

Dust production in galaxies at z > 6

Aleksandra Leśniewska Supervisor: Michał Jerzy Michałowski Adam Mickiewicz University in Poznań, Poland

This presentation has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730562 [RadioNet]

Introduction

NGC 4013

Thackeray's Globules in IC 2944

NGC 1999

Horsehead Nebula

Introduction

Dust size ~ 100 nm

Carbon, silicon, magnesium, iron, and oxygen

Cosmic dust

M78

Aim

What is the mechanism of dust production at z>6?

100

Environment:

- high density
- low temperature

Stellar sources:

- AGB stars
- SNe

Non-stellar sources:

- grain growth in the ISM
- ?

Sample & methodology

Table 1. List of	f physical pro	operties of the galaxies in our sample.
------------------	----------------	---

	z	M_{dyn}	\mathbf{M}_{dust}	Mgas	$\mathbf{M}_{stellar}$	Ref
		$(10^{10} \ M_{\odot})$	$(10^7 \mathrm{~M}_{\odot})$	$(10^{11} M_{\odot})$	$(10^9 \mathrm{~M}_{\odot})$	
HATLAS	6.027	2.6	19±4 42±7	0.16 ± 0.06		1
HIMIKO	6.595	1.168 †	<0.16 †		35^{+15}_{-26}	2, 3
CR7	6.604		—		20	4
CR7 Clump A	6.601	3.9 ± 1.7	< 0.81			5
CR7 Clump C-2	6.598	2.4 ± 1.9	< 0.81		—	5
SPT0311-58E	6.9	7.7 †	40 ± 20	0.4 ± 0.2	35 ± 15	6
SPT0311-58W	6.9	54.222 [†]	250 ± 160	2.7 ± 1.7		6
SXDF	7.2	5	<0.29 †		$0.347^{+0.616}_{-0.166}$	7
J1342+0928	7.54	<15 <3.2	24.5±18.5	< 0.12		8
MACS0416_Y1	8.3118		0.36±0.07 0.82±0.16		$4.8^{+6.8}_{-1.8}$ $5.1^{+7.1}_{-4.9}$	9
A2744_YD4	8.38		$0.55^{+1.96}_{-0.17}$		$1.97^{+1.45}_{-0.66}$	10

References. † indicates the value determined in this work. (1) Zavala et al. (2018); (2) Carniani et al. (2018); (3) Ouchi et al. (2009); (4) Sobral et al. (2015); (5) Matthee et al. (2017); (6) Marrone et al. (2018); (7) Inoue et al. (2016); (8) Venemans et al. (2017); (9) Tamura et al. (2018); (10) Laporte et al. (2017).

Dust Yield per star = $M_{dust}/N(M_0-M_1)$

Required dust yields per star at z>6

1. AGB stars were not able to produce observed dust.

2. SNe could produce dust efficiently as long as they do not destroy it by shocks.

- 3. Non-stellar mechanism was responsible for dust presence:
 - grain growth in the ISM.

Thank You!