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Neutrino processes at different energy scales

10 3 10 2 10 1 100 101

E  [GeV]

Low Energy

Inverse  decay (IBD)
Elastic e e scattering (EvES)

CEvNS

Intermediate Energy

Quasielastic scattering (QES)
Elastic scattering (ES)

Resonant single-  production
(RES)

Neutrino processes at low and intermediate energies
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Intermediate regime

QES (CC) ES (NC) RES (NC & CC)
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QES: MINERvA, 2013 (FNAL)

MINERvA, 2020

ES: MiniBooNE, 2010 (FNAL)

RES: K2K, 2008 (JPARC)

T2K, 2017

MINERvA, 2017

Theoretically calculations are challenging

Theoretical uncertainties are large!
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A few comments on theoretical uncertainties

Dominant effects

Pauli blocking: Final-state fermion states must be assured an unoccupied quantum state.

Fermi motion: Nucleons in the nuclear environment are not at rest.

Reinteractions: The recoiling nucleon can reinteract in the nuclear medium

Environmental effects are ∼ 30% − 20%

Nuclear effects are relevant

Effects in MC generators:

GENNIE & NuWro Differences ∼ 10%
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Low-energy regime

Inverse beta decay (IBD)

�e + p → e+ + n
Used in reactor neutrino detection. Daya Bay, 2015

Uncertainties of ∼ 1% (�n)

CEvNS

� + (A,Z) → � + (A,Z)
Measured at the SNS, 2017 (first ever)

Uncertainties of ∼ 1 − 5% (rms of n0 distribution)

Environmental effects are absent

Nuclear effects are subdominant

Clean processes!

In neutrino standards

CEvNS cross section is “huge”
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CEvNS: Cross section, environments and measurements
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CE�NS cross section

CE�NS occurs when the neutrino energy E� is such that nucleon amplitudes
sum up coherently ⇒ cross section enhancement

� ≳ RN ⇒ q ≲ 200 MeV

ER = q2∕2mN ⇒ E� ≃
√
Emax

R
mN∕2

E� ≲ 200 MeV

Freedman, 1974; Drukier & Stodolsky, 1984
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CEvNS environments

Reactor (CONUS, NUCLEUS, RICOCHET...)
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Neutrino sources and CEvNS “regimes”

Decay-in-flight neutrinos sources can as well be used

NuMI and LBNF

D.A.S. et al. arXiv:2103.10857
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Entering the “high-energy” window requires a substantial amount of �’s in the low-enery tail

LBNF provides that!
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Measurements

CE�NS observed by COHERENT more than 40 years after its prediction Akimov et. al. 2017

COHERENT uses neutrinos produced at the SNS

@ Oak Ridge National Laboratory in the collision p − Hg

�+
→ �+ + ��

�+
→ e+ + �e + �̄�

Presence of CE�NS favored @ the 6.7� level. Data consistent with SM @ the 1�

νµ
ν̄µ
νe
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Ongoing projects worldwide

∙ Argentina vIOLETA (Neutrino Interaction Observation with a Low Energy Threshold Array)

∙ Mexico SBC (Scintillating Bubble Chamber)

∙ Belgium SoLid (Search for oscillations with Lithium 6 detector)

∙ South Korea NEON (Neutrino Elastic-scattering Observation experiment with NaI[Tl] crystal)
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Multi-ton DM detectors

Lux-Zeplin (LZ) [G2 detector]

SURF, South Dakota, USA

Total: 10 ton of LXe

Fiducial: 5.6 ton of LXe

DM sensitivity: 10−48 cm2

XLZD Consortium: 40-100 ton

Neutrino-induced NR and ER will be abundant

in thrid generation DM detectors (XLZD)

D.A.S, De Romeri, Flores, Papoulias, 2006.12457
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Physics program (opportunities)

The combination of measurements from different sources

and different detectors define a rather rich physics program

CEvNS measurements

CONUS (Ge), CONNIE (Si), COHERENT (Ar, CsI, NaI)

�BDX-DRIFT (CS2, CF4, C8H20Pb), XLZD (LXe), Captain-Mills (LAr)

SM measurements

Measurements of sin2 �W at a new energy scale

... Complementary to DUNE measurements in electron channel

Measurements of neutron distributions in e.g. Ge, C, S, F, Pb...

BSM searches

Neutrino NSI, NGI, Dark-neutrino interactions, dark sectors
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CEvNS physics with the �BDX-DRIFT detector
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�BDX-DRIFT: Basics

➪ Directional low pressure TPC detector

➪ Operates with CS2 (other gases possible CF4, C8H20Pb...)

➪ NRs mainly in sulfur induce ionization

➪ CS−
2

ions used to transport the ionization to the readout planes (MWPCs)
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Signals in CS2 and CF4

D.A.S. et al. arXiv:2103.10857
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Measurements of Rn via CEvNS

FW (q2) =
1

QW

[
Z gp

V
F p
V
(q2) + (A −Z) gn

V
F n
V
(q2)

]

⇒ F p
V

: Depends on Rp ⇒ known at 0.1% level (e− −N scattering)

⇒ F n
V

: Depends on Rn ⇒ poorly known (hadron experiments)

NCEvNS = NCEvNS(Rn) NExp

CEvNS
⇒ Rn

Miranda et al, JHEP 05 (2020)
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Neutron density distributions: Results

D.A.S. et al. PRD, 104 (2021)

High-energy nature of the flux

⇒ Moderate dependence on the FF

⇒ Accounted for in signal uncertainty ∼ 10%

D.A.S. et al. PRD, 104 (2021)
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Measurements of the WMA via CEvNS

FW (q2) =
1

QW

[
Z gp

V
F p
V
(q2) + (A −Z) gn

V
F n
V
(q2)

]

gp
V
= 1∕2 − 2 sin2 �W

⇒ Measurements of CEvNS are done at q ≪ ΛEW

⇒ Done using CsI and LAr COHERENT data, recently using Dresden-II data

ML QF: s2
W

= 0.086+0.347
−0.038

(1�)

Iron-filter QF: s2
W

= 0.191+0.039
−0.045

(1�)

COHERENT LAr: s2
W

= 0.258+0.048
−0.050

(90%CL)

D.A.S, De Romeri, Papoulias, 2203.02414
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Weak mixing angle at �BDX-DRIFT
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Neutrino Nonstandard Interactions (NSI)

NSI ∼ GF �̄a
�(1 − 
5)�b q

��q

ab
q

Initial state flavor, ��: Only ��b parameters are testable

D.A.S. et al, PRD 104 (2021)
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Neutrino EM current

Parametrization and model-independent results derived by

Kayser PRD 26, 1982 (1662) and Nieves PRD, 26, 1982 (3152)

γ

νi νj

⟨�i|j�|�j⟩ = fQ(q
2)ij
� + fA(q

2)ij(q
2
� − q�∕q) + i���q

�[fM (q2)ij − ifE(q
2)ij
5]

⇒ Diagonal EM FFs (q2 → 0): fQ → Q� fA → a�
fM → �� fE → ��

⇒ Diagonal EM FFs: fE(q
2)ii = 0 (CP conserved)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Dirac �

fA(q
2)ii ≠ 0

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Majorana �

⇒ Off-diagonal EM FFs: Non-zero for �D and �M ⇒Transitions
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Constraints I

These couplings contribute to a variety of processes

The most widely considered: ��

Astrophysical bounds

Raffelt, Phys. Rep. 198 (1990)

Spin-flip scattering in SN

�’s are trapped by EW int
γ

νR

νL

�� ≲ 3 × 10−12�B

Arceo et. al, arXiv:1910.10568

Globular cluster stars

!2 + |k⃗|2 ≥ 0
γ

ν

ν

�� ≲ 2.2 × 10−12�B

My view/understanding:

These bounds should be understood as order of magnitude estimations
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Constraints II

Laboratory limits

More robust than astrophysical bounds. Follow from

� − e scattering using solar and reactor neutrino fluxes

10-14 10-13 10-12 10-11 10-10 10-9 10-8

��/�B

KamLAND

GEMMA

TEXONO

Borexino

90% CL laboratory limits
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Contributions to CEvNS and � − e ES

�� contribution to CEvNS (NR) event rates Vogel & Engel, PRD, 39 (1989)

d��−N
dEr

= ��Z2
�2

eff

m2
e

(
E�−Er

E�Er

)
F 2(Er)

Spectral distortions, particularly relevant

at low recoil energies

�� contribution to � − e (ER) event rates Vogel & Engel, PRD, 39 (1989)

d��−e
dEr

= ��
�2

eff

m2
e

(
E�−Er

E�Er

)
Same spectral features

A detector sensitive to both allows an

interplay between ER and NR measurements



Why Coherent Elastic �-nucleus

Scattering (CEvNS)?

CEvNS: Cross section,

environments and

measurements

CEvNS physics with the

�BDX-DRIFT detector

Neutrino EM properties in G3

DM detectors

● Neutrino EM current

● Constraints I

● Constraints II

● Contributions to CEvNS and

� − e ES

● Expectations at a 1-ton

detector (XENON1T)

● Sensitivities: procedure

● Nuclear recoils

● Electron recoils

Final remarks

Diego Aristizabal, USM, January 11, 2024 DIAS STP seminar, Dublin - p. 28/33

Expectations at a 1-ton detector (XENON1T)

Ideal detector: 100% acceptance, no Gaussian smearing

Signal dominated by 8B

Rather sensitive to Er thresholds

Signal dominated by pp

subdominant 7Be (0.8 MeV)

less sensitive to Er thresholds
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Sensitivities: procedure

✍ Generate toy experiments assuming SM signals

✍ For CEvNS assume two background hypotheses + two thresholds

✔ 25% and 68% of the signal rate & 1 keV and 0.3 keV

✍ For � − e scattering use predicted background

✔ material radioactivity, �� of 136Xe...

XENONnT, 2007.08796

DARWIN, 2006.03114
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Nuclear recoils
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Electron recoils
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Sensitivities enter the region not constrained by astrophysical

arguments... Region where some TeV-related new physics predicts �� ≠ 0
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Final remarks
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Conclusions

✍ CEvNS measurements (facilities) offer a rich neutrino program

agendas: �-cleus, CONUS, CONNIE, COHERENT (SNS), ESS, NuMI & LBNF, DARWIN

✍ Directional detectors (�BDX-DRIFT) combined with a high-energy neutrino beam (e.g. LBNF)

is suitable for CEvNS measurements in CS2, CF4, C8H20Pb...

✍ Directional detection improves background rejection

Other aspects of directionality yet to be explored: Identification of DM spin [?]

✍ SM measurements include: Weak mixing angle at ⟨Q⟩ ≃ 0.01 − 0.1GeV

neutron density distributions of e.g. C, F, S, Pb with sensitivities of order 3-8%

✍ BSM searches include: Neutrino NSI, NGI and light vector and scalar mediators, sterile �’s

Sensitivities for NSI:  ∼ 10−2 couplings can be tested

✍ An agenda for light DM searches (MeV) is defined as well

�0
→ 
 + 
Dark → 
 + DM + DM

Work in progress

Thanks!


	Why Coherent Elastic -nucleus Scattering (CEvNS)?
	Neutrino processes at different energy scales
	Intermediate regime
	A few comments on theoretical uncertainties
	Low-energy regime

	CEvNS: Cross section, environments and measurements
	CENS cross section
	CEvNS environments
	Neutrino sources and CEvNS ``regimes''
	Measurements
	Ongoing projects worldwide
	Multi-ton DM detectors
	Physics program (opportunities)

	CEvNS physics with the BDX-DRIFT detector
	BDX-DRIFT: Basics
	Signals in CS2 and CF4
	Measurements of Rn via CEvNS
	Neutron density distributions: Results
	Measurements of the WMA via CEvNS
	Weak mixing angle at BDX-DRIFT
	Neutrino Nonstandard Interactions (NSI)

	Neutrino EM properties in G3 DM detectors
	Neutrino EM current
	Constraints I
	Constraints II
	Contributions to CEvNS and -e ES
	Expectations at a 1-ton detector (XENON1T)
	Sensitivities: procedure
	Nuclear recoils
	Electron recoils

	Final remarks
	Conclusions


