at vBDX-DRIFT
- Neutrino Nonstandard
 Interactions (NSI)

Neutrino EM properties in G3 DM detectors

Final remarks

Region I: Deviations are small, $\epsilon^{u}_{\mu\mu} \rightarrow 0$ Region II: NSI exceeds SM by ~ 2 \Rightarrow Destructive interference

vBDX-DRIFT CS ₂ (7-years)			COHERENT CsI (1-year)	
$\epsilon^{u}_{\mu\mu}$	$[-0.013, 0.011] \oplus [0.30, 0.32]$	$\epsilon^{u}_{\mu\mu}$	$[-0.06, 0.03] \oplus [0.37, 0.44]$	
$\epsilon^{u}_{e\mu}$	[-0.064, 0.064]	$\epsilon^{u}_{e\mu}$	[-0.13, 0.13]	

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

- Neutrino EM current
- Constraints I
- Constraints II
- Contributions to CEvNS and v e ES

 Expectations at a 1-ton detector (XENON1T)

- Sensitivities: procedure
- Nuclear recoils
- Electron recoils

Final remarks

Neutrino EM properties in G3 DM detectors

Neutrino EM current

Parametrization and model-independent results derived by Kayser PRD 26, 1982 (1662) and Nieves PRD, 26, 1982 (3152)

$$\langle v_i | j_\mu | v_j \rangle = f_Q(q^2)_{ij} \gamma_\mu + f_A(q^2)_{ij} (q^2 \gamma_\mu - q_\mu q) + i\sigma_{\mu\nu} q^\nu [f_M(q^2)_{ij} - if_E(q^2)_{ij} \gamma_5]$$

Contributions to CEvNS and

Why Coherent Elastic v-nucleus

Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM current
Constraints I
Constraints II

DM detectors

v - e ES

Neutrino EM properties in G3

- Sensitivities: procedure
- Nuclear recoils

Electron recoils

Final remarks

⇒ Diagonal EM FFs
$$(q^2 \rightarrow 0)$$
:

 \Rightarrow Diagonal EM FFs:

 \Rightarrow Off-diagonal EM FFs:

$$\begin{array}{ll} f_Q \to Q_\nu & & f_A \to a_\nu \\ f_M \to \mu_\nu & & f_E \to \epsilon_\nu \end{array}$$

$$\underbrace{f_E(q^2)_{ii} = 0 \text{ (CP conserved)}}_{\text{Dirac } \nu} \qquad \underbrace{f_A(q^2)_{ii} \neq 0}_{\text{Majorana } \nu}$$
Non-zero for v_D and $v_M \qquad \Rightarrow$ Transitions

Constraints I

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

Neutrino EM current

Constraints I

Constraints II

• Contributions to CEvNS and v - e ES

 Expectations at a 1-ton detector (XENON1T)

• Sensitivities: procedure

Nuclear recoils

Electron recoils

Final remarks

These couplings contribute to a variety of processes

The most widely considered: μ_{ν}

Astrophysical bounds

Constraints II

Laboratory limits

More robust than astrophysical bounds. Follow from

v - e scattering using solar and reactor neutrino fluxes

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

Neutrino EM current

Constraints I

Constraints II

• Contributions to CEvNS and v - e ES

 Expectations at a 1-ton detector (XENON1T)

Sensitivities: procedure

Nuclear recoils

Electron recoils

 μ_{v} contribution to CEvNS (NR) event rates

Vogel & Engel, PRD, 39 (1989)

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and

measurements

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

Neutrino EM current

Constraints I

Constraints II

• Contributions to CEvNS and v - e ES

 Expectations at a 1-ton detector (XENON1T)

• Sensitivities: procedure

Nuclear recoils

• Electron recoils

Final remarks

$$\frac{d\sigma_{\nu-N}}{dE_r} = \pi \alpha Z^2 \frac{\mu_{\text{eff}}^2}{m_e^2} \left(\frac{E_{\nu} - E_r}{E_{\nu} E_r}\right) F^2(E_r)$$

Spectral distortions, particularly relevant

at low recoil energies

 μ_{ν} contribution to $\nu - e$ (ER) event rates

Vogel & Engel, PRD, 39 (1989)

$$\frac{d\sigma_{\nu-e}}{dE_r} = \pi \alpha \frac{\mu_{\text{eff}}^2}{m_e^2} \left(\frac{E_{\nu} - E_r}{E_{\nu} E_r} \right)$$

Same spectral features

A detector sensitive to both allows an

interplay between ER and NR measurements

Expectations at a 1-ton detector (XENON1T)

Sensitivities: procedure

Why Coherent Elastic v-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

- Neutrino EM current
- Constraints I
- Constraints II
- Contributions to CEvNS and v e ES
- Expectations at a 1-ton detector (XENON1T)

Sensitivities: procedure

Nuclear recoils

Electron recoils

Final remarks

Generate toy experiments assuming SM signals

For CEvNS assume two background hypotheses + two thresholds

25% and 68% of the signal rate & 1 keV and 0.3 keV

For v - e scattering use predicted background

material radioactivity, $\beta\beta$ of ¹³⁶Xe...

XENONnT, 2007.08796

DARWIN, 2006.03114 ¹³⁶Xe Rate [count/tonne/year/keV] 10¹ 10¹ 10⁻¹ 10⁻¹ 10⁻³ Materials pep 124 Xe Radon v capture Krypton 10^{-3} 800 200 400 600 1000 1200 1400 0 Energy [keV]

Nuclear recoils

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

Neutrino EM current

Constraints I

• Constraints II

• Contributions to CEvNS and v - e ES

 Expectations at a 1-ton detector (XENON1T)

• Sensitivities: procedure

Nuclear recoils

Electron recoils

Electron recoils

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

Neutrino EM current

Constraints I

Constraints II

• Contributions to CEvNS and v - e ES

 Expectations at a 1-ton detector (XENON1T)

Sensitivities: procedure

Nuclear recoils

Electron recoils

Final remarks

Sensitivities enter the region not constrained by astrophysical

arguments... Region where some TeV-related new physics predicts $\mu_{\nu} \neq 0$

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

Final remarks

Conclusions

Conclusions

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

CEvNS physics with the vBDX-DRIFT detector

Neutrino EM properties in G3 DM detectors

Final remarks

Conclusions

CEvNS measurements (facilities) offer a rich neutrino program agendas: *v*-cleus, CONUS, CONNIE, COHERENT (SNS), ESS, NuMI & LBNF, DARWIN

Directional detectors (vBDX-DRIFT) combined with a high-energy neutrino beam (e.g. LBNF) is suitable for CEvNS measurements in CS₂, CF₄, C₈H₂₀Pb...

Cher aspects of directionality yet to be explored: Identification of DM spin [?]

SM measurements include: Weak mixing angle at $\langle Q \rangle \simeq 0.01 - 0.1 \text{ GeV}$ neutron density distributions of e.g. C, F, S, Pb with sensitivities of order 3-8%

BSM searches include: Neutrino NSI, NGI and light vector and scalar mediators, sterile *v*'s Sensitivities for NSI: $\mathcal{O} \sim 10^{-2}$ couplings can be tested

An agenda for light DM searches (MeV) is defined as well

 $\pi^0 \rightarrow \gamma + \gamma_{\mathsf{Dark}} \rightarrow \gamma + \mathsf{DM} + \mathsf{DM}$

Work in progress

Thanks!