

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Institiúid Ard-Léinn | Dublin Institute for Bhaile Átha Cliath | Advanced Studies

The formation and evolution of a shock driven by coronal mass ejection in the low corona

Ciara A. Maguire 1,2, Eoin P. Carley 1,2, Peter T. Gallagher 2,1

1 Trinity College Dublin, Ireland

2 Dublin Institute for Advanced Studies, Ireland

Outline

- Shocks in the solar corona and their radio signature
- Study of 2 September 2017 CME and Type II radio burst
 - Compare three methods to derive Alfvén Mach number.
- Results and conclusions

What are solar radio bursts?

~10 Open magnetic, field Frequency (MHz) Shock Type III ~90 Time (minutes) Flux rope Particle Flare

Adapted from Amari et al. (2014)

What are solar radio bursts?

Adapted from Amari et al. (2014)

Type II solar radio burst

Low Frequency ARay (LOFAR)

Irish Low Frequency ARay (I-LOFAR)

High Band Antennas (110-240MHz) Low Band Antennas (10-90MHz)

lofar.ie

2 September 2017

Alfvénic Mach Number

Method 1 Standoff Distance

$$M_A = \sqrt{1 + [1.24\delta - \frac{(\gamma - 1)}{(\gamma + 1)}]^{-1}}$$

Method 2 CME speed / Alfvén speed $M_A = v_{CME} / v_A$

Method 3 Band-Splitting $M_A = \sqrt{X(X+5)/2(4-X)}$

Method 1: Normalised Standoff Distance (δ)

 $\delta = \Delta/\mathrm{R}_c$

$$M_A = \sqrt{1 + [1.24\delta - (\gamma - 1)/(\gamma + 1)]^{-1}}$$

Method 2: CME speed to Alfvén speed Ratio

Method 2: CME speed to Alfvén speed Ratio

Alfvén Speed km/s

Zucca et al. 2014 Model

Method 3: Band-splitting

Trinity College Dublin & Dublin Institute for Advanced Studies

Conclusion

- First solar radio bursts observations by I-LOFAR.
- 3 methods to derive M_A consistent.
- Type II emission begins M_A ≈ 1.6 at ~1.5R_☉ and ceases at ~2.4 R_☉
- Type II emission starts when quasi-perpendicular & ceases when quasi-parallel.

The formation and evolution of a shock driven by coronal mass ejection in the low corona, Maguire et al. A&A, 2019. (submitted.)