Imaging the Solar Corona during the 2015 March 20 Eclipse using LOFAR

Aoife M. Ryan^{1,2,3}, Peter T. Gallagher^{3,1}, Eoin P. Carley^{1,3}, Diana E. Morosan^{4,1}, Michiel A. Brentjens⁵, Pietro Zucca⁵, Richard Fallows⁵, Christian Vocks⁶, Gottfried Mann⁶, Frank Breitling⁶, Jasmina Magdalenic⁷, Alain Kerdraon⁸, Hamish Reid⁹.

¹Trinity College Dublin, Ireland. ²Astrotec Holding B.V., The Netherlands. ³Dublin Institute for Advanced Studies, Ireland. ⁴University of Helsinki, Finland. ⁵ASTRON, The Netherlands. ⁶Leibniz-Institut für Astrophysik Potsdam, Germany. ⁷Royal Observatory of Belgium, Belgium. ⁸Observatoire de Paris, France. ⁹University of Glasgow, UK.

Cover Image: PROBA2/SWAP 174 Å

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Imaging Sun at Radio Frequencies

Image Credit: Mercier & Chambe, 2009

Science Question

How does turbulence in the corona affect observed source size?

Aim

Novel technique to probe coronal source sizes

Novel technique to probe coronal source size.

Partial solar eclipse observed by LOFAR

Credit: Introductory Astronomy, CCAC

120 – 140 MHz

140 – 160 MHz

160 – 180 MHz

- 20-03-2015, 07:20 12: 00 UT
- Interferometric Imaging
- Max baseline ~3.5 km (beam size ~ arcminutes)
- HBA observation (120 MHz 180 MHz)
- Source sizes ~5 10'

Lunar De-occultation Technique

- Not limited by PSF
- Better spatial resolution

Previous Work

- Marsh, Hurford & Zirin, 1980.
- Gary & Hurford, 1986.

Previous Work

- Marsh, Hurford & Zirin, 1980.
- Gary & Hurford, 1986.

Previous Work

- Marsh, Hurford & Zirin, 1980.
- Gary & Hurford, 1986.

Analysis on Simulated Data

Step 1: Simulate solar data

Step 2: Simulate moving lunar limb

Step 3: Difference consecutive intensity slices

Step 4: Find the max intensity in each interval

Step 5: Reconstruct original source sizes

Analysis on Simulated Data

Step 1: Simulate solar data

Step 2: Simulate moving lunar limb

Step 3: Difference consecutive intensity slices

Step 4: Find the max intensity in each interval

Step 5: Reconstruct original source sizes

\$\$ \$

Î

Analysis on Simulated Data

Step 1: Simulate solar data

Step 2: Simulate moving lunar limb

Step 3: Difference consecutive intensity slices

Step 4: Find the max intensity in each interval

Step 5: Reconstruct original source sizes

Dublin

Analysis on Simulated Data

Step 1: Simulate solar data

Step 2: Simulate moving lunar limb

Step 3: Difference consecutive intensity slices

Step 4: Find the max intensity in each interval

Step 5: Reconstruct original source sizes

Analysis on Simulated Data

Step 1: Simulate solar data

Step 2: Simulate moving lunar limb

Step 3: Difference consecutive intensity slices

Step 4: Find the max intensity in each interval

Step 5: Reconstruct original source sizes

Analysis on Simulated Data

Step 1: Simulate solar data

Step 2: Simulate moving lunar limb

Step 3: Difference consecutive intensity slices

Step 4: Find the max intensity in each interval

Step 5: Reconstruct original source sizes

Real Data

 t_0

l1

Î

Trinity College Dublin DIAS

Aoife Maria Ryan | ryana38@tcd.ie

Str T

Î

t₀

 t_1

%7 V N N N

(The second sec

arcsec

t₀

 t_1

(The second sec

Reconstructed Intensity Profiles using De-Occultation Technique

Reconstructed Intensity Profiles using De-Occultation Technique

Reconstructed Intensity Profiles using De-Occultation Technique

Conclusions

- Interferometric imaging of solar eclipse
- Source sizes ~5-10' at 120-180 MHz
- Testing of lunar de-occultation technique

0.150 0.125 0.100 0.075

0.050 0.025

• Resolution beyond that of traditional

interferometry

