## The road from Dunsink to the exceptional symmetries of M-theory

*By Leron Borsten and Alessio Marrani *

Our journey starts in the fall of 1843 at the Dunsink Observatory^{[1]}, presiding from its hill-top vantage over the westerly reaches of Dublin City, seat to the then Astronomer Royal Sir William Rowan Hamilton. In the preceding months Hamilton had become preoccupied by the observation that multiplication by a complex phase induces a rotation in the Argand plane, revealing an intimate link between two-dimensional Euclidean geometry and the complex numbers ℂ. Fascinated by this unification of geometry and algebra, Hamilton set about the task of constructing a new number system that would do for three dimensions what the complexes did for two. After a series of trying failures, on October 16th 1843, while walking from the Dunsink Observatory to a meeting of the Royal Irish Academy on Dawson Street, Hamilton surmounted his apparent impasse in a moment of inspired clarity: rotations in *three* dimensions require a *four*-dimensional algebra with one real and *three* imaginary units satisfying the fundamental relations *i*^{2 }= j^{2 }= k^{2 }= ijk = -1. The quaternions ℍ were thus born. Taken in that instant of epiphany, Hamilton etched his now famous equations onto the underside of Broome bridge, a cave painting illuminated not by campfire, but mathematical insight and imagination. Like all great mathematical expressions, once seen they hang elegant and timeless, eternal patterns in the fixed stars merely chanced upon by our ancestral explorers.

Leron Borsten (left) and Alessio Marrani (right) stood before Hamilton’s fundamental relations, Broome bridge Dublin. Leron is currently a Schrödinger Fellow in the School of Theoretical Physics, Dublin Institute for Advanced Studies. Alessio is currently a Senior Grantee at the Enrico Fermi Research Centre, Roma.

This discovery set in motion a subtle dance intertwining algebra and symmetry. It invites diverse interpretations, but that which suits our purpose best is the realisation of the three families of classical simple Lie algebras, 𝔰𝔳(*n*+1), 𝔰𝔲(*n*+1), 𝔰𝔭(*n*+1), as the infinitesimal isometries of the real, complex and quaternionic projective spaces, ℝℙ^{n}, ℂℙ^{n}, ℍℙ^{n}. The classical Lie algebras are unified as rotations in real, complex and quaternionic universes. Yet, the five remaining *exceptional* simple Lie algebras, 𝔤_{2}, 𝔣_{4}, 𝔢_{6}, 𝔢_{7}, 𝔢_{8}, are left unaccounted for and, from this perspective at least, geometrically enigmatic.

To remedy this shortcoming we must first return to Dublin, 1843. Hamilton’s college friend, John T. Graves, on receiving word of the quaternions was struck by their seemingly conjured existence, writing to Hamilton on October 26th: “If with your alchemy you can make three pounds of gold, why should you stop there?”. But two months later to the day, Graves reciprocated, sharing with Hamilton a further generalisation of the real ℝ, complex ℂ, and quaternionic ℍ numbers: the octonions 𝕆. Endowed with seven imaginary units, *e*_{i}, the octonions constitute the largest example of what are now known as the normed division algebras: ℝ, ℂ, ℍ, 𝕆. The multiplication rules of *e*_{i} are governed by the Fano plane, as described in figure 1. Using the Cayley-Dickson doubling procedure we can build each algebra from two copies of its predecessor. However, with each doubling a property is lost. In particular, the octonions, unlike their well-mannered older siblings, are *non-associative*. This makes 𝕆 capricious and uncooperative, but also exceptional.

Figure 1: The Fano plane. Following the lines gives the multiplication rules of the imaginary octonions (going against the arrows, one picks up a minus sign).

Returning to the simple Lie algebras, the sequence ℝℙ^{n}, ℂℙ^{n}, ℍℙ^{n} cries out for the inclusion of 𝕆ℙ^{n}. The octonionic projective line 𝕆ℙ^{1} reproduces the classical Lie algebra 𝔰𝔳(8) already accommodated by ℝℙ^{7}. However, the isometries of the next rung on the ladder, the Cayley plane 𝕆ℙ^{2}, do indeed yield an exceptional algebra, namely 𝔣_{4}. However, the non-associativity of 𝕆 renders 𝕆ℙ^{n} a bona fide projective space for *n *≤ 2 only and consequently the sequence ends here, hence the singular status of 𝔣_{4}. It would seem, naively, that the remaining exceptional algebras do not fit into this story. However, when viewed in the right way, the Cayley plane realisation of 𝔣_{4} can be generalised by considering not one, but two algebras, ℝ ⊗ 𝕆, ℂ ⊗ 𝕆, ℍ ⊗ 𝕆, and 𝕆 ⊗ 𝕆 yielding precisely the exceptional Lie algebras 𝔣_{4}, 𝔢_{6}, 𝔢_{7}, and 𝔢_{8}. Allowing in this construction the two algebras to vary over all ℝ, ℂ, ℍ, 𝕆, we obtain what has come to be known as the Freudenthal-Rosenfeld-Tits *magic**square* of Lie algebras, as depicted in figure 2. Since these early discoveries, the octonions have been found time and time again lurking in the corners where geometry meets algebra.

Figure 2: The Freudenthal-Rosenfeld-Tits magic square of Lie algebras. The exceptional algebras appear in the octonionic row/column. Each entry can be realised as a symmetry of supergravity.

Although it would be fair to say that the octonions have yet to cement themselves in the annals of physics they have over the years appeared in a variety of suggestive guises. One such occurrence takes place in M-theory, an ambitious, albeit tentative, approach to the challenges of quantum gravity and unification. Being fundamentally non-perturbative, M-theory remains largely mysterious. A vital piece of the puzzle in our present understanding is the notion of “U-duality”. The five consistent ten-dimensional superstring theories and eleven-dimensional supergravity are interconnected through a web of U-duality relations, leading to the conjecture that they merely represent disparate glimpses of a single overarching framework living in *D* = 11 spacetime dimensions: M-theory. To make contact with our daily four-dimensional experience one can *compactify*. Although phenomenologically irrelevant, the simplest example of a compactification is given by taking one dimension to form a circle. If the radius of the circle is small enough, this dimension becomes essentially undetectable. By compactifying on an *n*-torus, that is taking *n* dimensions as circles, we can descend to *D* = 11 – *n* dimensions. The low-energy effective field theory limit of M-theory compactified on an *n*-torus is the unique maximally supersymmetric *D* = 11 – *n* supergravity theory. In this limit, the U-dualities of M-theory are reflected in the global symmetries of the corresponding supergravity theory. In particular, for *D* = 5, 4, 3 or *n* = 6, 7, 8 the global symmetry algebras are given by the exceptional Lie algebras sitting in the octonionic row/column of the magic square^{[2]}. We have overlooked a subtlety here. On compactifying eleven-dimensional supergravity to *D* = 5, 4, 3 the 𝔢_{6}, 𝔢_{7}, 𝔢_{8} symmetries are initially hidden, revealing themselves only once a judicious choice of (generalised) electromagnetic duality transformations^{[3]} has been applied.

What happens when some other choice of dualisations is made? Well, the manifest symmetries are typically different in each case. What we demonstrate in our paper is that there exists a choice of dualisations for which a fascinating generalisation of the magic square makes an unexpected appearance. On complexifying the normed division algebras, which we will continue to denote ℝ, ℂ, ℍ, 𝕆, two new algebras in the sequence emerge: the three-dimensional ternions 𝕋, nestled tightly between ℂ and ℍ, and the six-dimensional sextonions 𝕊 sitting half-way from ℍ to 𝕆. Including 𝕋 and 𝕊 in the magic square construction reveals two further half-levels, obscured from view between the oft-visited floors of the ℝ, ℂ, ℍ, 𝕆 edifice. In particular, the 𝕋 ⊗ 𝕆 and 𝕊 ⊗ 𝕆 entries yield the non-reductive exceptional Lie algebras 𝔢_{6¼} and 𝔢_{7½}, living half-lives somewhere in-between 𝔢_{6}, 𝔢_{7}, and 𝔢_{8}. Remarkably, the entire extended magic square, and so implicitly our enlarged ℝ, ℂ, 𝕋, ℍ, 𝕊, 𝕆 family, is realised through the symmetry algebras of supergravity.

*A kind of magic*, if you will.

^{[1]} Now a constituent of the Astronomy and Astrophysics section of the School of Cosmic Physics, Dublin Institute for Advanced Studies.

^{[2]} For all the group theory and supergravity aficionados, please note we are not paying attention to the particular real forms that appear here and throughout.

^{[3]} Not to be confused with the U-dualities of M-theory.

### Further reading

**Normed division algebras and the magic square:**

J.C. Baez, The Octonions, Bull. Am. Math. Soc. 39 (2002), 145–205.

**Supergravity, global symmetries and the magic square:**

E. Cremmer, B. Julia, and J. Scherk, “Supergravity theory in 11 dimensions,” Phys. Lett. B76 (1978) 409–412.

E. Cremmer and B. Julia, “The SO(8) supergravity,” Nucl. Phys. B159 (1979) 141.

E. Cremmer, B. Julia, H. Lu, and C. Pope, “Dualization of dualities. 1.,” Nucl.Phys. B523 (1998) 73–144, arXiv:hep-th/9710119

B. Julia, “Group disintegrations,” in Superspace and Supergravity, S. Hawking and M. Rocek, eds., Nuffield Gravity Workshop, pp. 331–350. Cambridge University Press (1980).

M. Günaydin, G. Sierra, and P. K. Townsend, “Exceptional supergravity theories and the magic square,” Phys. Lett. B133 (1983) 72.

L. Borsten, M. J. Duff, L. J. Hughes, and S. Nagy, “A magic square from Yang-Mills squared,” Phys.Rev.Lett. 112 (2014) 131601, arXiv:1301.4176

**Sextonions and the extended magic square:**

B.W. Westbury, “Sextonions and the magic square,” Journal of the London Mathematical Society 73 (2006) no. 2, 455–474, arxiv:math/0411428

J.M. Landsberg and L. Manivel, “The sextonions and 𝔢_{7½},” Advances in Mathematics 201 (2006) 2 no. 1, 143-179, arxiv:math/0402157

A. Marrani and P. Truini, “Sextonions, Zorn matrices, and 𝔢_{7½},” Letters in Mathematical Physics 107 (2017) no.10, 1859-1875, arXiv:1506.04604

Leave a Comment

Last Updated: 23rd May 2018 by George Rogers

## CQG+ ‘Insight’ Article – A Kind Of Magic by Leron Borsten & Alessio Marrani

Classical and Quantum Gravity(CQG).## A Kind Of Magic

## The road from Dunsink to the exceptional symmetries of M-theory

By Leron Borsten and Alessio MarraniOur journey starts in the fall of 1843 at the Dunsink Observatory

^{[1]}, presiding from its hill-top vantage over the westerly reaches of Dublin City, seat to the then Astronomer Royal Sir William Rowan Hamilton. In the preceding months Hamilton had become preoccupied by the observation that multiplication by a complex phase induces a rotation in the Argand plane, revealing an intimate link between two-dimensional Euclidean geometry and the complex numbers ℂ. Fascinated by this unification of geometry and algebra, Hamilton set about the task of constructing a new number system that would do for three dimensions what the complexes did for two. After a series of trying failures, on October 16th 1843, while walking from the Dunsink Observatory to a meeting of the Royal Irish Academy on Dawson Street, Hamilton surmounted his apparent impasse in a moment of inspired clarity: rotations inthreedimensions require afour-dimensional algebra with one real andthreeimaginary units satisfying the fundamental relationsi. The quaternions ℍ were thus born. Taken in that instant of epiphany, Hamilton etched his now famous equations onto the underside of Broome bridge, a cave painting illuminated not by campfire, but mathematical insight and imagination. Like all great mathematical expressions, once seen they hang elegant and timeless, eternal patterns in the fixed stars merely chanced upon by our ancestral explorers.^{2 }= j^{2 }= k^{2 }= ijk = -1Leron Borsten (left) and Alessio Marrani (right) stood before Hamilton’s fundamental relations, Broome bridge Dublin. Leron is currently a Schrödinger Fellow in the School of Theoretical Physics, Dublin Institute for Advanced Studies. Alessio is currently a Senior Grantee at the Enrico Fermi Research Centre, Roma.

This discovery set in motion a subtle dance intertwining algebra and symmetry. It invites diverse interpretations, but that which suits our purpose best is the realisation of the three families of classical simple Lie algebras, 𝔰𝔳(

n+1), 𝔰𝔲(n+1), 𝔰𝔭(n+1), as the infinitesimal isometries of the real, complex and quaternionic projective spaces, ℝℙ^{n}, ℂℙ^{n}, ℍℙ^{n}. The classical Lie algebras are unified as rotations in real, complex and quaternionic universes. Yet, the five remainingexceptionalsimple Lie algebras, 𝔤_{2}, 𝔣_{4}, 𝔢_{6}, 𝔢_{7}, 𝔢_{8}, are left unaccounted for and, from this perspective at least, geometrically enigmatic.To remedy this shortcoming we must first return to Dublin, 1843. Hamilton’s college friend, John T. Graves, on receiving word of the quaternions was struck by their seemingly conjured existence, writing to Hamilton on October 26th: “If with your alchemy you can make three pounds of gold, why should you stop there?”. But two months later to the day, Graves reciprocated, sharing with Hamilton a further generalisation of the real ℝ, complex ℂ, and quaternionic ℍ numbers: the octonions 𝕆. Endowed with seven imaginary units,

e, the octonions constitute the largest example of what are now known as the normed division algebras: ℝ, ℂ, ℍ, 𝕆. The multiplication rules of_{i}eare governed by the Fano plane, as described in figure 1. Using the Cayley-Dickson doubling procedure we can build each algebra from two copies of its predecessor. However, with each doubling a property is lost. In particular, the octonions, unlike their well-mannered older siblings, are_{i}non-associative. This makes 𝕆 capricious and uncooperative, but also exceptional.Figure 1: The Fano plane. Following the lines gives the multiplication rules of the imaginary octonions (going against the arrows, one picks up a minus sign).

Returning to the simple Lie algebras, the sequence ℝℙ

^{n}, ℂℙ^{n}, ℍℙ^{n}cries out for the inclusion of 𝕆ℙ^{n}. The octonionic projective line 𝕆ℙ^{1}reproduces the classical Lie algebra 𝔰𝔳(8) already accommodated by ℝℙ^{7}. However, the isometries of the next rung on the ladder, the Cayley plane 𝕆ℙ^{2}, do indeed yield an exceptional algebra, namely 𝔣_{4}. However, the non-associativity of 𝕆 renders 𝕆ℙ^{n}a bona fide projective space forn≤ 2 only and consequently the sequence ends here, hence the singular status of 𝔣_{4}. It would seem, naively, that the remaining exceptional algebras do not fit into this story. However, when viewed in the right way, the Cayley plane realisation of 𝔣_{4}can be generalised by considering not one, but two algebras, ℝ ⊗ 𝕆, ℂ ⊗ 𝕆, ℍ ⊗ 𝕆, and 𝕆 ⊗ 𝕆 yielding precisely the exceptional Lie algebras 𝔣_{4}, 𝔢_{6}, 𝔢_{7}, and 𝔢_{8}. Allowing in this construction the two algebras to vary over all ℝ, ℂ, ℍ, 𝕆, we obtain what has come to be known as the Freudenthal-Rosenfeld-Titsmagicsquareof Lie algebras, as depicted in figure 2. Since these early discoveries, the octonions have been found time and time again lurking in the corners where geometry meets algebra.Figure 2: The Freudenthal-Rosenfeld-Tits magic square of Lie algebras. The exceptional algebras appear in the octonionic row/column. Each entry can be realised as a symmetry of supergravity.

Although it would be fair to say that the octonions have yet to cement themselves in the annals of physics they have over the years appeared in a variety of suggestive guises. One such occurrence takes place in M-theory, an ambitious, albeit tentative, approach to the challenges of quantum gravity and unification. Being fundamentally non-perturbative, M-theory remains largely mysterious. A vital piece of the puzzle in our present understanding is the notion of “U-duality”. The five consistent ten-dimensional superstring theories and eleven-dimensional supergravity are interconnected through a web of U-duality relations, leading to the conjecture that they merely represent disparate glimpses of a single overarching framework living in

D= 11 spacetime dimensions: M-theory. To make contact with our daily four-dimensional experience one cancompactify. Although phenomenologically irrelevant, the simplest example of a compactification is given by taking one dimension to form a circle. If the radius of the circle is small enough, this dimension becomes essentially undetectable. By compactifying on ann-torus, that is takingndimensions as circles, we can descend toD= 11 –ndimensions. The low-energy effective field theory limit of M-theory compactified on ann-torus is the unique maximally supersymmetricD= 11 –nsupergravity theory. In this limit, the U-dualities of M-theory are reflected in the global symmetries of the corresponding supergravity theory. In particular, forD= 5, 4, 3 orn= 6, 7, 8 the global symmetry algebras are given by the exceptional Lie algebras sitting in the octonionic row/column of the magic square^{[2]}. We have overlooked a subtlety here. On compactifying eleven-dimensional supergravity toD= 5, 4, 3 the 𝔢_{6}, 𝔢_{7}, 𝔢_{8}symmetries are initially hidden, revealing themselves only once a judicious choice of (generalised) electromagnetic duality transformations^{[3]}has been applied.What happens when some other choice of dualisations is made? Well, the manifest symmetries are typically different in each case. What we demonstrate in our paper is that there exists a choice of dualisations for which a fascinating generalisation of the magic square makes an unexpected appearance. On complexifying the normed division algebras, which we will continue to denote ℝ, ℂ, ℍ, 𝕆, two new algebras in the sequence emerge: the three-dimensional ternions 𝕋, nestled tightly between ℂ and ℍ, and the six-dimensional sextonions 𝕊 sitting half-way from ℍ to 𝕆. Including 𝕋 and 𝕊 in the magic square construction reveals two further half-levels, obscured from view between the oft-visited floors of the ℝ, ℂ, ℍ, 𝕆 edifice. In particular, the 𝕋 ⊗ 𝕆 and 𝕊 ⊗ 𝕆 entries yield the non-reductive exceptional Lie algebras 𝔢

_{6¼}and 𝔢_{7½}, living half-lives somewhere in-between 𝔢_{6}, 𝔢_{7}, and 𝔢_{8}. Remarkably, the entire extended magic square, and so implicitly our enlarged ℝ, ℂ, 𝕋, ℍ, 𝕊, 𝕆 family, is realised through the symmetry algebras of supergravity.A kind of magic, if you will.^{[1]}Now a constituent of the Astronomy and Astrophysics section of the School of Cosmic Physics, Dublin Institute for Advanced Studies.^{[2]}For all the group theory and supergravity aficionados, please note we are not paying attention to the particular real forms that appear here and throughout.^{[3]}Not to be confused with the U-dualities of M-theory.## Further reading

Normed division algebras and the magic square:J.C. Baez, The Octonions, Bull. Am. Math. Soc. 39 (2002), 145–205.

Supergravity, global symmetries and the magic square:E. Cremmer, B. Julia, and J. Scherk, “Supergravity theory in 11 dimensions,” Phys. Lett. B76 (1978) 409–412.

E. Cremmer and B. Julia, “The SO(8) supergravity,” Nucl. Phys. B159 (1979) 141.

E. Cremmer, B. Julia, H. Lu, and C. Pope, “Dualization of dualities. 1.,” Nucl.Phys. B523 (1998) 73–144, arXiv:hep-th/9710119

B. Julia, “Group disintegrations,” in Superspace and Supergravity, S. Hawking and M. Rocek, eds., Nuffield Gravity Workshop, pp. 331–350. Cambridge University Press (1980).

M. Günaydin, G. Sierra, and P. K. Townsend, “Exceptional supergravity theories and the magic square,” Phys. Lett. B133 (1983) 72.

L. Borsten, M. J. Duff, L. J. Hughes, and S. Nagy, “A magic square from Yang-Mills squared,” Phys.Rev.Lett. 112 (2014) 131601, arXiv:1301.4176

Sextonions and the extended magic square:B.W. Westbury, “Sextonions and the magic square,” Journal of the London Mathematical Society 73 (2006) no. 2, 455–474, arxiv:math/0411428

J.M. Landsberg and L. Manivel, “The sextonions and 𝔢

_{7½},” Advances in Mathematics 201 (2006) 2 no. 1, 143-179, arxiv:math/0402157A. Marrani and P. Truini, “Sextonions, Zorn matrices, and 𝔢

_{7½},” Letters in Mathematical Physics 107 (2017) no.10, 1859-1875, arXiv:1506.04604Category: News, School of Theoretical Physics News & Events

DIAS4 days agoMeet the Judges of our "Reach for the Stars" Astrophotography competition! @petertgallagher is Head of @DIASAstronomy & has spent the past two decades studying the Sun its impacts on the Earth. To learn more and submit an entry see dias.ie/reachforthesta… #DIASdiscovers

DIAS1 week agoShe has over 15 years’ experience working in PR and communications and has wide-ranging experience of providing strategic communications support to organisations. Learn more about the competition and submit an entry 👉dias.ie/reachforthesta… #DIASdiscovers #astrophotography

DIAS1 week agoMeet the Judges of our "Reach for the Stars" Astrophotography competition! @MartinaPQuinn is the Founder & Managing Director of @helloalicepr.

DIAS2 weeks agoWant to learn more about what's happening on Mars? Check out our public lecture from November delivered Dr John Clinton and titled MarsQuakes! (5/5) youtu.be/_Lp0oLJ8Ahs

DIAS2 weeks agoAnd then this Thursday @NASAMars Perseverance rover reaches Mars, which will try to land in a near equatorial crater called Jezero. Here you can see a possible route around the crater. (4/5)

DIAS2 weeks agoLast Wednesday, the day the UAE revealed their first image of Mars, China's National Space Administration's Tianwen-1 arrived at Mars. This carries a rover which will be despatched to the surface in the coming months. (3/5) bbc.com/news/science-e…

DIAS2 weeks agoFirst up is the @uaespaceagency's Hope mission entered orbit this day last week. It is the first inter-planetary mission by the UAE, and will stay in a wide orbit for one Martian year or two earth years to study climate and weather. (2/5)

DIAS2 weeks agoIt's a busy month over at our planetary neighbour Mars. Three missions headed there have or will enter orbit this month. Why so many at one time? They were timed to launch when the distance between the Earth and Mars was relatively short. (1/5)

DIAS2 weeks ago#WomeninResearch

DIAS2 weeks agoLooking for some #MondayMotivation? We are delighted to share this short video by @CClearych who is the O'Donovan Scholar at the School of Celtic Studies. Here she describes the amazing inputs of Eleanor Knott MRIA. youtu.be/Zfvw0KZbFTk @SCSLibrary @RIAdawson

DIAS2 weeks agoAnother addition to this DIAS managed online resource twitter.com/DIAS_ISOS/stat…