Dr. Ágnes Kóspál
Konkoly Observatory, Hungary
Magnetic field and accretion in the young eruptive star EX Lupi
Abstract: While the Sun is a quiet and well-balanced star nowadays, during its first few million years it possessed a strong magnetic field and accreted actively. Theoretical models predict that under certain circumstances the interaction of a strongly magnetic star and its circumstellar disk may lead to short busts of increased accretion onto the star. The observable examples of this phenomenon may be a group of young stars called EXors, named after the prototype EX Lupi, which show irregular brightenings due to elevated accretion. EX Lupi had its historically largest outburst in 2008. Our group observed the system during this event, and discovered the crystallisation of amorphous silicate grains in the inner disk by the heat of the outburst. Spectroscopic evidence from the quiescent and outburst periods suggests that the mass accretion proceeds through the same magnetospheric accretion channels in both periods but with different mass flux. However, no information on the magnetic field of EX Lup can be found in the literature. Here, we explore the magnetic field structure of EX Lup using spectropolarimetric monitoring taken during the quiescent period. We detected strong and largely poloidal topology with a prominent cool polar cap and an accretion spot above it. If EX Lup is a good proxy for the proto-Sun, similar magnetic field-disk interactions and the resulting outbursts might have happened during the early evolution of the Solar System as well, significantly affecting the material available for planet formation.
Leave a Comment
Posted: 28th October 2020 by Simon Purser
2020-11-03, 15:00: Dr. Ágnes Kóspál (Konkoly Observatory)
Dr. Ágnes Kóspál
Konkoly Observatory, Hungary
Magnetic field and accretion in the young eruptive star EX Lupi
Abstract: While the Sun is a quiet and well-balanced star nowadays, during its first few million years it possessed a strong magnetic field and accreted actively. Theoretical models predict that under certain circumstances the interaction of a strongly magnetic star and its circumstellar disk may lead to short busts of increased accretion onto the star. The observable examples of this phenomenon may be a group of young stars called EXors, named after the prototype EX Lupi, which show irregular brightenings due to elevated accretion. EX Lupi had its historically largest outburst in 2008. Our group observed the system during this event, and discovered the crystallisation of amorphous silicate grains in the inner disk by the heat of the outburst. Spectroscopic evidence from the quiescent and outburst periods suggests that the mass accretion proceeds through the same magnetospheric accretion channels in both periods but with different mass flux. However, no information on the magnetic field of EX Lup can be found in the literature. Here, we explore the magnetic field structure of EX Lup using spectropolarimetric monitoring taken during the quiescent period. We detected strong and largely poloidal topology with a prominent cool polar cap and an accretion spot above it. If EX Lup is a good proxy for the proto-Sun, similar magnetic field-disk interactions and the resulting outbursts might have happened during the early evolution of the Solar System as well, significantly affecting the material available for planet formation.
Category: Astronomy and Astrophysics, Future Seminars, Seminars
If you haven't seen it yet check out this amazing video created by @hogg82 of @dias_geophysics . Simply stunning 🤩 twitter.com/hogg82/status/…
This #WorldBookDay we couldn't pick just one DIAS book to tell you about. And so we decided to highlight our wonderful DIAS Bookshop managed by our School of Celtic Studies. Learn more about the titles available here: shop.dias.ie/product-catego… #DIASdiscovers #WorldBookDay2021
Thanks @siliconrepublic for helping to share the findings siliconrepublic.com/innovation/iri…
DIAS scientists’ part of research team to record first ever detailed description of a volcanic eruption from Sierra Negra. Read more: dias.ie/2021/03/04/dia… #DIASdiscovers @dias_geophysics #volcano #Galapagos Image courtesy of @AndyFBell
Meet the Judges of our "Reach for the Stars" Astrophotography competition! Brenda Fitzsimons is photo editor of the @IrishTimes. To learn more about the competition and submit an entry see dias.ie/reachforthesta… #DIASdiscovers #astrophotography
Nice work 👏 twitter.com/dias_geophysic…
Following on from our post, highlighting inspiring #WomeninResearch and encouraging #MondayMotiviation to explore these subjects. @ChantalKobel presents Celticist, Nessa Ní Shéaghdha and her contributions to the discipline youtu.be/LGPLltjTBKw #DIASdiscovers
We have entered the last month to capture that amazing photo of the sky and win our Astrophotography competition. We are accepting photographs taken between 01 January 2020 and 31 March 2021. You can submit an entry up to Friday 02nd April 2021. More: dias.ie/reachforthesta…
Meet the Judges of our "Reach for the Stars" Astrophotography competition! @petertgallagher is Head of @DIASAstronomy & has spent the past two decades studying the Sun its impacts on the Earth. To learn more and submit an entry see dias.ie/reachforthesta… #DIASdiscovers