Host Galaxies of Radio Sources in LOFAR Deep Fields

Rohit Kondapally University of Edinburgh

Credits: Philip Best, LOFAR KSP,

(Radio): Cyril Tasse, Tim Shimwell, Pepe Sabater, Martin Hardcastle (Multi-wavelength): Ken Duncan, Matteo Bonateo

Motivation and Outline

Study properties of radio galaxies and their hosts and how these properties evolve

- Finding counterparts of radio sources crucial for maximising scientific output
 - Allows photo-z estimate (luminosity, physical sizes, etc.) and physical parameters
- Source classification: Separate SFGs, AGN, HERG/LERGs

Radio Data (LOFAR HBA)

Field	Data before Cycle 10	Allocated time Cycle 10-13	Analysed for Data Release 1	Depth (µJy/bm)
Boötes	80 hrs	80 hrs	80 hrs	~37
Elais-N1	180 hrs	160 hrs	170 hrs	~20
Lockman Hole	72 hrs	80 hrs	112 hrs	~25

Deep Fields Release 1: ~ 100,000 sources over 30 sq. deg. with excellent multi-wavelength data

1 degree

1 degree

٩,

15 arcmin

15 arcmin

5 arcmin

5 arcmin

Fireworks region

8 hrs

Fireworks region

8 hrs

170 hrs

Optical Data

- Multi-wavelength information cruicial in maximising scientific output
- ELAIS-N1 has deep photometry
 - Optical ugrizy bands: PanSTARRS, HSC, CFHT/MegaCAM
 - IR: UKIDSS J and K, Spitzer 3.6, 4.5, 5.8, 8 and 24 μm
 - FIR: Herschel bands
 - GALEX NUV and FUV
- Forced, matched aperture catalogues
 - Images re-gridded onto common pixel scale
 - Create deep detection images
 - Perform forced photometry (using Sextractor)

Likelihood Ratio Cross-Match

• Likelihood Ratio (LR) technique - statistical tool to find counterparts to radio galaxies

$$LR = \frac{f(r)q(m,c)}{n(m,c)}$$

- 1. Magnitude info. only to estimate q(m) (Fleuren+2012)
- 2. Split by (i-4.5) colours bins to estimate q(m,c)
- 3. Rederive LR's and iterate until q(m,c) converges (Nisbet 2018, Williams+2019)
- In ELAIS-N1: Cross-ID fraction > 95%
 - Visual classification used when LR is not suitable

Likelihood Ratio Results

Photometric Redshifts

- Credit: Ken Duncan
- An optimised hybrid technique combining templates and machine learning (Duncan+2019)
- Robust till $z\sim1.5$ for galaxies and z>3 for AGN

Photometric Redshifts

- Credit: Ken Duncan
- An optimised hybrid technique combining templates and machine learning (Duncan+2019)

Physical Paramters/Classification

- Extraction of physical parameters ongoing using
 - MagPHYS, CIGALE, AGNFitter and Bagpipes
- Bagpipes: Good fits when no AGN component

Physical Paramters/Classification

- Source Classification (SFG vs. AGN)
 - MIR colour-colour diagnostic (Stern+2005 and Donley+2012)
 - FIR-radio correlation using 24µm flux (Bonzini+2013) and 250µm flux (Hardcastle+2016)

Radio Luminosity Function

Conclusions

- Deep LOFAR imaging at 20 µJy/bm level more data being processed!
- Statistical LR cross-match rate of > 95%
- In progress: Extracting physical properties
 - Finalising source classification methods
- LOFAR Deep fields DR1: Multi-wavelength properties of ~100,000 radio sources in premier Northern extragalactic fields
 - Data proucucts released within consortium
 - Public data release late 2019/early 2020 (planned)

Physical Paramters/Classification

- Extraction of physical parameters ongoing using
 - MagPHYS, CIGALE, AGNFitter and Bagpipes
- Source Classification (SFG vs. AGN)
 - MIR colour-colour diagnostic (Stern+2005 and Donley+2012)
 - FIR-radio correlation using 24µm flux (Bonzini+2013) and 250µm flux (Hardcastle+2016)