

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

REMOTE SENSING THE CORONAL MAGNETIC FIELD USING SOLAR S-BURSTS

Brendan P. Clarke^{1,2}, Diana E. Morosan^{1,3}, Peter T. Gallagher^{2,1}, Vladimir Dorovskyy⁴, Alexander Konovalenko⁴ & Eoin P. Carley^{1,2}

¹ Trinity College Dublin, Ireland
² Dublin Institute for Advanced Studies, Ireland
³ University of Helsinki, Finland
⁴ Institute of Radio Astronomy of NASU, Ukraine

OUTLINE

- Solar radio emission and Solar Radio Bursts 1.
- 2. Solar S-bursts
- Motivation 3.
- Results 4.
- 5. Conclusions

YERAC 2019 - Brendan Clarke

SOLAR RADIO EMISSION

Active regions are also associated with radio emission:

- 1. Gyrosynchrotron
- 2. Plasma Emission -

$$f_p \approx 9000 \sqrt{N_e}$$

YERAC 2019 - Brendan Clarke

EMISSION AT THE PLASMA FREQUENCY

SOLAR RADIO BURSTS

SOLAR RADIO BURSTS

SOLAR S-BURSTS

MOTIVATION

- energy release and flares.
- strength.

A full understanding of solar radio emission is essential in order to work towards a complete model of solar

Investigate whether S-bursts can provide a potential diagnostic of the coronal plasma - e.g magnetic field

credit: NASA/Goddard Space Flight Center Scientific Visualisation Studio

SCIENCE QUESTIONS

• What are the spectral properties of S-bursts?

• Do these observed properties align with any existing models?

 Can we extract information about the coronal plasma via observations of S-bursts?

INSTRUMENTATION

a. UTR-2

UTR-2

- Frequency Range: 8-32 MHz
- Time Resolution: 100 ms
- 2040 array elements (dipoles)
- Frequency resolution (4 kHz)
- Sensitivity $\geq 10 \text{ Jy}$

b. LOFAR

LOFAR

- Frequency Range: 10-90 MHz (LBAs)
- Time Resolution: 10 ms
- 7000 antennas (time of observations)
- Frequency resolution (12.5 kHz)
- Sensitivity ≥ 2.5 Jy

SPECTRAL PROPERTIES OF S-BURSTS

08.43.29

- 1. Assumes S-bursts display long lasting sabre shaped features.
- 2. Assumes frequency is linearly proportional to instantaneous bandwidth.
- 3. Assumes dynamic source with a specific drift rate.
- 4. Assumes S-burst are generated in a turbulent environment.

$$B = \frac{\sqrt{8}\pi m_e}{e} f \sqrt{\frac{\Delta f}{f}} \frac{1}{sin\theta}$$

 $v_s = \frac{eB}{m_c} \frac{1}{4\pi^c} c$

YERAC 2019 - Brendan Clarke

YERAC 2019 - Brendan Clarke

YERAC 2019 - Brendan Clarke

DRIFT RATE

- 1. Assumes long lasting sabre shaped features.
- 2. Assume frequency is linearly proportional to instantaneous bandwidth.
- 3. Assumes dynamic source with a specific drift rate.
- 4. Assumes S-bursts are generated in a turbulent environment.

- 1. Assumes long lasting sabre shaped features.
- 2. Assumes frequency is linearly proportional to instantaneous bandwidth.
- 3. Assumes dynamic source with a specific drift rate.
- 4. Assumes S-bursts are generated in a turbulent environment.

- 1. Assumes long lasting sabre shaped features.
- 2. Assumes frequency is linearly proportional to instantaneous bandwidth.
- 3. Assumes dynamic source with a specific drift rate.
- 4. Assumes S-bursts are generated in a turbulent environment.

- 1. Assumes long lasting sabre shaped features.
- 2. Assumes frequency is linearly proportional to instantaneous bandwidth.
- 3. Assumes dynamic source with a specific drift rate.
- 4. Assumes S-bursts are generated in a turbulent environment.

Melnik et al. (2010) Model

- 1. Assumes long lasting sabre shaped features.
- 2. Assumes frequency is linearly proportional to instantaneous bandwidth.
- 3. Assumes dynamic source with a specific drift rate.
- 4. Assumes S-bursts are generated in a turbulent environment.

REMOTE SENSING THE CORONAL MAGNETIC FIELD

and LOFAR.

•

S-bursts can provide a proxy for measuring the coronal magnetic field.

This work is currently published in the journal Astronomy and Astrophysics.

Extensive analysis of spectral properties of over 3000 S-bursts were measured using UTR-2

Melnik et al. (2010) model can account for the observed spectral properties of S-bursts.

