

Scuola di Scienze Dipartimento di Fisica e Astronomia

49th Young European Radio Astronomers Conference – Dublin 08/26-29 2019

On the size of the CO-depletion radius in the IRDC G351.77-0.51

Giovanni Sabatini^{1,2,3}

Coautors:

Andrea Giannetti², Stefano Bovino³, Jan Brand², Silvia Leurini⁴, Eugenio Schisano^{2,5}, Thushara Pillai^{6,7} and Karl M.Menten⁷

- ¹ Department of Physic and Astronomy, Bologna, ITALY
- ² INAF Institute of Radioastronomy Italian ARC Node, Bologna, ITALY
- ³ Department of Astronomy, Concepción, CHILE
- ⁴ INAF Astronomical Observatory of Cagliari, Cagliari, ITALY
- ⁵ INAF Institute of Space Astrophysics and Planetology, Roma, ITALY
- ⁶ Max-Planck-Institut of Radioastronomy, Bonn, GERMANY
- ⁷ Institute for Astrophysical Research, Boston, USA

Infrared Dark Clouds (IRDCs)

- Dusty and obscured interstellar regions;
- In absorption against mid-IR background emission;
- Filamentary structures + cold massive cores;
- Nursery of massive stars or/and star clusters;

49th YERAC - August 28th, 2019 - G. Sabatini [02/12]

Infrared Dark Clouds (IRDCs)

Barnard 68 – Ophiuchus

Internal structure:

Nitrogen-bearing species are good density tracers even in the central regions.

> **Carbonbearing species** are unable to follow the cold gas distribution up to the centralcollapsing regions.

49th YERAC - August 28th, 2019 - G. Sabatini [03/12]

CO-depletion:

Depletion factor (f_D)

In different samples of young high-mass star-forming regions (HMSFRs)

(e.g. Thomas & Fuller+ 08; Fontani +12)

$$1 \lesssim f_D \lesssim 10^2$$

beam- and los-averaged values!

The size of the highly-depleted region (depletion radius - R_{dep}) gives us the spatial scales on which:

□ different chemical processes operate in HMSFRs;

 the estimate of H2 from CO and/or the study of the gas-dynamics using CO lines could be misleading.

49th YERAC - August 28th, 2019 - G. Sabatini [05/12]

IRDC G351.77-0.51:

- Most massive, nearest filament in the ATLASGAL survey;
- Early evolutionary stage: lots of cold material and dark in the MIR;
- $M \sim 2000 \ M_{\odot};$
- Distance: I kpc
 - ~ 7.8 kpc from Galactic centre;

(Leurini +11; Leurini +19)

Proximity Nearly perfect filamentary structure

Large scale depletion factor map + radial model

Dec (J2000)

49th YERAC – August 28th, 2019 - G. Sabatini [07/12]

filaments;

Lower values

to the higher

temperatures;

Depletion map:

- Radial symmetry;
- $n(H_2)$ profile: $n(H_2) = n(H_{2,spine}) \left[1 + \left(\frac{R}{R_{flat}} \right)^{\alpha} \right]^{-p/2}$

(Plummer+ 1991)

• $n(C^{18}O)$ by defining a conversion factor with respect to H_2 :

$$R < R_{dep} \qquad f_D = (10, \infty); \qquad \chi_{C^{18}O} = \frac{\chi_{C^{18}O}^E}{f_D}$$
$$R > R_{dep} \qquad f_D = 1; \qquad \chi_{C^{18}O} = \chi_{C^{18}O}^E$$

49th YERAC - August 28th, 2019 - G. Sabatini [09/12]

Depletion model:

49th YERAC - August 28th, 2019 - G. Sabatini [10/12]

Depletion model:

49th YERAC – August 28th, 2019 - G. Sabatini [10/12]

Depletion model:

49th YERAC - August 28th, 2019 - G. Sabatini [10/12]

Caveats and limitations:

- 1. Canonical abundance: $\frac{C^{18}O}{H_2} = 2,1 \times 10^{-7}_{(Giannetti + 17b)}$ 2. Plummer- like profile
- 3. Step-function:

How much R_{dep} size depend on this assumption?

Regions <i>Profiles</i>	C5 $[pc]$	C7 [pc]	F1 [pc]	
Step-function	0.10	0.12	0.15	
$(f_D = 10; \mathbf{R} < R_{dep})$				
Step-function	0.07	0.07	0.08	
$(f_D = \infty; \mathbf{R} < R_{dep})$				
Exponential	0.04	0.04	0.05	
Semi-linear	0.02	0.02	0.03	

The new R_{dep} estimated from the exponential profile are within a factor of about 2-3 of those found from the other two profile.

49th YERAC - August 28th, 2019 - G. Sabatini [11/12]

Conclusions:

- I. Confirmed largescale CO-depletion in HMSFRs: both in main- and sub-filaments;
- 2. Chemistry of the ISM is altered by CO-depletion: suggest caution when using CO for kinematical studies in IRDCs or for estimate M_{H_2} ;
- 3. Estimated size of R_{dep} between 0.08 and 0.12 pc (step-function profile);

Future perspectives:

 Higher resolutions would still be necessary: stronger constrains on the models;

Thanks for your attention

49th YERAC – August 28th, 2019 - G. Sabatini [END]