Dr. Linda Podio
INAF, Italy
The chemical content of planet-forming discs: Towards a comparison with the Outer Solar System objects and exoplanets
Abstract: How have planets formed in the Solar System? And what chemical composition they inherited from their natal environment? Is the chemical composition passed unaltered from the earliest stages of the formation of the Sun to its disk and then to the planets which assembled in the disk? Or does it reflects chemical processes occurring in the disk and/or during the planet formation process?
A viable way to answer these questions is to study protoplanetary disks around young Sun-like stars. The impacting images recently obtained by millimetre arrays of antennas such as ALMA provided the first observational evidence of ongoing planet formation in 0.1-1 million years old disks, through rings and gaps in their dust and gas distribution. The chemical composition of the forming planets clearly depends on the location and timescale for their formation and is intimately connected to the spatial distribution and abundance of the various molecular species in the disk. The chemical characterisation of disks is therefore crucial.
This field, however, is still in its infancy, because of the small sizes of disks (~100 au) and to the low gas-phase abundance of molecules (abundances with respect to H2 down to 10-12), which requires an unprecedented combination of angular resolution and sensitivity. I will show the first pioneering results obtained as part of the ALMA chemical survey of protoplanetary disks in the Taurus star forming region (ALMA-DOT program). We recovered the radial distribution and abundance of diatomic molecules (CO, CS, and CN) as well as of simple organics (H2CO and CH3OH), which are key for the formation of prebiotic molecules, at ~20 au resolution. The CS and H2CO molecules show enhanced emission in the cold outer disk, which suggests efficient formation of organic molecules on the icy mantles of dust grain. This could be the dawn of ice chemistry in the disk, producing more complex organic molecules which still escape our observations.
The next step is the comparison of the molecules radial distribution and abundance gradients in disks with those observed in the Outer Solar System Objects (OSSOs), which are believed to preserve the pristine composition of the protosolar nebula. Further to this, with the advent of JWST and ARIEL it will be possible to characterise the atmospheres of extrasolar planets and to compare them with the chemical diversity observed in disks. Finally, the SKA will open us a new window in the cm to search for heavier molecules and to explore the inner disk regions which are obscured by the dust in the millimetre range covered by ALMA.
Leave a Comment
Posted: 12th May 2020 by Simon Purser
2020-05-22, 14:30: Dr. L. Podio (INAF)
Dr. Linda Podio
INAF, Italy
The chemical content of planet-forming discs: Towards a comparison with the Outer Solar System objects and exoplanets
Abstract: How have planets formed in the Solar System? And what chemical composition they inherited from their natal environment? Is the chemical composition passed unaltered from the earliest stages of the formation of the Sun to its disk and then to the planets which assembled in the disk? Or does it reflects chemical processes occurring in the disk and/or during the planet formation process?
A viable way to answer these questions is to study protoplanetary disks around young Sun-like stars. The impacting images recently obtained by millimetre arrays of antennas such as ALMA provided the first observational evidence of ongoing planet formation in 0.1-1 million years old disks, through rings and gaps in their dust and gas distribution. The chemical composition of the forming planets clearly depends on the location and timescale for their formation and is intimately connected to the spatial distribution and abundance of the various molecular species in the disk. The chemical characterisation of disks is therefore crucial.
This field, however, is still in its infancy, because of the small sizes of disks (~100 au) and to the low gas-phase abundance of molecules (abundances with respect to H2 down to 10-12), which requires an unprecedented combination of angular resolution and sensitivity. I will show the first pioneering results obtained as part of the ALMA chemical survey of protoplanetary disks in the Taurus star forming region (ALMA-DOT program). We recovered the radial distribution and abundance of diatomic molecules (CO, CS, and CN) as well as of simple organics (H2CO and CH3OH), which are key for the formation of prebiotic molecules, at ~20 au resolution. The CS and H2CO molecules show enhanced emission in the cold outer disk, which suggests efficient formation of organic molecules on the icy mantles of dust grain. This could be the dawn of ice chemistry in the disk, producing more complex organic molecules which still escape our observations.
The next step is the comparison of the molecules radial distribution and abundance gradients in disks with those observed in the Outer Solar System Objects (OSSOs), which are believed to preserve the pristine composition of the protosolar nebula. Further to this, with the advent of JWST and ARIEL it will be possible to characterise the atmospheres of extrasolar planets and to compare them with the chemical diversity observed in disks. Finally, the SKA will open us a new window in the cm to search for heavier molecules and to explore the inner disk regions which are obscured by the dust in the millimetre range covered by ALMA.
Category: Future Seminars, Seminars
Following on from our post, highlighting inspiring #WomeninResearch and encouraging #MondayMotiviation to explore these subjects. @ChantalKobel presents Celticist, Nessa Ní Shéaghdha and her contributions to the discipline youtu.be/LGPLltjTBKw #DIASdiscovers
We have entered the last month to capture that amazing photo of the sky and win our Astrophotography competition. We are accepting photographs taken between 01 January 2020 and 31 March 2021. You can submit an entry up to Friday 02nd April 2021. More: dias.ie/reachforthesta…
Meet the Judges of our "Reach for the Stars" Astrophotography competition! @petertgallagher is Head of @DIASAstronomy & has spent the past two decades studying the Sun its impacts on the Earth. To learn more and submit an entry see dias.ie/reachforthesta… #DIASdiscovers
She has over 15 years’ experience working in PR and communications and has wide-ranging experience of providing strategic communications support to organisations. Learn more about the competition and submit an entry 👉dias.ie/reachforthesta… #DIASdiscovers #astrophotography
Meet the Judges of our "Reach for the Stars" Astrophotography competition! @MartinaPQuinn is the Founder & Managing Director of @helloalicepr.
Want to learn more about what's happening on Mars? Check out our public lecture from November delivered Dr John Clinton and titled MarsQuakes! (5/5) youtu.be/_Lp0oLJ8Ahs
And then this Thursday @NASAMars Perseverance rover reaches Mars, which will try to land in a near equatorial crater called Jezero. Here you can see a possible route around the crater. (4/5)
Last Wednesday, the day the UAE revealed their first image of Mars, China's National Space Administration's Tianwen-1 arrived at Mars. This carries a rover which will be despatched to the surface in the coming months. (3/5) bbc.com/news/science-e…
First up is the @uaespaceagency's Hope mission entered orbit this day last week. It is the first inter-planetary mission by the UAE, and will stay in a wide orbit for one Martian year or two earth years to study climate and weather. (2/5)
It's a busy month over at our planetary neighbour Mars. Three missions headed there have or will enter orbit this month. Why so many at one time? They were timed to launch when the distance between the Earth and Mars was relatively short. (1/5)
#WomeninResearch